
Lee Babin

Beginning Ajax with PHP
From Novice to Professional

Beginning Ajax with PHP: From Novice to Professional

Copyright © 2007 by Lee Babin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-667-8

ISBN-10 (pbk): 1-59059-667-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewer: Quentin Zervaas
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole Flores
Copy Editors: Damon Larson, Jennifer Whipple
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Dina Quan
Proofreader: Lori Bring
Indexer: John Collin
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Contents at a Glance

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Ajax . 1

■CHAPTER 2 Ajax Basics . 11

■CHAPTER 3 PHP and Ajax . 25

■CHAPTER 4 Database-Driven Ajax . 49

■CHAPTER 5 Forms . 67

■CHAPTER 6 Images . 87

■CHAPTER 7 A Real-World Ajax Application . 101

■CHAPTER 8 Ergonomic Display . 123

■CHAPTER 9 Web Services . 135

■CHAPTER 10 Spatially Enabled Web Applications . 149

■CHAPTER 11 Cross-Browser Issues . 175

■CHAPTER 12 Security . 187

■CHAPTER 13 Testing and Debugging . 205

■CHAPTER 14 The DOM . 217

■INDEX . 235

iii

Contents

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Ajax . 1

From CGI to Flash to DHTML . 2

Pros and Cons of Today’s Web Application Environment 3

Enter Ajax . 4

Ajax Requirements . 8

Summary . 9

■CHAPTER 2 Ajax Basics . 11

HTTP Request and Response Fundamentals . 11

The XMLHttpRequest Object . 13

XMLHttpRequest Methods . 13

XMLHttpRequest Properties . 15

Cross-Browser Usage . 17

Sending a Request to the Server . 19

Basic Ajax Example . 20

Summary . 24

■CHAPTER 3 PHP and Ajax . 25

Why PHP and Ajax? . 25

Client-Driven Communication, Server-Side Processing 26

Basic Examples . 26

Expanding and Contracting Content . 26

Auto-Complete . 32

Form Validation . 41

Tool Tips . 44

Summary . 47

v

■CHAPTER 4 Database-Driven Ajax . 49

Introduction to MySQL . 50

Connecting to MySQL . 51

Querying a MySQL Database . 52

MySQL Tips and Precautions . 57

Putting Ajax-Based Database Querying to Work . 58

Auto-Completing Properly . 60

Loading the Calendar . 63

Summary . 65

■CHAPTER 5 Forms . 67

Bringing in the Ajax: GET vs. POST . 68

Passing Values . 69

Form Validation . 80

Summary . 86

■CHAPTER 6 Images . 87

Uploading Images . 87

Displaying Images . 91

Loading Images . 94

Dynamic Thumbnail Generation . 95

Summary . 99

■CHAPTER 7 A Real-World Ajax Application . 101

The Code . 102

How It Looks . 111

How It Works . 113

Summary . 122

■CHAPTER 8 Ergonomic Display . 123

When to Use Ajax . 124

Back Button Issues . 125

Ajax Navigation . 125

Hiding and Showing . 127

Introduction to PEAR . 128

HTML_Table . 129

Summary . 134

■CONTENTSvi

■CHAPTER 9 Web Services . 135

Introduction to SOAP Web Services . 136

Bring in the Ajax . 137

Let’s Code . 137

How the SOAP Application Works . 142

Summary . 147

■CHAPTER 10 Spatially Enabled Web Applications . 149

Why Is Google Maps so Popular? . 149

Where to Start . 151

How Our Mapping System Works . 163

Summary . 174

■CHAPTER 11 Cross-Browser Issues . 175

Ajax Portability . 175

Saving the Back Button . 177

Ajax Response Concerns . 180

Degrading JavaScript Gracefully . 183

The noscript Element . 184

Browser Upgrades . 185

Summary . 185

■CHAPTER 12 Security . 187

Increased Attack Surface . 187

Strategy 1: Keep Related Entry Points Within the
Same Script . 188

Strategy 2: Use Standard Functions to Process and
Use User Input . 188

Cross-Site Scripting . 189

Strategy 1: Remove Unwanted Tags from Input Data 191

Strategy 2: Escape Tags When Outputting
Client-Submitted Data . 192

Strategy 3: Protect Your Sessions . 192

Cross-Site Request Forgery . 193

Confirming Important Actions Using a One-Time Token 193

Confirming Important Actions Using the User’s Password 195

GET vs. POST . 195

Accidental CSRF Attacks . 195

■CONTENTS vii

Denial of Service . 196

Strategy 1: Use Delays to Throttle Requests 197

Strategy 2: Optimize Ajax Response Data . 198

Protecting Intellectual Property and Business Logic 200

Strategy 1: JavaScript Obfuscation . 200

Strategy 2: Real-Time Server-Side Processing 201

Summary . 204

■CHAPTER 13 Testing and Debugging . 205

JavaScript Error Reporting . 205

Firefox Extensions . 208

Web Developer Toolbar . 208

The DOM Inspector . 208

LiveHTTPHeaders . 209

Venkman JavaScript Debugger . 211

HTML Validation . 212

Internet Explorer Extensions . 213

Internet Explorer Developer Toolbar . 214

Fiddler . 215

Summary . 216

■CHAPTER 14 The DOM . 217

Accessing DOM Elements . 217

document.getElementById . 217

getElementsByTagName . 218

Accessing Elements Within a Form . 219

Adding and Removing DOM Elements . 219

Manipulating DOM Elements . 221

Manipulating XML Using the DOM . 222

Combining Ajax and XML with the DOM . 223

How the Ajax Location Manager Works . 228

Summary . 233

■INDEX . 235

■CONTENTSviii

About the Author

■LEE BABIN is a programmer based in Calgary, Alberta, where he owns
and operates an innovative development firm duly named Code Writer.
He has been developing complex web-driven applications since his
graduation from DeVry University in early 2002, and has since worked
on over 100 custom web sites and online applications.

Lee is married to a beautiful woman by the name of Dianne, who
supports him in his rather full yet rewarding work schedule. Lee and
Dianne are currently expecting their first child, and Lee cannot wait to
be a father.

Lee enjoys video games, working out, martial arts, and traveling, and can usually be found
working online on one of his many fun web projects.

ix

About the Technical Reviewer

■QUENTIN ZERVAAS is a web developer from Adelaide, Australia. After receiving his degree in
computer science in 2001 and working for several web development firms, Quentin started his
own web development and consulting business in 2004.

In addition to developing custom web applications, Quentin also runs and writes for
phpRiot(), a web site about PHP development. The key focuses of his application development
are usability, security, and extensibility.

In his spare time, Quentin plays the guitar and basketball, and hopes to publish his own
book on web development in the near future.

xi

Acknowledgments

Writing a book is never a simple process. It relies on the help and understanding of many
different people to come to fruition. Writing this book was no exception to the rule; it truly
could not have come together in its completed form without the understanding and assis-
tance of a select few.

First and foremost, I would like to thank a very talented, dedicated, and highly skilled
individual by the name of Quentin Zervaas. Quentin consistently volunteered his time and
hard effort to ensure the absolute quality of the content found within this book. He worked
tirelessly to ensure that every last snippet and concept was as polished as could possibly be.
Then, during a particularly difficult period in the writing process, Quentin played a key role in
ensuring the book made its way to the bookshelf. It would be a vast understatement to say
that there is no way I could have completely this book without him. Thank you Quentin—your
assistance during hard times is truly appreciated.

While you might suppose that a book is written and finalized by the author alone, there
are always key players that help to ensure that any book is completed on schedule and of the
highest quality. This book is no exception, and I would truly like to thank Jason Gilmore and
Richard Dal Porto for both managing the book and ensuring that it made it through to final-
ization. Jason and Richard both helped immensely, and I would like to thank them very much
for having the patience and understanding to see it through to the end.

I would also like to thank my loving wife, Dianne, for putting up with some insanely long
hours of work and for not being upset at me despite my having no time to spend with her for
months on end. She is the one who continued to support me throughout the project and I
could not have finished it without her constant patience, love, support, and assurance.

Lastly, I would like to thank you, the reader. While I am sure that is something of a cliché,
it truly means a lot to me that you hold this book in your hands (or are viewing it on your lap-
top). I suppose it goes without saying that there is no point writing something if no one reads
it. I appreciate your support and I truly hope you enjoy this book and find it very useful.

xiii

Introduction

Working with technology is a funny thing in that every time you think you have it cornered
. . . blam! Something pops out of nowhere that leaves you at once both bewildered and excited.
Web development seems to be particularly prone to such surprises. For instance, early on, all
we had to deal with was plain old HTML, which, aside from the never-ending table-wrangling,
was easy enough. But soon, the simple web site began to morph into a complex web applica-
tion, and accordingly, scripting languages such as PHP became requisite knowledge.
Server-side development having been long since mastered, web standards such as CSS and
XHTML were deemed the next link in the Web’s evolutionary chain.

With the emergence of Ajax, developers once again find themselves at a crossroads. How-
ever, just as was the case with the major technological leaps of the past, there’s little doubt as
to which road we’ll all ultimately take, because it ultimately leads to the conclusion of clicking
and waiting on the Web. Ajax grants users the luxury of accessing desktop-like applications
from any computer hosting a browser and Internet connection. Likewise, developers now
have more reason than ever to migrate their applications to an environment that has the
potential for unlimited users.

Yet despite all of Ajax’s promise, many web developers readily admit being intimidated by
the need to learn JavaScript (a key Ajax technology). Not to worry! I wrote this book to show
PHP users how to incorporate Ajax into their web applications without necessarily getting
bogged down in confusing JavaScript syntax, and I’ve chosen to introduce the topic by way of
practical examples and real-world instruction. The material is broken down into 14 chapters,
each of which is described here:

Chapter 1: “Introducing Ajax,” puts this new Ajax technology into context, explaining the
circumstances that led to its emergence as one of today’s most talked about advance-
ments in web development.

Chapter 2: “Ajax Basics,” moves you from the why to the what, covering fundamental Ajax
syntax and concepts that will arise no matter the purpose of your application.

Chapter 3: “PHP and Ajax,” presents several examples explaining how the client and
server sides come together to build truly compelling web applications.

Chapter 4: “Database-Driven Ajax,” builds on what you learned in the previous chapter
by bringing MySQL into the picture.

Chapter 5: “Forms,” explains how Ajax can greatly improve the user experience by per-
forming tasks such as seemingly real-time forms validation.

Chapter 6: “Images,” shows you how to upload, manipulate, and display images the
Ajax way.

xv

Chapter 7: “A Real-World Ajax Application,” applies everything you’ve learned so far to
build an Ajax-enabled photo gallery.

Chapter 8: “Ergonomic Display,” touches upon several best practices that should always
be applied when building rich Internet applications.

Chapter 9: “Web Services,” shows you how to integrate Ajax with web services, allowing
you to more effectively integrate content from providers such as Google and Amazon.

Chapter 10: “Spatially Enabled Web Applications,” introduces one of the Web’s showcase
Ajax implementations: the Google Maps API.

Chapter 11: “Cross-Browser Issues,” discusses what to keep in mind when developing
Ajax applications for the array of web browsers in widespread use today.

Chapter 12: “Security,” examines several attack vectors introduced by Ajax integration,
and explains how you can avoid them.

Chapter 13: “Testing and Debugging,” introduces numerous tools that can lessen the
anguish often involved in debugging JavaScript.

Chapter 14: “The DOM,” introduces the document object model, a crucial element in the
simplest of Ajax-driven applications.

Contacting the Author
Lee can be contacted at lee@babinplanet.ca.

■INTRODUCTIONxvi

Introducing Ajax

Internet scripting technology has come along at a very brisk pace. While its roots are
lodged in text-based displays (due to very limited amounts of storage space and mem-
ory), over the years it has rapidly evolved into a visual and highly functional medium. As
it grows, so do the tools necessary to maintain, produce, and develop for it. As developers
continue to stretch the boundaries of what they can accomplish with this rapidly advanc-
ing technology, they have begun to request increasingly robust development tools.

Indeed, to satisfy this demand, a great many tools have been created and made avail-
able to the self-proclaimed “web developer.” Languages such as HTML, PHP, ASP, and
JavaScript have arisen to help the developer create and deploy his wares to the Internet.
Each has evolved over the years, leaving today’s web developer with an amazingly power-
ful array of tools. However, while these tools grow increasingly powerful every day, several
distinctions truly separate Internet applications from the more rooted desktop applications.

Of the visible distinctions, perhaps the most obvious is the page request. In order to
make something happen in a web application, a call has to be made to the server. In
order to do that, the page must be refreshed to retrieve the updated information from the
server to the client (typically a web browser such as Firefox or Internet Explorer). This is
not a browser-specific liability; rather, the HTTP request/response protocol inherent in
all web browsers (see Figure 1-1) is built to function in this manner. While theoretically
this works fine, developers have begun to ask for a more seamless approach so that their
application response times can more closely resemble the desktop application.

1

C H A P T E R 1

Figure 1-1. The request/response method used in most web sites currently on the Internet.

From CGI to Flash to DHTML
The development community has asked, and the corporations have answered. Developer
tool after tool has been designed, each with its own set of pros and cons. Perhaps the first
scripting language to truly allow web applications the freedom they were begging for was
the server-side processing language CGI (Common Gateway Interface).

With the advent of CGI, developers could now perform complex actions such as—
but certainly not limited to—dynamic image creation, database management, complex
calculation, and dynamic web content creation. What we have come to expect from our
web applications today started with CGI. Unfortunately, while CGI addressed many
issues, the elusive problem of seamless interaction and response remained.

In an attempt to create actual living, breathing, moving web content, Macromedia
(www.macromedia.com) released its highly functional, and rather breathtaking (for the time)
Flash suite. Flash was, and still remains to this day, very aptly named. It allows a web
developer to create visually impressive “movies” that can function as web sites, applica-
tions, and more. These web sites were considered significantly “flashier” than other web
sites, due to their ability to have motion rendered all across the browser.

In the hands of a professional designer, Flash-enabled web sites can be quite visually
impressive. Likewise, in the hands of a professional developer, they can be very powerful.

CHAPTER 1 ■ INTRODUCING AJAX2

However, it’s rare that an individual possesses both considerable design and develop-
ment skills; therefore, Flash applications tend to be either visually impressive with very
little functionality, or functionally amazing with an interface that leaves much to be
desired. Also, this dilemma is combined with an additional compatibility issue: in order
for Flash to function, a plug-in must be installed into your browser.

Another visually dynamic technology that has been around for many years but does
not have a significant base of users is DHTML (an acronym for Dynamic HyperText
Markup Language). DHTML—a term describing the marriage of JavaScript and HTML—
basically combines HTML and CSS elements with JavaScript in an attempt to make
things happen in your web browser dynamically. While DHTML in the hands of a skilled
JavaScript professional can achieve some impressive results, the level of expertise required
to do so tends to keep it out of the hands of most of the development community.

While scripts such as drop-down menus, rollovers, and tool tip pop-ups are fairly
commonplace, it is only due to skilled individuals creating packages that the everyday
developer can deploy. Very few individuals code these software packages from scratch,
and up until recently, not many individuals considered JavaScript a very potent tool for
the Internet.

Pros and Cons of Today’s Web Application
Environment
There are very obvious pros and cons to creating web applications on the Internet. While
desktop applications continually struggle with cross-platform compatibility issues, often
fraught with completely different rules for handling code, Internet applications are much
simpler to port between browsers. Combine that with the fact that only a few large-scale
browsers contain the vast majority of the user base, and you have a means of deployment
that is much more stable across different users.

There is also the much-appreciated benefit to being able to create and maintain a
single code base for an online application. If you were to create a desktop application
and then deploy a patch for a bug fix, the user must either reinstall the entire software
package or somehow gain access to the patch and install it. Furthermore, there can be
difficulty in determining which installations are affected.

Web applications, on the other hand, can be located at one single server location and
accessed by all. Any changes/improvements to the functionality can be delivered in one
central location and take effect immediately. Far more control is left in the hands of the
developers, and they can quite often continue to create and maintain a superior product.

Naturally, everything comes with a price. While delivering an application from a cen-
tral server location is quite nice from a maintenance point of view, the problem arises
that the client needs a means to access said point of entry. The Internet provides a won-
derful way to do this, but the question of speed comes into play immediately.

CHAPTER 1 ■ INTRODUCING AJAX 3

While a client using Microsoft Word, for example, can simply click a button on their
computer to fire it up and receive an instant response, applications built on the Internet
require a connection to said application to use it. While high-speed Internet is gaining
more and more ground every day, a vast majority of Internet users are still making use
of the much slower 56 Kbps (and slower) modems. Therefore, even if the software can
quickly process information on the server, it may take a considerable amount of time to
deliver it to the end user.

Combine this issue with the need to refresh the page every time a server response is
required, and you can have some very frustrating issues for the end user of an Internet
application. A need is definitely in place for web applications that contain the benefits of
deliverability with the speed of a desktop application. As mentioned, Flash provides such
a means, to an extent, through its powerful ActionScript language, but you need to be a
jack-of-all-trades to effectively use it. DHTML provides a means to do this through the
use of JavaScript, but the code to do so is rather restrictive.

Even worse, you often have to deal with browsers that refuse to cooperate with a real
set of standards (or rather, fail to follow the standards). Thankfully, though, there is a
solution to these problems: Ajax. Dubbed Asynchronous JavaScript and XML by Jesse
James Garrett, and made popular largely by such web applications as Google’s Gmail,
Ajax is a means to making server-side requests with seamless page-loading and little to
no need for full page refreshes.

Enter Ajax

Ajax took the Internet world rather by surprise, not just in its ease of use and very cool
functionality, but also in its ability to draw the attention of darn near every developer on
the planet. Where two years ago Ajax was implemented rather dubiously, without any
form of standard (and certainly there were very few sites that built their core around Ajax
completely), Ajax is now seemingly as commonplace as the rollover.

Entire web applications are arising out of nowhere, completely based upon Ajax
functionality. Not only are they rather ingenious uses of the technology, they are leading
the web industry into a new age whereby the standard web browser can become so much
more; it can even rival the desktop application now.

Take, for instance, Flickr (www.flickr.com) or Gmail (www.gmail.com) (see Figure 1-2).
On their surface, both offer services that are really nothing new. (After all, how many
online photo albums and web mail services are out there?) Why then have these two appli-
cations garnered so much press and publicity, particularly in the online community?

I believe the reason for the new popularity of Ajax-based applications is not that the
functionality contained within is anything new or astounding; it is merely the fact that
the way the information and functionality is presented to us is done in a very efficient
and ergonomic manner (something that, up until now, has been largely absent within
Internet applications).

CHAPTER 1 ■ INTRODUCING AJAX4

Figure 1-2. Web sites such as Flickr and Gmail have created rich Ajax applications.

CHAPTER 1 ■ INTRODUCING AJAX 5

Ajax Defined

Ajax, as stated previously, stands for Asynchronous JavaScript and XML. Now, not every-
one agrees that Ajax is the proper term for what it represents, but even those who are
critical of the term cannot help but understand the implications it stands for and the
widespread fame that the technology has received, partly as a result of its new moniker.

Basically, what Ajax does is make use of the JavaScript-based XMLHttpRequest object
to fire requests to the web server asynchronously—or without having to refresh the
page. (Figures 1-3 and 1-4 illustrate the difference between traditional and Ajax-based
request/response models.) By making use of XMLHttpRequest, web applications can
garner/send information to the server, have the server do any processing that needs to
be handled, and then change aspects of the web page dynamically without the user
having to move pages or change the location of their focus. You might think that by
using the XMLHttpRequest object, all code response would have to return XML. While it
certainly can return XML, it can also return just about anything you tell your scripting
language to return.

Figure 1-3. Traditional server request/response model used on most web-based applications
today; each time a server request is made, the page must refresh to reveal new content

Consider, for instance, that you are using a mortgage calculator form to deduce the
amount of money that is soon to be siphoned from your hard-earned bank account—not
a trivial matter for your scripting language at all. The general way of handling such an
application would be to fill out the form, press the submit button, and then wait for the
response to come back. From there, you could redo the entire thing, testing with new
financial figures.

CHAPTER 1 ■ INTRODUCING AJAX6

Figure 1-4. Internet request/response model using Ajax’s asynchronous methodology; multiple
server requests can be made from the page without need for a further page refresh

With a JavaScript-based Ajax solution, however, you could click the submit button,
and while you remain fixed on the same page, the server could do the calculations and
return the value of the mortgage right in front of your eyes. You could then change values
in the formula and immediately see the differences.

Interestingly, new ergonomic changes can now occur as well. Perhaps you don’t even
want to use a submit button. You could use Ajax to make a call to the server every time
you finished entering a field, and the number would adjust itself immediately. Ergonomic
features such as this are just now becoming mainstream.

Is Ajax Technology New?

To call Ajax a new technology in front of savvy web developers will guarantee an earful of
ranting. Ajax is not a new technology—in fact, Ajax is not even really a technology at all.
Ajax is merely a term to describe the process of using the JavaScript-based XMLHttpRequest
object to retrieve information from a web server in a dynamic manner (asynchronously).

CHAPTER 1 ■ INTRODUCING AJAX 7

The means to use the XMLHttpRequest has been prevalent as far back as 1998, and web
browsers such as Internet Explorer 4 have possessed the capability to make use of Ajax
even back then (albeit not without some configuration woes). Long before the browser
you are likely using right now was developed, it was quite possible to make use of
JavaScript to handle your server-side requests instantaneously from a client-side point
of view.

However, if we are talking about the widespread use of Ajax as a concept (not a tech-
nology), then yes, it is quite a new revelation in the Internet community. Web developers
of all kinds have finally started coming around to the fact that not all requests to the
server have to be done in the same way. In some respects, Ajax has opened the minds of
millions of web developers who were simply too caught up in convention to see beyond
the borders of what is possible. Please do not consider me a pioneer in this respect either;
I was one of them.

Why Ajax Is Catching Fire Now

So, if this technology has existed for so long, why is it only becoming so popular now? It is
hard to say exactly why it caught fire in the first place, or who is to really be credited for
igniting the fire under its widespread fame. Many developers will argue over Gmail and
its widespread availability, or Jesse James Garrett for coining the term and subsequently
giving people something to call the concept; but the true success of Ajax, I believe, lies
more in the developers than in those who are using it.

Consider industries such as accounting. For years, accountants used paper spread-
sheets and old-fashioned mathematics to organize highly complex financials. Then, with
the advent of computers, things changed. A new way of deploying their services suddenly
existed and the industry ceased to remain the way it once was. Sure, standards from the
old way still hold true to this day, but so much more has been added, and new ways of
doing business have been created.

Ajax has created something like this for Internet software and web site developers.
Conventions that were always in place still remain, but now we have a new way to deploy
functionality and present information. It is a new tool that we can use to do business
with and refine our trade. New methodologies are now in place to deploy that which, up
until very recently, seemed quite out of our grasp as developers. I, for one, am rather
excited to be building applications using the Ajax concept, and can’t wait to see what
creative Internet machines are put into place.

Ajax Requirements

Since Ajax is based upon JavaScript technology, it goes without saying that JavaScript
must be enabled in the user’s browser in order for it to work. That being said, most peo-
ple do allow their browsers to use JavaScript, and it is not really that much of a security
issue to have it in place. It must be noted, however, that the user does have the ability to

CHAPTER 1 ■ INTRODUCING AJAX8

effectively “disable” Ajax, so it is important to make sure, when programming an Ajax
application, that other means are available to handle maneuvering through the web site;
or alternatively, that the user of the web site is kept properly informed of what is neces-
sary to operate the application.

Ajax is a fairly widely supported concept across browsers, and can be invoked on
Firefox (all available versions), Internet Explorer (4.0 and higher), Apple Safari (1.2 and
higher), Konqueror, Netscape (7.1 and higher), and Opera (7.6 and higher). Therefore,
most browsers across the widely used gamut have a means for handling Ajax and its
respective technologies. For a more complete listing on handling cross-browser Ajax,
have a look at Chapter 11.

At this point, the only real requirement for making use of Ajax in an efficient and pro-
ductive manner is the creativity of going against what the standard has been telling us for
years, and creating something truly revolutionary and functional.

Summary
You should now have a much better understanding of where this upstart new technology
has come from and where it intends to go in the future. Those web developers out there
who are reading this and have not experimented yet with Ajax should be salivating to
see what can be done. The first time I was introduced to the concept of running server
requests without having to refresh the page, I merely stood there in awe for a few minutes
running through all of the amazing ideas I could now implement. I stood dumbfounded
in the face of all of the conventions this technology broke down.

Ready for more yet? Let’s move on to the next chapter and start getting Ajax and PHP
to work for you.

CHAPTER 1 ■ INTRODUCING AJAX 9

Ajax Basics

An interesting misconception regarding Ajax is that, given all the cool features it has to
offer, the JavaScript code must be extremely difficult to implement and maintain. The
truth is, however, that beginning your experimentation with the technology could not be
simpler. The structure of an Ajax-based server request is quite easy to understand and
invoke. You must simply create an object of the XMLHttpRequest type, validate that it has
been created successfully, point where it will go and where the result will be displayed,
and then send it. That’s really all there is to it.

If that’s all there is to it, then why is it causing such a fuss all of a sudden? It’s because
Ajax is less about the code required to make it happen and more about what’s possible
from a functionality, ergonomics, and interface perspective. The fact that Ajax is rather
simple to implement from a development point of view is merely icing on a very fine
cake. It allows developers to stop worrying about making the code work, and instead
concentrate on imagining what might be possible when putting the concept to work.

While Ajax can be used for very simple purposes such as loading HTML pages or per-
forming mundane tasks such as form validation, its power becomes apparent when used
in conjunction with a powerful server-side scripting language. As might be implied by
this book’s title, the scripting language I’ll be discussing is PHP. When mixing a client-
side interactive concept such as Ajax with a server-side powerhouse such as PHP,
amazing applications can be born. The sky is the limit when these two come together,
and throughout this book I’ll show you how they can be mixed for incredibly powerful
results.

In order to begin making use of Ajax and PHP to create web applications, you must
first gain a firm understanding of the basics. It should be noted that Ajax is a JavaScript
tool, and so learning the basics of JavaScript will be quite important when attempting to
understand Ajax-type applications. Let’s begin with the basics.

HTTP Request and Response Fundamentals
In order to understand exactly how Ajax concepts are put together, it is important to
know how a web site processes a request and receives a response from a web server. The
current standard that browsers use to acquire information from a web server is the HTTP

11

C H A P T E R 2

(HyperText Transfer Protocol) method (currently at version HTTP/1.1). This is the means
a web browser uses to send out a request from a web site and then receive a response
from the web server that is currently in charge of returning the response.

HTTP requests work somewhat like e-mail. That is to say that when a request is sent,
certain headers are passed along that allow the web server to know exactly what it is to
be serving and how to handle the request. While most headers are optional, there is one
header that is absolutely required (provided you want more than just the default page on
the server): the host header. This header is crucial in that it lets the server know what to
serve up.

Once a request has been received, the server then decides what response to return.
There are many different response codes. Table 2-1 has a listing of some of the most
common ones.

Table 2-1. Common HTTP Response Codes

Code Description

200 OK This response code is returned if the document or file in question is
found and served correctly.

304 Not Modified This response code is returned if a browser has indicated that it has
a local, cached copy, and the server’s copy has not changed from
this cached copy.

401 Unauthorized This response code is generated if the request in question requires
authorization to access the requested document.

403 Forbidden This response code is returned if the requested document does not
have proper permissions to be accessed by the requestor.

404 Not Found This response code is sent back if the file that is attempting to be
accessed could not be found (e.g., if it doesn’t exist).

500 Internal Server Error This code will be returned if the server that is being contacted has a
problem.

503 Service Unavailable This response code is generated if the server is too overwhelmed to
handle the request.

It should be noted that there are various forms of request methods available. A few
of them, like GET and POST, will probably sound quite familiar. Table 2-2 lists the available
request methods (although generally only the GET and POST methods are used).

CHAPTER 2 ■ AJAX BASICS12

Table 2-2. HTTP Request Methods

Method Description

GET The most common means of sending a request; simply requests a specific
resource from the server

HEAD Similar to a GET request, except that the response will come back without the
response body; useful for retrieving headers

POST Allows a request to send along user-submitted data (ideal for web-based forms)

PUT Transfers a version of the file request in question

DELETE Sends a request to remove the specified document

TRACE Sends back a copy of the request in order to monitor its progress

OPTIONS Returns a full list of available methods; useful for checking on what methods a
server supports

CONNECT A proxy-based request used for SSL tunneling

Now that you have a basic understanding of how a request is sent from a browser
to a server and then has a response sent back, it will be simpler to understand how the
XMLHttpRequest object works. It is actually quite similar, but operates in the background
without the prerequisite page refresh.

The XMLHttpRequest Object
Ajax is really just a concept used to describe the interaction of the client-side
XMLHttpRequest object with server-based scripts. In order to make a request to the server
through Ajax, an object must be created that can be used for different forms of function-
ality. It should be noted that the XMLHttpRequest object is both instantiated and handled a
tad differently across the browser gamut. Of particular note is that Microsoft Internet
Explorer creates the object as an ActiveX control, whereas browsers such as Firefox and
Safari use a basic JavaScript object. This is rather crucial in running cross-browser code
as it is imperative to be able to run Ajax in any type of browser configuration.

XMLHttpRequest Methods

Once an instance of the XMLHttpRequest object has been created, there are a number of
methods available to the user. These methods are expanded upon in further detail in
Table 2-3. Depending on how you want to use the object, different methods may become
more important than others.

CHAPTER 2 ■ AJAX BASICS 13

Table 2-3. XMLHttpRequest Object Methods

Method Description

abort() Cancels the current request

getAllResponseHeaders() Returns all HTTP headers as a String type variable

getResponseHeader() Returns the value of the HTTP header specified in the method

open() Specifies the different attributes necessary to make a connection to
the server; allows you to make selections such as GET or POST (more
on that later), whether to connect asynchronously, and which URL
to connect to

setRequestHeader() Adds a label/value pair to the header when sent

send() Sends the current request

While the methods shown in Table 2-3 may seem somewhat daunting, they are not
all that complicated. That being said, let’s take a closer look at them.

abort()

The abort method is really quite simple—it stops the request in its tracks. This function
can be handy if you are concerned about the length of the connection. If you only want
a request to fire for a certain length of time, you can call the abort method to stop the
request prematurely.

getAllResponseHeaders()

You can use this method to obtain the full information on all HTTP headers that are
being passed. An example set of headers might look like this:

Date: Sun, 13 Nov 2005 22:53:06 GMT

Server: Apache/2.0.53 (Win32) PHP/5.0.3

X-Powered-By: PHP/5.0.3

Content-Length: 527

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html

CHAPTER 2 ■ AJAX BASICS14

getResponseHeader("headername")

You can use this method to obtain the content of a particular piece of the header. This
method can be useful to retrieve one part of the generally large string obtained from a set
of headers. For example, to retrieve the size of the document requested, you could simply
call getResponseHeader ("Content-Length").

open ("method","URL","async","username","pswd")

Now, here is where we start to get into the meat and potatoes of the XMLHttpRequest
object. This is the method you use to open a connection to a particular file on the server.
It is where you pass in the method to open a file (GET or POST), as well as define how the
file is to be opened. Keep in mind that not all of the arguments in this function are
required and can be customized depending on the situation.

setRequestHeader("label","value")

With this method, you can give a header a label of sorts by passing in a string represent-
ing both the label and the value of said label. An important note is that this method may
only be invoked after the open() method has been used, and must be used before the
send function is called.

send("content")

This is the method that actually sends the request to the server. If the request was sent
asynchronously, the response will come back immediately; if not, it will come back after
the response is received. You can optionally specify an input string as an argument, which
is helpful for processing forms, as it allows you to pass the values of form elements.

XMLHttpRequest Properties

Of course, any object has a complete set of properties that can be used and manipulated
in order for it work to its fullest. A complete list of the XMLHttpRequest object properties
is presented in Table 2-4. It is important to take note of these properties—you will be
making use of them as you move into the more advanced functionality of the object.

CHAPTER 2 ■ AJAX BASICS 15

