The Definitive Guide to
the Microsoft Enterprise
Library

Keenan Newton

Apress-



The Definitive Guide to the Microsoft Enterprise Library
Copyright © 2007 by Keenan Newton

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-655-5
ISBN-10: 1-59059-655-2
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewer: Jason Hoekstra

Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,
Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Editor: Marilyn Smith

Associate Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Gina Rexrode

Proofreader: Patrick Vincent

Indexer: Broccoli Information Management

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.



Contents at a Glance

Aboutthe AUthor. . ... . XV
About the Technical ReVIBWET. ... ... ... e Xvii
ACKNOWIBAgMENTS . . ... Xix
INtrodUCHION. . ... XXi
CHAPTER 1  Enterprise Applications ......................................... 1
CHAPTER 2 Introducing the Enterprise Library Application Blocks ........... 21
CHAPTER 3  The Design of the Enterprise Library Application Blocks. ........ 41
CHAPTER 4 The Common Assembly and ObjectBuilder Components......... 67
CHAPTER 5 The Enterprise Library Configuration Console.................. 101
CHAPTER 6 The Data Access ApplicationBlock ............................ 139
CHAPTER 7  The Caching ApplicationBlock ................................ 177
CHAPTER 8 The Exception Handling ApplicationBlock ..................... 221
CHAPTER 9 The Logging ApplicationBlock ................................ 259
CHAPTER 10 The Cryptography ApplicationBlock........................... 305
CHAPTER 11 The Security ApplicationBlock ................................ 337
CHAPTER 12 The Validation ApplicationBlock............................... 363
CHAPTER 13 The Policy Injection Application Block ......................... 391
CHAPTER 14 The Application Block Software Factory ....................... 47
CHAPTER 15 Other Application Blocks and Advanced
Configuration Features. ....................................... 439
INDEX ... 469



Contents

Aboutthe AUthor. . ... . Xv
About the Technical ReVIBWET. ... ... ... e Xvii
ACKNOWIBAGMENTS . . . ... XiX
INtrodUCHION. . ... XXi
CHAPTER 1  Enterprise Applications...................................... 1
The Needs of a Software Application................................ 1
CopyandPaste............. ... it 2

Code Generation ................co it 3

Frameworks ... 3

Common Framework Types. ... 3

The Environment Framework.................................. 3

The Enterprise Framework. . ............ ... ... ... ... ... ..... 4

Core Components of an Enterprise Framework ....................... 6
Datalayer.............o o 7

Domain Logic Layer............ ... ... 10

Presentation Layer................ ... ... .. ... ... ... 12

Entity Components. ................ ... i 13

Application ConfigurationData ............................... 14

Managing Security. ... 14

Handling Exceptions ..............coo i 17

LOgging . ... 17

Other Application Needs................... ... ... ... .. ..... 18

SUMMANY .. 20

CHAPTER 2 Introducing the Enterprise Library Application Blocks. .. ... 21
Microsoft Patterns and Practices .................................. 22

Written Guidance ............... ... ... 22

Software Factories. ... 25

Reference Implementations.................................. 26

The Original Application Blocks. . ................. .. ... ... ........ 27

Enterprise Library for .NET Framework 1.1 Overview................. 31



vi

CONTENTS

CHAPTER 3

Enterprise Library for .NET Framework 2.0 Overview................. 33
Data Access Application Block ............................... 34
Caching Application Block ................................... 34
Exception Handling Application Block ......................... 35
Logging ApplicationBlock ................... ... .. ... ........ 35
Security ApplicationBlock .................. ... ...l 35
Cryptography Application Block .............................. 35

Enterprise Library 3.0 Overview . ................ ..o, 36
Validation Application Block...................... ... . ... ... 36
Policy Injection ApplicationBlock ............................. 36

Application Blocks That Are Not Core............................... 37

Using Enterprise Library................. i i 38
BeforeYoulnstall ................ ... ... ... ..., 38
Installing Enterprise Library. . ........... ... ... ... .. ........ 39
Getting the ACME Cosmetics Point-of-Sales Application Setup ... . .. 39

SUMMArY ... 40

The Design of the Enterprise Library

ApplicationBlocks.......................................... 41
Overall Design of the Enterprise Library . ........................... 41
Factory Pattern............. ... .. . . . 42
Plug-inPattern........ .. .. 45
Dependency Injection Pattern .......................... ... ... 46
How Dependency InjectionWorks ................................. 47
A Real-Life Analogy of Patterns. . ............................. 47
Factories and Dependency Injection. .......................... 52
Containers and Dependency Injection ......................... 52
Dependency Injection Implementation......................... 54
Patterns, Extensibility, and the Enterprise Library .................... 56
Extending the Enterprise Library Application Blocks............. 56
Extensibility Guidelines................... .. ... ... ... 57
Application Block Conceptual Architecture.......................... 59
UnitTesting. ... 60
Migrating from Earlier Enterprise Library Versions ................... 61
Migrating Version 1.1t02.00r3.0......................oit 62
Migrating fromVersion2.0t03.0............................. 63
Setting Up the ACME POS Application.............................. 63
Installing the Components . ......................ooiiiiat 63
Creating the ACME Service Solution. .......................... 63

SUMMArY ... 66



CHAPTER 4

CHAPTER 5

CONTENTS

The Common Assembly and ObjectBuilder

Components................................................. 67
Common Assembly Configuration Support.......................... 67
How the Configuration FeaturesWork ......................... 68
Using the System Configuration Source ....................... 73
Using External Configuration Files ............................ 74
Using Multiple Configuration Sources ......................... 76
Saving and Removing ConfigurationData...................... 77
Using the SQL Server Configuration Source .................... 80
Migrating from Version 1.1t02.00r3.0....................... 84
Common Assembly Instrumentation Support........................ 84
How the Instrumentation FeaturesWork ....................... 84
Installing Instrumentation.................................... 86
ObjectBuilder ... 87
How ObjectBuilder Works.......................oiiiiiiil. 88
Using ObjectBuilder. ... 95
Adding Custom Configuration Settings for the ACME POS Application . . .. 97
Defining the ConfigurationData .............................. 97
Creating the Configuration Runtime Component ................ 98
SUMMArY . ... 100
The Enterprise Library Configuration Console ........... 101
The Configuration Dilemma. ..................... .. ..., 101
How the Configuration Console and Configuration Editor Work .. ... .. 102
Design of the Configuration Console and Editor................ 103
Differences from EarlierVersions ............................ 104
Configuration Console Initialization........................... 105
Type Selection ... 106
ConfigurationNodes . ................ it 107
Configuration Files. ................. o i, 111
Using the Configuration Console. ................................. 118
Creating and Opening Applications........................... 118
Setting the Configuration Source ............................ 121
Saving Configuration Files . .....................ccoooiiit. 124
Using the Configuration Editor within Visual Studio 2005 ............ 124
Creating the ACME POS Configuration Design-Time Components ... .. 126
Creating ConfigurationNodes ............................... 126
Creating the Command Registrar and Command Nodes ........ 130
Defining Builders . .............. 133
Putting ItAllTogether ............ ..., 135

SUMMANY ... 138

vii



viii

CONTENTS

CHAPTER 6

CHAPTER 7

The Data Access ApplicationBlock....................... 139
Evolution of the Data Access Application Block ..................... 139
Data Access inan Application.................. ... ... 140
New Features inADO.NET 2.0............... ..., 141
Connection Strings in the Application Configuration File ... ..... 142
Support for Independent Database Providers.................. 142
Features of the Data Access Application Block ..................... 148
Understanding the Database Class........................... 149
Understanding the Database Factory Class. ................... 157
Instrumenting the Data AccessCalls ......................... 158
Configuring the Data Access Application Block ..................... 158
Editing Configuration Data Manually ......................... 159
Editing Configuration Data via the Configuration Console ....... 162
ACME POS Application Data ACCeSS. .......covvvviii e 167
Creating the Customers Database ........................... 167
Creating the Customer Business Entity ....................... 169
Creating the Customer Data Access Layer .................... 171
Setting Up the Application’s Configuration File................. 175
SUMMANY ... 175
The Caching ApplicationBlock ........................... 177
DecidingWhento Use Caching................................... 177
Business and System Requirements ......................... 178
Cache Invalidation................ ... ... ... . ... 178
When to Use the Caching Application Block ................... 179
Limitations of the Caching Application Block .................. 181
What About the ASPNET Cache?............................. 181
Getting Underneaththe Hood ............... . ... ... ... ..... 182
Understanding the CacheManager and CacheFactory Classes .. .. 182
Understanding the BackgroundScheduler Class ............... 187
Understanding the IBackingStore Interface.................... 188
Understanding the IStorageEncryptionProvider Interface. .. ... .. 190
Using the Caching ApplicationBlock .............................. 191
Setting Up the Application .................................. 191
Configuring the Caching Application Block .................... 193
Using the CacheManager Class. ......................o.v... 196
Caching Static Data for the ACME PQS Application.................. 205
Creating the ACME POS User Interface Project................. 206
Merging the Customer Data Access Code..................... 207
Creating the GetStates Web Service.......................... 214
Addingthe Model Class ...t 216
Configuring the Caching Application Block .................... 219

SUMMANY .. 219



CHAPTER 8

CHAPTER 9

CONTENTS

The Exception Handling Application Block............... 221
Introducing ExceptionHandling .................... ... .. ... ...... 221
Capturing the Exception............ ... .. ... ... ... ........ 221
Logging the Exception. ............ ... ... i 223
Presenting User-Friendly Messages.......................... 224
Introducing the Exception Handling Application Block ............... 226
Exception Policies ............... ... 226
ExceptionHandlers ............ ... ... ... ... . ... 230
Exception Message Formatters.............................. 232
Using the Exception Handling Application Block .................... 234
Catching and Handling Exceptions........................... 235
Configuring the Application to Log Exceptions................. 236
Wrapping Exceptions. ............ .. .. ... 241
Replacing Exceptions ............. ... ... i 244
Handling Exceptions in a WCF Service........................ 247
Configuring Exception Posthandling Events ................... 248
Handling Exceptions in the ACME POS Application .................. 250
Adding the Customer Web Service . .......................... 250
Handling Web Service Exceptions. ........................... 253
Configuring the Exception Handling Application Block .......... 253
Handling Client-Side Exceptions............................. 254
SUMMANY ... 257
The Logging ApplicationBlock............................ 259
Types of Logaing . ..o 259
Understanding the Design of the Logging Application Block. . ........ 260
LogEntries ... o 261
LoggingFagade ................ i 263
Logging SoUICe . ...t 264
Trace Listeners. .............. o 265
LogFilters. ... 265
Log Formatters. ... 265
TraCeIS. . o 266
Using the Logging Application Block .............................. 266
Adding the Logging Application Block to an Application......... 266
Usingthe Logger Class. ..ot 268
UsingtheTracer Class. ..., 269
Using the LogWriterClass ......................cocviiinn.. 272

Creating Custom Trace Listeners ............................ 272

ix



X

CONTENTS

CHAPTER 10

Configuring Trace Listeners...................cocoiiiinn...
Creating Custom Filters ............ ... ... ... .. ... ... .....
Configuring Filters . ............. .
Querying Filters Programmatically ...........................
Configuring Log SoUrces ...t
Creating Custom Formatters ................................
Configuring Formatters................... ... .o,
Logging WCF MeSSages .. ......vov i
Deploying the Logging Application Block. .....................
Migrating from Prior Versions ...............................
Adding the Logging Application Block to the ACME POS Application . . ..

Configuring the Database Trace Listener for the ACME
POSService. ...

Adding the LogEntry and Logger Classes to the ACME
DomainlLayer ..............co i
SUMMArY . ...

The Cryptography ApplicationBlock .....................

Types of Encryption. ... i
Understanding the Design of the Cryptography Application Block ... .. ..
Cryptographer Fagade. ......................ccoiiiiiina..
Provider Factories and Providers. ............................
Helper Classes . ...
Using the Cryptography Application Block .........................
Adding the Cryptography Application Block to an Application. . ..
UsingaHash Provider.................. ... . ... .. .......
Using a Symmetric Encryption Provider.......................
Creating Custom Encryption Providers........................
Migrating from Prior Versions of Enterprise Library.............
Encrypting Customer Data in the ACME POS Application.............
Storing OfflineData................. .. ... ... il
Encrypting OfflineData...................... ... ... ........
SUMMANY ..



CHAPTER 11

CHAPTER 12

CONTENTS

The Security ApplicationBlock ........................... 337
Understanding the Design of the Security Application Block. . ........ 337
Authorizing Users in an Application .......................... 338
Caching Authorization Profiles............................... 339
Using the Security Application Block .............................. 339
Installing AzMan. ................. i 339
Adding the Security Application Block to an Application......... 340
Using the AzZMan Provider .................................. 341
Using a Security Cache..................... ..., 345
Adding a Custom Authorization Provider...................... 347
Adding a Custom Security Cache Provider .................... 353
Migrating from Prior Versions of Enterprise Library............. 360
SUMMaANY ... 361
The Validation ApplicationBlock ......................... 363
Looking Inside the Validation Application Block..................... 363
Validator Class . ... 363
ValidationResult Class. ..., 364
ValidationResults Class. .................. ... ... ........... 365
ValidationFactory Class. ....................... i, 366
Validation Class .............c i 368
The Behaviors of Attribute-Based Validation................... 369
Using the Built-In Validators ..................................... 370
ObjectValidators ...............co i 370
Composite Validators. ................. ... .. ... 375
BasicValidators .............. ... .. .. 376
Creating a Custom Validator for the ACME POS Application. . ......... 385
Creating the HostValidator Class. ............................ 386
Creating the HostValidatorAttribute Class ..................... 388

SUMMANY ... 389

Xi



Xii

CONTENTS

CHAPTER 13 The Policy Injection Application Block ................... 391
Introducing Aspect-Oriented Programming. ........................ 391
Separating Concerns. . ...t 391
Implementing Aspect-Oriented Programming in .NET........... 393
Understanding the Design of the Policy Injection Application Block. . .. 393
Defining Handlers via Attributes ............................. 394
Defining Handlers by Intercepting Target Classes .............. 395
Understanding the Chainof Events........................... 400
Understanding Policy Injection Block Limitations............... 403
Configuring and Using Policies . ...................ccoiiiiin... 403
Adding Attribute-Based Policies ............................. 404
Configuring the Policy InjectionBlock ........................ 405

Adding the Policy Injection Application Block to the ACME
POS Application ............ ... 410
Creatingthe ACMEPOSUI.................. ..., 410
Adding Validation to the Domain Logic Layer.................. 414
SUMMArY ... 415
CHAPTER 14 The Application Block Software Factory ................. 417
Introducing the Guidance Navigator. .............................. 417
Creating an Application Block . ................. ...t 420
Creating the Application Block Solution....................... 420
Creating the Provider Factory ............................... 424
Creating Providers. ... 428
Creating the Design-Time Configuration Nodes................ 433
Using the Sample Application Block. .............................. 437
SUMMANY ... 438

CHAPTER 15 Other Application Blocks and Advanced

ConfigurationFeatures .................................... 439
Composite Ul Application Block .................................. 439
Uses of the Composite Ul Application Block ................... 440
Core Components of the Composite Ul Application Block. . .. .. .. 442
Composite Ul Application Block Event Handling................ 448
State Maintenance................. ... .l 449
UEIementS ... 449

ComMaANS . ... 450



CONTENTS

Connection Monitor Application Block............................. 450
Monitoring Networks. . ............ ... i 450
Monitoring Connections . ............... ... ... ... ... 451
Handling Connectivity Changes.............................. 451

Endpoint Catalog Application Block ............................... 451
EndpointCatalog Class ......................cooiiiiiatt. 451
EndpointClass ..............o o 452

Disconnected Service Agent Application Block ..................... 452

Composite Web ApplicationBlock ................................ 453
Uses of the Composite Web Application Block ................. 453
Core Components of the Composite Web Application Block. . . . .. 453

Page Flow ApplicationBlock . ................. ... ..., 456

Updater Application Block ............ ... ... ... ... . ... .. 457

Application Blocks for Mobile Applications......................... 458
Mobile Composite Ul Application Block ....................... 459
Mobile Data Access Application Block . ....................... 459
Mobile Configuration Application Block ....................... 460
Mobile Data Subscription Application Block . .................. 460
Orientation Aware Control Application Block. .................. 461
Password Authentication Application Block ................... 461
Mobile Connection Monitor, Disconnected Service Agent,

and Endpoint Catalog Application Blocks................... 462

Advanced Configuration Features................................. 462
Partial Trust. ........... 462
Data Encryption and Decryption............................. 463
Environmental Overrides ............................coouet. 464
Assembly Sets for the Configuration Editor. ................... 465
Advanced Configuration in Enterprise Library 2.0.............. 466

SUMMArY ... 468

Xiii



About the Author

KEENAN NEWTON was born in Canada and moved to the United States
when he was 12 years old. He has been in the information technology
industry for more than 10 years, working primarily as a software developer
and more recently as an application architecture designer. As a software
developer, Keenan has always been on the leading edge—sometimes
bleeding edge—of industry trends and technologies. He is an active mem-
ber of his local development communities, and has published various
articles in CoDe Magazine. Keenan currently is a Senior Consultant for Microsoft Consulting
Services. In his spare time, Keenan enjoys traveling, music, attending professional football
games and landscaping.

XV



About the Technical Reviewer

JASON HOEKSTRA is an independent consultant who focuses on delivering
solutions on the Microsoft .NET Framework and related platform prod-
ucts. With more than 10 years of experience, his efforts have helped
businesses of all sizes turn business goals into deliverable products. His
specialty of integrating open source and off-the-shelf tools (like Enterprise
Library) has enabled teams to develop high-quality software in shorter
time frames. In his spare time, Jason enjoys traveling with his wife, cook-
ing, aviation, and videography.

Xvii



Acknowledgments

I could not have done this book on my own. My friends, family, and colleagues all assisted in
some way. I would like to first acknowledge Timothy Murphy, a friend who helped with a good
deal of research on the application blocks. Without his assistance, I doubt I would have com-
pleted this book. Next, I would like to acknowledge Jason Hoekstra, who is my technical
reviewer for this book. He has been instrumental in being a second pair of eyes on everything.
Next, I would like to acknowledge Tom Hollander and Eugenio Pace from the Microsoft pat-
terns & practices group. Both of these gentlemen have been instrumental in answering
whatever questions I had or in pointing me in the proper direction to get the answer I needed.
I, of course, also want to acknowledge the exceptional staff at Apress for walking me through
this process. Their patience and guidance is greatly appreciated. I can not forget Keith
Franklin at Magenic Technologies, for encouraging my involvement in the development com-
munity. Finally, I would like to acknowledge Rod Paddock, the chief editor of CoDe Magazine.
He opened the door for me getting into writing, and I would not be here today without him.

Xix



Introduction

All developers are lazy. I don’'t mean lazy in a bad way, but in a good and efficient way. We are
all looking for ways to crank out code faster so we can get to the next biggest thing. From the
beginning days of computing with punch cards all the way to the modern-day managed appli-
cations created with the .NET Framework and relational databases like SQL Server 2005,
developers have been looking for ways to cut corners efficiently without sacrificing quality.
This is where Microsoft Enterprise Library comes into play. Enterprise Library helps cut out
some of the routine tasks that developers need to perform while developing applications, and
yet provides the best practices to ensure the application is designed and runs as efficiently as
possible.

This book will provide the knowledge you need to get started and get comfortable with
the Microsoft Enterprise Library application blocks. I will go over the design of each applica-
tion block, how it is used, and how it can be customized. Throughout the chapters, you will
find code samples for each application block that will be useful in getting a jump-start in your
own applications.

The book also presents a reference implementation, which is a vertical component of a
point-of-sales application. This implementation demonstrates how an application can use the
different application blocks that are provided with Enterprise Library and how the application
blocks themselves interact. The amount of detail devoted to the reference implementation in
each chapter depends on the topic of that chapter and subsequent chapters. The complete
application is available from the Apress website (http://www.apress.com).

As areader, I am sure you may come up with questions. Please do not hesitate to post any
questions that you may have on my blog at http://blogs.msdn.com/knewton.

XXi



CHAPTER 1

Enterprise Applications

From the beginning of time, people have been trying to make the quality of their lives better
by finding new ways to do more tasks in less time with less effort. This is evident by the tech-
nological advances humans have made such as fire, the wheel, the telephone, and the
computer. As each discovery is made, we then improve on that discovery to make it more
efficient and cheaper to produce. This desire to make our quality of lives better is what drives
us—it makes us who we are.

This desire is quite clear in the world of software development, where we continually try
to discover better ways to create software so that it runs faster, is developed faster, is cheaper
to produce, and can do more. One of the key strategies that the software development com-
munity discovered early on was the reuse of software code. Unfortunately, in many places, the
same software code would be “copy and pasted” and used repeatedly within an application,
making development and maintenance tasks a real challenge.

As time has gone on, many improvements, such as reusable methods, object orientation,
service orientation, and so on, have been incorporated into the process of developing software.
However, these software development techniques alone will not make software development
easier. These are just the building blocks that you must build upon to ensure an ideal project
outcome.

Understanding the architecture and needs of a software application will give the devel-
oper a better understanding of how the Enterprise Library can assist in developing an
application framework. This framework could be the basic foundation of services for all appli-
cations within a particular organization. In this chapter, I'll cover the basic fundamental
building blocks of today’s software applications. The rest of the book will then show how the
Enterprise Library can help ease the development of these application building blocks.

The Needs of a Software Application

Successful software development is possible only through proper planning. Without doing so,
you may find the application took longer to build, wasn't what you or the user expected, or
worse yet was almost impossible to maintain. Proper preparation and design are integral to
the creation of any software application regardless of its size and complexity.

When creating a new application, you first need to understand the type of business the
application is for or in some cases who the audience of the application is if it is not specific to
a business. Understanding the needs of the stakeholders and users is critical to the success of
any application being built. For instance, a money management company responsible for secu-
rities trading would require applications to be very responsive because actions must be taken on



CHAPTER 1 "/ ENTERPRISE APPLICATIONS

a timely basis once a buy or sell decision has been made. However, if your application is tasked
with working with batch processes, performance may not be as important as scalability. These
two examples indicate that the audience will drive the design of the application indirectly based
on what its needs are.

The end user’s purpose will help define the general technical and design needs of an
application; however, gathering the specific requirements from the business will determine
the application’s design requirements. From these business requirements, you should create
a set of functional requirements detailing the specific functions required of the application.
This is probably a good place to create use cases to define the actions and tasks that can be
performed in the application. Finally, you can create the technical requirements for the appli-
cation. This is where you get to create all the fun UML class diagrams and sequence diagrams
as well as the data modeling. However, before you get to the technical specifications, you
should consider some issues first.

The first elements to understand are the growth and current direction of the business. Is
the business looking to expand its product line? Has the company been trending toward a 30
percent growth rate over the past five years, or is growth more along the lines of 300 percent?
These types of questions are important to ask and understand, because it will help determine
to what degree the application should scale. Although I'm aware that some professionals think
you should never design an application beyond meeting the business and functional require-
ments, I think you should consider exposing certain interfaces so that future expansion can be
done with less effort. However, such considerations should be balanced with the understand-
ing that an application will not be able to account for every possible expansion scenario.

During the application design phase, you'll soon discover that you will be repeatedly
implementing many of the same features and functions. The following are common examples
of this recurring code:

* Retrieving, inserting, updating and deleting database data

* Logging application events

* Handling application exceptions to ensure that they are properly escalated
* Retrieving and updating application settings

* Improving performance by providing a caching mechanism to reuse static data
performance

You can implement these common functions in a few ways, discussed in the next
sections.

Copy and Paste

One way to implement these examples is to copy and paste code throughout the application.
Granted, this may seem extremely easy, but maintainability is nearly impossible. Think about
an application that requires access to a database. Typically the creation of the connection
object would be the same for all retrieve, insert, update, and delete functions. Assuming
there are three tables used for this application, it would be safe to say there would be about
12 instances where a connection object would be needed. So, copying and pasting 12 times
seems relatively easy. But if a change is required for one of the three tables to point to another
database, you now have to go into the application and find the appropriate locations to



CHAPTER 1 " ENTERPRISE APPLICATIONS

change and modify them. To make matters worse, what if it became necessary to change the
ADO.NET data provider? You would need to find all the connection object creation code and
modify it. In short, although this approach results in short-term gratification, the long-term
effects can be error prone and costly.

Code Generation

Another way to handle this repetitive code is by creating it via a code generator. Code genera-
tors are very good at creating a lot of code quickly. But although they are adept at creating
stable, bug-free code, code generators aren’'t without their own issues. First, modifying the
generated code will prevent the developer from being able to regenerate the code using the
code generator, since the code generator does not have the ability to incorporate the changes.
This will effectively make development no easier than the copy-and-paste scenario described
earlier. Second, they are applicable only given a certain set of conditions. If the code generator
is unable to address a specific requirement, then it will be necessary to modify the code gener-
ator to address that need. Another issue with code generators is that typically all the code
generated can be easily modified by the developer, and this can be problematic in environ-
ments where a specific technique is desired to handle a function such as creating a
connection object. This is not to say that using a code generator is bad, and in fact, used
properly, it can be a useful tool during the development of an application or component and
can be used alongside other techniques of handling repetitive code such as frameworks.

Frameworks

Another common technique is to create a series of components that can be reused throughout
an applicationto perform the desired common functionality. These components can typically
be used as is or subclassed to provide special implementations. The use of these components
allows for cleaner, simplified code, which in turn allows for maximum maintainability while
providing simplified interfaces for the developer to use. Together, these components create a
foundation that an application can be built upon. Another common name for this collection
of components is a framework.

Common Framework Types

An application can utilize one of two types of frameworks: an environment framework (some-
times referred to as a development and execution environment framework or system framework)
and an enterprise framework (also known as an application framework). These two frameworks
work together to provide the services and interfaces necessary to develop software applications.
I'll now introduce you to both types.

The Environment Framework

Every mainstream operating system has a set of application programming interfaces (APIs) that
expose its features and functionality. Generally, this API is quite robust and exposes interfaces
that most applications may never use. Additionally, to utilize the features of the operating sys-
tem API, a fair amount of repetitive code must be written in order to perform simple tasks such
as creating a window. This is where an environment framework can simplify the utilization of
system resources.



CHAPTER 1 "/ ENTERPRISE APPLICATIONS

The environment framework typically provides a set of interfaces and features available
within the operating system environment to a development environment. These interfaces
and features hide all the necessary environment-specific code to implement specific tasks.
Some examples of execution environment frameworks include the Java Virtual Machine,
Visual Basic runtime, and the .NET Framework. These frameworks provide reusable code
that makes tasks such as creating a window simple. With the environment frameworks, you
typically do not have to worry about low-level tasks such as memory allocation, file handlers,
windows handles, and so forth.

The Enterprise Framework

It is great that we can take advantage of environment frameworks when developing applica-
tions, but most applications are going to have greater framework needs. Granted, when you
are developing a Windows or web application, the environment framework can save you from
disaster by giving you a friendly and relatively safe environment in which to create your mas-
terpiece. However, if you are not careful, you will find yourself with unmanageable code that
is hard to read.

The problem is that most development environments such as the .NET Framework pro-
vide more than one way to perform a specific task. Suppose a business is going to require a
new reporting module that contains multiple reports, and three developers—Steve, Andrew,
and Sue—have been assigned to create this reporting module. Since the three reporting mod-
ule contains three separate reports, the three developers decide to develop one report each.

Steve determines that he needs to retrieve a table of lookup values that will be used to deter-
mine the proper criteria to create the report. Therefore, the first task Steve decides to do is create
a data access class. And in this new class Steve creates a method called GetReportLookupData to
retrieve a drop-down list of data needed for a report:

public class mylLookupDataAccessClass

{
public ReportlLookUpData GetReportLookUpData()
{
//Some code. ..
}
}

At first glance, it seems like a pretty simple implementation. Steve will write some data
access code within the GetReportLookUpData method that is going to return a custom business
entity called ReportLookUpData. Therefore, Steve decides to use a SqlReader to retrieve the
lookup data. To create the SqlReader object, Steve must create a SqlCommand object to execute
the SQL statement and a corresponding SqlConnection object to connect to the database.
Now the SqlConnection object requires a connection string to determine specific parameters
required by SQL Server in order to connect to it. In this particular case, Steve decides to just
hard-code the string into the code:

public class myLookupDataAccessClass

{
public ReportlLookUpData GetReportlookUpData()

{

string myConn = "server=MyServer;database=MyDatabase;Integrated



CHAPTER 1 " ENTERPRISE APPLICATIONS

Security=SSPI";
ReportLookUpData lookUp = new ReportlLookUpData();
SqlConnection connection = new SqlConnection(myConn);

//Data retrieval code...
return lookUp;

While Steve was creating his data access component, Andrew was working on a data
access component for another report. Andrew’s experience told him that hard-coding
the connection string would not be the best choice, so he decided to use the application's
configuration file to store the connection string.

Finally, Sue was working on yet another data access component for the report she was
creating, and she decided to store the connection string in the Windows registry.

From the developers’ standpoint, the application is ready to be deployed in the produc-
tion environment, with the connection strings hard-coded, stored in the Windows registry,
and stored
in the application configuration files.

A few months pass, and a new developer named Tim joins the company. Tim is tasked
with changing database providers from SQL Server to Oracle. Tim immediately sees an issue
with Steve’s hard-coding of the connection string, so he opts to use a text file to store the
connection string for the application.

Now Tim not only has to modify each data access component but he also must discover
how the connection strings were stored and modify all the storage mechanisms in order to
change the connection string between the development, integration, and production environ-
ments. For the very smallest of applications, this may not be a big deal. However, for very large
applications, where there may be hundreds of data access components that require connec-
tion strings, this can become a maintenance nightmare.

Having a common, consistent way of handling connection strings is most beneficial from
both the development and administrative points of view. To accomplish this, an organization
might define a coding standard defining how to properly store and retrieve a database con-
nection string. However, this technique will end up creating many coding rules that the
development team will constantly have to remember and enforce. Even with a coding rule like
this in place, the application developers would still have to create the code to retrieve the con-
nection string, and this repetitive coding would eventually become mundane and
time-consuming.

A better way to handle these kinds of development issues is through an enterprise frame-
work. An enterprise framework builds upon the functionality available within a development
environment, but it takes the most common code routines in an application and encapsulates
the code into a more simplified implementation. Let’s reconsider the previous example, this
time revising it to use a framework component:

public class myLookupDataAccessClass

{
public ReportlLookUpData GetReportlLookUpData()

{



6

CHAPTER 1 "/ ENTERPRISE APPLICATIONS

ReportLookUpData lookUp = new ReportlLookUpData();
SqlConnection connection = new
SqlConnection(AcmeFramework.GetConnectionString());

//Data retrieval code...
return lookUp;

Now Steve has used the GetConnectionString method in the AcmeFramework component
to retrieve the connection string. Steve does not have to worry about the details of how the
connection string is stored or how to retrieve it. The AcmeFramework will handle the details
for him.

Now when the application is promoted to production, the production enterprise frame-
work will handle the details of how to retrieve the connection string. Hence, it is not required
to modify the application configuration file or Windows registry to add the new database
connection string. In addition, the developers will typically be required to write fewer lines
of code using an enterprise framework as opposed to writing a custom implementation.

Another benefit to using an enterprise framework is the ability to change the underlying
implementation of the framework without having to always touch the public interfaces it
exposes. For example, let’s assume the AcmeFramework utilizes an XML file to store configu-
ration data; however, company policies change, requiring all connection strings to be
encrypted. Instead of having to change every data access component’s connection string
implementation, only the GetConnectionString method is concerned with decrypting the
encrypted connection string inside the XML file.

Overall, an enterprise framework will help enforce consistent software development,
require less code, require fewer bugs, and provide the use of best-practices implementations
within an application. Other benefits of using an enterprise framework include freeing devel-
opers from having to code low-level tasks, such as opening and closing files, and allowing less
experienced developers to develop an application. From a project management standpoint,
this can lower a project’s development costs and at times allow developers who have more
business than technical skills to play a bigger role in the development of an application. In the
end, an enterprise framework is not a silver bullet; it should provide the core common func-
tionality and features needed for most, if not all, of your software application as well as allow
for more project success stories by letting the developers focus on implementing the applica-
tion’s requirements as opposed to worrying about connection string management.

Core Components of an Enterprise Framework

To understand the components of an enterprise framework, you first have to understand the
components used to create an application. Each application has to perform certain functions
in order to meet the needs of the user. These functions can range from accessing data to send-
ing email messages to formatting a document. To perform these tasks, it makes sense to try to
break them out into specific components. This breaking apart of the features allows for easier
maintenance of the application, as well as the ability to scale out as needed.

Most business applications require some sort of user interface to interact with data, a
mechanism to validate data entered in by the user, and the ability to read and write data.
Typically, the components are called separated tiers or layers. I prefer the term layers when



CHAPTER 1 " ENTERPRISE APPLICATIONS

thinking of the logical separation of components and tiers when referring to the physical sepa-
ration of components. The typical high-level layers of an application are the presentation
layer, the business logic layer, and the data layer. However, the needs of an application do not
stop with these components of an application. As previously mentioned, an application may
also need components to handle security, application configuration, exception handling, log-
ging, application deployment, and so forth. The specific application components will be
determined based on the functional and technical requirements of the application. However,
as an enterprise grows and applications are developed, it will soon become apparent that all
these applications share common functionality between them. This common functionality is
the perfect candidate for common enterprise framework components. Figure 1-1 shows the
different components that are typically used in an application. In the following sections, I'll
introduce several of the most common components.

Components of an Application

Data Layer Supporting
Data Storage Layer Components
Data Access Layer Service Agent Application
Configuration
£
2 Domain Logic Layer Security
=,
£ i . Exception
8 Domain Workflow Layer Service Layer Management
:é.‘ .
g Logging /
w

Instrumentation

Presentation Layer
User Process Layer

Caching

User Interface layer Cryptography

Figure 1-1. Components of an application

Data Layer

The data layer can be broken into three sublayers in most applications. They are the data stor-
age layer, the data access layer, and the service agent, as shown in Figure 1-1. The data storage
layer provides the mechanism for storing and managing your application data, and the data
access layer provides the logic needed to retrieve and manipulate data. The service agent is
like the data access layer, but instead of accessing a data storage layer, the service will access
another domain process such as a web service or COM+ component via DCOM. Together
these three logical layers provide the mechanisms for gathering and manipulating data.

Data Storage Layer

Typically, the data storage layer consists of a relational database server such as Microsoft SQL
Server 2005 or Oracle. This layer can be shared between multiple applications, but there
should be some logical or physical separation within the database server. One example would
be having a database for each application that the database server is supporting.



CHAPTER 1 "/ ENTERPRISE APPLICATIONS

The data storage layer provides a series of functionality to an application such as retriev-
ing, inserting, updating, and deleting data. Not all data storage layers are relational database
servers. An XML document utilizing an XML parser such as the MSXML DOM or a SAX parser
could also be considered a data storage layer. Some other examples of data storage layers
could be the Windows registry, a .NET application configuration file, or even a Microsoft Excel
spreadsheet. However, relational databases are the most common for storing application data.
They typically abstract the methods of “how” to retrieve data and instead expose functionality
on “what” data to retrieve, which lets the database server figure out the “how.” The most com-
mon language used for retrieving data is SQL or some derivative of it.

The data storage layer is typically called only by the data access layer; by reporting and
analysis tools; or by other extraction, transformation, and loading (ETL) applications. Hence,
you should not interact with the data storage layer from the user interface or business layers;
doing this can result in an application that does not scale well or that cannot be easily main-
tained.

Data Access Layer

Ordinarily, the data access layer consists of one to many classes or components. These classes
handle all the work necessary to read and manipulate data. They provide a consistent abstract
interface to the data storage layer, so the rest of the application does not have to worry about
how to get at the data. The data can reside anywhere from a simple text file to a relational
database such as SQL Server 2005. The data access layer will typically be consumed by a
business logic layer, sometimes by the user interface layer for retrieving lookup data for drop-
downs controls, or by reporting engines.

It is important to know that the data access layer should at least be structured logically.
In other words, it does not have to consist of just one class or assembly, but at the same time,
it should consist of no less than one class within the executing application assembly. A com-
mon way of logically structuring the data access layer is to have one class dedicated to a
logical group of data. An example of this would be having a customers class that is directly
related to a group of customer tables. The decision of whether you want to have your data
access logic inside the main executing assembly or physically separated like in an n-tier
application will be based on the scalability, maintainability, and performance needs of your
application. By containing your data access logic with one or more classes, you will gain the
advantage of being able to swap out a data access component with another one. For instance,
suppose that the application your organization has been using currently is utilizing an Oracle
database. Now with .NET 3.0 and SQL Server 2005 being the latest and greatest development
technologies, the powers that be have made an executive decision to migrate all databases to
SQL Server 2005. For the most part, all you would have to do is create a new class that now
utilizes the SQL Server client provider (System.Data.SqlClient) as opposed to the Oracle
provider. Then test the new component, and put it in production. From a high-level point of
view, not all implementations may be as simple, especially when using SQL commands that
are specific to a database provider.

The key to allowing this is that the public interfaces that were exposed by the Oracle data
access component should match the new public interfaces exposed by the SQL Server data
access component. Testing should be just as simple, and your original unit tests should work
with the new data access component just as it did with the old data access component. Again,
this is facilitated by the fact that the public interfaces did not change. Or at least you should
not have to change the interfaces to swap out database providers. The following is an example



CHAPTER 1 " ENTERPRISE APPLICATIONS

of how two data access classes can each have the same interfaces yet each utilize a different
database for its data:

public class myOracleDataAccess

{
public DataSet CetSalesReport(DateTime beginDate, DateTime endDate)
{
DataSet myDataSet = new DataSet();
string myConnString = "Data Source=Oracle8iDb;Integrated Security=yes";
OracleConnection myDbConn = new OracleConnection(myConnString);
OracleCommand myDbCmd = new OracleCommand();
myDbCmd . Connection = myDbConn;
//0Oracle Data Adapter, command string, and parameters added here
myDataAdapter.Fill(myDataSet);
return myDataSet;
}
}
public class mySqlDataAccess
{
public DataSet CetSalesReport(DateTime beginDate, DateTime endDate)
{
DataSet myDataSet = new DataSet();
string myConnString =
"Server=SqlServerDb; Database=Northwind; Trusted Connection=true";
SqlConnection myDbConn = new SqlConnection(myConnString);
SqlCommand myDbCmd = new SqlCommand();
myDbCmd . Connection = myDbConn;
//SQL Data Adapter, command string, and parameters added here
myDataAdapter.Fill(myDataSet);
return myDataSet;
}
}

Examining the two classes, myOracleDataAccess and mySqlDataAccess, you'll notice each
one has a method called GetSalesReport that returns a dataset. You will notice in both
instances that the method signatures are the same; hence, you could pull out the Oracle data
access class and replace it with the SQL data access class. You, of course, would want to make
sure that the results returned are identical between the two classes for the given method.



10

CHAPTER 1 "/ ENTERPRISE APPLICATIONS

Service Agents

Service agents, also referred to as proxies, access information from another domain process.
In very large organizations, it is beneficial to keep different applications loosely coupled.
Thus, each application can utilize the best platform and technology to perform the necessary
functions that it requires and yet provide interfaces to other applications to consume these
functions. Service agents can also be used to retrieve data from a third-party vendor. An
example of this is a retail application requesting a shipping cost from a courier by passing
destination and pick-up ZIP codes to the courier, with the courier responding with a shipping
cost.

Service agents are not a new concept; they have been around for years—from the crudest
of interfaces such as passing an ASCII file from one server to the next to more elegant solu-
tions such as DCOM and today’s web services.

Note | prefer calling business logic domain logic because the word business implies the logic is for busi-
ness purposes, and | prefer a more generic term to encompass any kind of problem or process that requires
rule validation—business or not.

Domain Logic Layer

The domain logic layer (more commonly referred to as the business logic layer) is where you

will process all the rules and validation needed to perform an action. This layer, like the data
access layer, should at least be its own class to allow for easy replacement if necessary, but it
does not have to be a separate assembly.

Note | prefer the term domain layer because the term business layer should always refer to “business”
rules. The word business is too narrow of a concept in the vast world of application development. A perfect
example of this is an Internet email client validating that a user has entered a proper email address; this task
is important, but it’s not specific to a business purpose.

The purpose of the domain logic layer is to mimic what was once performed by another
domain process whether it was done automatically in a software application or done manu-
ally by a person. For instance, in a retail point of sales (POS) process, a clerk would have to
manually write each item being purchased on a sheet, then tally the total of all the items, and
finally add any sales tax. In a POS application, listing the items being purchased, tallying
them, and adding sales tax is all done by the application. The location within an application
where this is done is typically the domain logic layer.

By keeping the domain logic together in one layer of your application, you are also going
to simplify its maintenance. The domain logic layer typically sits in between the data access
layer and the presentation layer. Hence, as a user enters data into the application, the data is



CHAPTER 1 " ENTERPRISE APPLICATIONS

validated against the domain logic and then passed to the data access layer to be saved into
the database.

The domain logic layer, like the data access layer, should at least be a logical separation
within your application. However, this does not prevent you from having multiple classes,
assemblies, and so on, in your domain logic layer. Also keep in mind that not all domain logic
components will necessarily communicate with a data access layer. Some of these compo-
nents will be stand-alone such as financial math calculators; some typical names for these
kinds of domain logic components are common logic components or common domain logic
components.

Finally, when it comes to the domain logic layer, remember that not all of your domain
logic will be able to reside solely in this layer. Yes, it is important to strive to get as much as
your domain logic in one manageable location, but sometimes this is not practical. One good
example of this is when performing business-specific calculations. It may make sense to per-
form these calculations within the domain logic layer, but it may also be practical to perform
the same calculations while doing a bulk upload of data into the database. Therefore, you may
have one component deployed to both the database layer on the database server and the busi-
ness layer on either an application server in an n-tier environment or the workstation in a
client/server environment. Again, you will have to balance out maintainability, scalability, and
performance requirements based on your application needs.

Domain Workflow Layer

This layer, a subcomponent of the domain layer, handles the processing of workflows. Typi-
cally, the components built in the domain layer should be very specific to a domain problem.
Some examples of this are adding a new customer, adding a new order, requesting shipping
costs, and calculating sales tax. The domain workflow layer would handle the process of creat-
ing a new order by orchestrating the domain logic calls and transactions.

The domain workflow layer is not for every application. Its use should be determined
based on the application needs. For instance, a simple maintenance application that main-
tains a list of countries would probably not use a domain workflow layer. However, an
application for an investment company may use a domain workflow to manage the process
of trading securities.

Service Layer

The service layer, also known as a fagade layer, provides an entry-point mechanism for other
applications to access specific domain functions or services of an application. It allows you to
provide a black-box interface to your application so that the caller doesn’t need to know the
internal details of domain logic. Typically, service agents consume service layers, and some
common implementations of service layers are web services, CORBA, and COM+. Service
layers typically will perform necessary data mapping and transformations as well as handle
processes and policies for communicating between the domain layer and consumer.
Interoperability between heterogeneous systems is not a requirement for a service layer;
it is perfectly acceptable to support just one platform in your service layer implementation.
Interoperability can introduce performance issues and system limitations. The need to pro-
vide an interoperable service layer will be based on the overall requirements of the domain.
For third-party vendors, it is probably a great idea to utilize web services for its service layer.

1



12

CHAPTER 1 "/ ENTERPRISE APPLICATIONS

For an internal application where all the applications are on one platform, utilizing .NET
remoting or COM+ via DCOM might be a better solution.

Note It isimportant to note that the service layer doesn’t necessarily imply the use of web services. Web
services are just one implementation of service layers; other implementations might use .NET remoting,
DCOM, CORBA, and so on.

Presentation Layer

The presentation layer typically consists of one or two sublayers, namely, the user interface
layer and the user process layer. In most smaller applications, it is necessary to have only the
user interface layer. However, in large applications or applications with multiple types of user
interfaces, a user process layer would prove beneficial. The user process layer would handle
the common user interface processes such as wizards and the interfaces to the domain logic
layer.

Like the data access layer, you will sometimes have to keep some logic in the presentation
layer. However, this domain logic is very basic and is typically used for validating data types
and formatting. A few examples of this would be validating that a phone is formatted correctly
or that an entered credit card number contains only numbers.

Also keep in mind that it is fine to call a data access layer directly from the presentation
layer; however, this should be done only for retrieving lookup values in a combo box or list box
or for reporting purposes. All data manipulation should be done strictly through a domain
layer. You also have to keep in mind that calling the data access layer from the presentation
layer reduces your application’s scalability.

User Interface Layer

Most applications are designed with the intention that a user will interact with it. The user
interface layer will contain all the user interface components such as web or Windows forms.
These user interface components are then used to interact and communicate with the domain
logic layer and sometimes the data access layer.

An important thing to remember about the user interface layer is that you should keep
domain logic to a minimum. If you are using a user process layer in your application, you
should have practically no domain logic whatsoever in the user interface. Any domain logic
should then be part of the user process layer. The one exception to this rule is a web applica-
tion; for performance and usability reasons, it may also be necessary to apply some domain
logic in the HTML page as client script.

Tip In web applications, it is important to remember that even if some domain logic is being performed in
the browser, you still have to perform it on the server to ensure the domain logic is applied. Not all environ-
ments can guarantee that the web browser has scripting turned on. This is very true for
business-to-consumer applications.




CHAPTER 1 " ENTERPRISE APPLICATIONS

User Process Layer

With larger applications where you have rich, robust user interfaces or many types of user
interfaces, it may become more critical to manage the processes or workflows of the user
interface in a separate layer. This allows the abstraction of user interface components from
the actual process that a user must undertake to complete a given task. The user process layer
would also manage state and calls to the domain logic and data access components. Using a
user process layer will help make your user interfaces very lightweight and ideally give you the
ability to easily create multiple types of user interfaces without having to do much more than
create your Windows or web form and drop some UI controls onto it.

The Model-View-Controller (MVC) design pattern is a good implementation of a user
process layer. The model would manage the state and calls to the domain logic components.
The view would be the user interface components themselves. Lastly, the controller would
handle events, handle workflows, and make the necessary calls to the view and model. In this
case, the model and controller are the components of the user process layer, and the view is
the component of the user interface layer.

Entity Components

An entity component, also referred to as a business entity, should represent an entity within a
domain. A customer, sale item, employee, and sales transaction are all typical examples of an
entity. Each one of these entities can be represented as an entity object. The entity component
will contain all the attributes necessary to perform the tasks that it is related with. The entity
component is typically shared between all the layers of an application, because the entity
component is the primary way you would pass the application data around your application.
For example, an entity component that represents an employee in a retail application
may contain the following attributes: first name, last name, Social Security number, employee
number, and home address. The Social Security number, last name, first name, and address
attributes are required for printing the employee’s paycheck. The first name, last name, and
employee number attributes are required during a sales transaction. In this case, one entity
component can be used for sales transactions and employee payroll. However, sometimes
when an entity has many attributes, these attributes are specific to certain domain tasks. It
may be necessary to create more than one entity component to represent a domain entity.
One way to minimize the amount of redundant code is to use inheritance when designing
your entity component. In this case, you would build a base component called person, and a
person would have a first name, last name, and address. The inherited class would contain all
the attributes the base class has plus any new attributes it would add. Since a customer and an
employee both require a first name, last name, and address, you would inherit from the person
base class and create a customer class and an employee class. The customer and employee
classes can then add specific attributes for a customer or an employee. Therefore, a customer
entity might add a preferred shipping method attribute and a birth date attribute. The
employee entity might add a Social Security number attribute and employee number attribute.
Also, in some architectures, an entity component can be part of the domain layer. An
example of this is in an object-oriented architecture; the entity object would also contain the
necessary methods for performing data manipulation upon itself. Although this kind of imple-
mentation would be considered a good OO design, in some cases scalability and performance
may be sacrificed while taking this approach. This is why most applications take a compo-
nent-oriented architecture or service-oriented architecture approach and pass the entity
component to a domain component where some action is taken on that entity component.

13



14

CHAPTER 1 "/ ENTERPRISE APPLICATIONS

Application Configuration Data

Every application needs to contain metadata that will define the application’s execution envi-
ronment. Some examples of metadata include a database connection string, FTP server
addresses, file paths, and even sometimes branding information. To provide a way to set this
configuration data in an application, most applications depend upon an INI or XML file to
store that data. With .NET applications, it is easy to utilize the application configuration file
to store your configuration data in an XML format. You can utilize the built-in <appSettings>
element setting configuration settings, or for more complex scenarios where you have com-
plex hierarchies of configuration data, you can create your own custom configuration section.

Some of the downsides of using the .NET application configuration file are that the files
are read-only at runtime and it’s not possible to centralize data between multiple applications.
These limitations may force larger applications to come up with a custom solution to store the
configuration data for an application. Also, currently it is not a good user interface for an
administrator to configure the application configuration file. This can make administrating
this file difficult and cumbersome when attempting to read and modify these files with a large
amount of configuration data.

Some other options you can look at to store configuration data are the Windows registry,
a file stored locally, or a file stored on a network file server; you can even use a database server
to store application configuration data. The key thing you want to remember is to determine
the features of the configuration data needs based on the current application requirements
and the potential growth of the application.

Managing Security
Another important application need is securing the data and features that an application pro-
vides to its users. To do this, an application must identify and then determine what data and
application rights it can access. Another set of terms for this is authentication and authoriza-
tion. Some of the challenges faced with application design are determining a simple way of
managing security between the different layers and determining the different types of user
interfaces that may be required for the application.

Another challenge is also determining what is the best way to implement the security
management of an application. Some things to consider in this decision process are as
follows:

* Is the application in-house, or are you a vendor building this application for your
clients?

* How will the application be accessed? Will it be strictly internal, or will it be accessible
via an extranet or over the Internet?

* What portions of the application will be exposed to whom? Will it be necessary to
ensure that the sales group cannot access the executive manager’s reports?

* Does the application have to worry about being platform or version independent?

* Do the security mechanisms have to be shared between heterogeneous applications?



