
PHP Object-Oriented
Solutions

David Powers

PHP Object-Oriented Solutions
Copyright © 2008 by David Powers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1011-5

ISBN-13 (electronic): 978-1-4302-1012-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit

www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Seungyeob Choi

Editorial Board
Clay Andres, Steve Anglin, Ewan Buckingham,

Tony Campbell, Gary Cornell, Jonathan Gennick,
Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,

Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Beth Christmas

Copy Editors
Heather Lang and Damon Larson

Associate Production Director
Kari Brooks-Copony

Production Editor
Laura Esterman

Compositor
Molly Sharp

Proofreader
Patrick Vincent

Indexer
Toma Mulligan

Artist
April Milne

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

CONTENTS AT A GLANCE

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

Chapter 1: Why Object-Oriented PHP? . 3

Chapter 2: Writing PHP Classes. 23

Chapter 3: Taking the Pain Out of Working with Dates 77

Chapter 4: Using PHP Filters to Validate User Input 121

Chapter 5: Building a Versatile Remote File Connector 169

Chapter 6: SimpleXML—Couldn’t Be Simpler 207

Chapter 7: Supercharged Looping with SPL 251

Chapter 8: Generating XML from a Database 289

Chapter 9: Case Study: Creating Your Own RSS Feed 321

Index . 355

CONTENTS

About the Author . xi

About the Technical Reviewer . xiii

Acknowledgments . xv

Introduction . xvii

Chapter 1: Why Object-Oriented PHP? . 3

Understanding basic OOP concepts . 4
How OOP evolved . 5
Using classes and objects . 6
Protecting data integrity with encapsulation. 8
Polymorphism is the name of the game . 10
Extending classes through inheritance . 10

Deciding on a class hierarchy . 11
Using best practice . 12

How OOP has evolved in PHP . 13
OOP since PHP 5 . 13
Preparing for PHP 6 . 14

Choosing the right tools to work with PHP classes . 16
Using a specialized script editor . 16

Chapter review. 19

Chapter 2: Writing PHP Classes. 23

Formatting code for readability . 25
Using the Zend Framework PHP Coding Standard . 25
Choosing descriptive names for clarity . 26

Creating classes and objects . 26
Defining a class . 27
Controlling access to properties and methods . 27

Quick review . 32
Setting default values with a constructor method . 33

v

Using inheritance to extend a class . 36
Defining a child class . 37
Accessing a parent class’s methods and properties . 39

Using the scope resolution operator . 39
Controlling changes to methods and properties . 44

Preventing a class or method from being overridden. 44
Using class constants for properties . 46
Creating static properties and methods . 47
Quick review . 49

Loading classes automatically. 50
Exploring advanced OOP features . 51

Creating abstract classes and methods . 52
Simulating multiple inheritance with interfaces . 54
Understanding which class an object is an instance of 55

Restricting acceptable data with type hinting . 56
Using magic methods . 59

Converting an object to a string . 60
Cloning an object . 60
Accessing properties automatically . 64
Accessing methods automatically . 65
Cleaning up with a destructor method . 66

Handling errors with exceptions . 67
Throwing an exception . 67
Catching an exception . 67
Extracting information from an exception . 68
Extending the Exception class . 72

Using comments to generate code hints . 73
Writing PHPDoc comments. 74

Chapter review. 75

Chapter 3: Taking the Pain Out of Working with Dates 77

Designing the class . 78
Examining the built-in date-related classes . 79

Using the DateTime class . 81
Setting the default time zone in PHP . 83
Examining the DateTimeZone class . 85
Using the DateTimeZone class. 87

Deciding how to extend the existing classes . 89
Building the class . 91

Creating the class file and constructor . 91
Resetting the time and date . 95
Accepting dates in common formats . 98

Accepting a date in MM/DD/YYYY format . 98
Accepting a date in DD/MM/YYYY format . 99
Accepting a date in MySQL format . 99

Outputting dates in common formats . 100
Outputting date parts . 101
Performing date-related calculations . 103

CONTENTS

vi

Adding and subtracting days or weeks . 105
Adding months . 106
Subtracting months . 110
Adding and subtracting years . 112
Calculating the number of days between two dates 113

Creating a default date format . 114
Creating read-only properties. 115
Organizing and commenting the class file . 117
Chapter review . 118

Chapter 4: Using PHP Filters to Validate User Input 121

Validating input with the filter functions. 122
Understanding how the filter functions work . 123

filter_has_var() . 125
filter_list() . 126
filter_id() . 126

Setting filter options. 127
Filtering single variables . 130
Setting flags and options when filtering a single variable 134
Filtering multiple variables . 136

Setting a default filter . 137
Building the validation class . 138

Deciding what the class will do . 138
Planning how the class will work . 139
Coding the validation class properties and methods 140

Naming properties and defining the constructor 140
Setting the input type and checking required fields 142
Preventing duplicate filters from being applied to a field 147
Creating the validation methods . 147
Creating the methods to process the tests and get the results 157

Using the validation class . 159
Sticking to your design decisions . 165
Chapter review . 166

Chapter 5: Building a Versatile Remote File Connector 169

Designing the class . 171
Building the class . 172

Defining the constructor . 172
Checking the URL . 174
Retrieving the remote file. 180

Defining the accessDirect() method . 180
Using cURL to retrieve the remote file . 186
Using a socket connection to retrieve the remote file. 190
Handling the response headers from a socket connection 196
Generating error messages based on the status code 202

Final testing . 204
Ideas for improving the class . 204

Chapter review . 205

CONTENTS

vii

Chapter 6: SimpleXML—Couldn’t Be Simpler 207

A quick XML primer . 208
What is XML?. 208
How XML documents are structured. 210
The rules of writing XML . 212

Using HTML entities in XML . 213
Inserting HTML and other code in XML . 213

Using SimpleXML . 214
Loading an XML document with SimpleXML . 217

Loading XML from a file . 217
Loading XML from a string . 218

Extracting data with SimpleXML . 220
Accessing text nodes . 221
Accessing attributes . 221
Accessing unknown nodes . 222

Saving and modifying XML with SimpleXML . 228
Outputting and saving SimpleXMLElement objects . 228
Modifying SimpleXMLElement objects . 231

Changing the values of text and attributes . 231
Removing nodes and values . 232
Adding attributes . 233
Adding new elements . 234

Using SimpleXML with namespaces . 235
How namespaces are used in XML . 236
Handling namespace prefixes in SimpleXML . 236

Handling namespaced attributes. 241
Finding out which namespaces a document uses. 242

Using SimpleXML with XPath . 244
A quick introduction to XPath . 244
Using XPath to drill down into XML . 245

Using XPath expressions for finer control. 246
Using XPath with namespaces . 247

Registering namespaces to work with XPath . 247
Chapter review . 248

Chapter 7: Supercharged Looping with SPL 251

Introducing iterators . 252
Using an array with SPL iterators . 253
Limiting the number of loops with the LimitIterator 253
Using SimpleXML with an iterator . 255
Filtering . 256

Setting options for RegexIterator . 259
Looping sequentially through more than one set of data 263
Looking ahead with the CachingIterator. 265
Using anonymous iterators as shorthand . 268

Examining files and directories . 269
Using DirectoryIterator . 270
Including subdirectories in a single operation . 271

CONTENTS

viii

Extracting file information with SplFileInfo . 273
Finding files of a particular type . 274

Reading and writing files with SplFileObject . 275
Extending iterators . 281

Understanding the Iterator interface . 282
Extending the FilterIterator class . 283

Chapter review . 285

Chapter 8: Generating XML from a Database 289

Designing the application . 290
Defining the application’s purpose. 290
Setting the requirements . 292

Building the application . 292
Creating the database connection . 293
Getting the database result . 294

Defining the properties and constructor . 295
Implementing the Iterator interface . 296
Implementing the Countable interface . 298

Generating the XML output. 302
Defining the properties and constructor . 303
Setting the SQL query. 305
Setting the root and top-level node names. 305
Obtaining the primary key . 306
Setting output file options . 307
Using XMLWriter to generate the output . 307

Chapter review . 317

Chapter 9: Case Study: Creating Your Own RSS Feed 321

Understanding the RSS 2.0 format . 322
The structure of an RSS 2.0 feed . 322

What the <channel> element contains . 323
What the <item> elements contain . 325

Deciding what the feed will contain . 326
Building the class . 327

Populating the elements that describe the feed . 328
Populating the <item> elements . 333

Building the SQL query . 334
Creating the <pubDate> element . 338
Creating the <link> elements . 340
Creating helper methods to format <item> child elements. 344
Generating the XML for the <item> elements . 346

Where to go from here . 352

Index . 355

CONTENTS

ix

ABOUT THE AUTHOR

David Powers is the author of a series of highly successful books on
PHP, including PHP Solutions: Dynamic Web Design Made Easy
(friends of ED, ISBN: 978-1-59059-731-6) and The Essential Guide to
Dreamweaver CS3 with CSS, Ajax, and PHP (friends of ED, ISBN: 978-
1-59059-859-7). As a professional writer, he has been involved in
electronic media for more than 30 years, first with BBC radio and tel-
evision, both in front of the microphone (he was a BBC correspondent
in Tokyo from 1987 to 1992) and in senior editorial positions. His clear
writing style is valued not only in the English-speaking world—several
of his books have been translated into Spanish and Polish.

Since leaving the BBC to work independently, David has devoted most of his time to web
development, writing books, and teaching. He is active in several online forums, giving advice
and troubleshooting PHP problems. David’s expertise was recognized by his designation as an
Adobe Community Expert in 2006.

When not pounding the keyboard writing books or dreaming of new ways of using PHP and
other programming languages, David enjoys nothing better than visiting his favorite sushi
restaurant. He has also translated several plays from Japanese.

xi

ABOUT THE TECHNICAL REVIEWER

Seungyeob Choi is the lead developer and technology manager at Abraham Lincoln
University in Los Angeles, where he has been developing various systems for online educa-
tion. He built the university’s learning platform and has been working on a development
project for Student Lifecycle Management. Seungyeob has a PhD in computer science from
the University of Birmingham, England.

xiii

ACKNOWLEDGMENTS

The book you’re holding in your hand (or reading on the screen) owes its genesis to a
tongue-in-cheek exchange with Steve Fleischer of Flying Tiger Web Design (www.
flyingtigerwebdesign.com), who suggested I should write Powers Object-Oriented PHP.
Actually, he phrased it rather differently. If you take the initial letters of the suggested title,
you’ll get the drift . . . But Steve had an important point: he felt that books on object-ori-
ented programming (OOP) frequently assumed too much prior knowledge or weren’t easily
adaptable to PHP in a practical way. If you like what you find in this book, thank Steve for
planting the idea in my brain. If you don’t like it, blame me, because I’m the one responsible
for writing it the way it is.

Thanks must also go to everyone at Apress/friends of ED for helping bring “my baby” into
the world. Books are uncannily like real babies. This one took exactly nine months from con-
ception to birth with the expert help of editor Ben Renow-Clarke, project manager Beth
Christmas, and many other “midwives.” I owe a particular debt of gratitude to Seungyeob
Choi for his perceptive technical review. Seungyeob’s eagle eye and deep knowledge of PHP
and OOP saved me from several embarrassing mistakes. Any remaining errors are my respon-
sibility alone.

I would also like to thank everyone who has supported me by buying this or any of my pre-
vious books. I realize not everyone can afford to buy books, but the royalties from new—not
second-hand—books ensure that authors get some reward for all the hard effort that goes
into writing. Even the most successful computer books can never aspire to the stratospheric
heights of Harry Potter, so every little bit helps—and is much appreciated.

The biggest thanks of all must undoubtedly go to the developers of PHP, who have given the
rest of the world a superb programming language that continues to go from strength to
strength.

xv

\ INTRODUCTION

My first experiments with object-oriented programming in PHP took place about six years
ago. Unfortunately, the book that introduced me to the subject concentrated on the
mechanics of writing classes and paid little heed to principles underlying OOP. As a result, I
wrote classes that were closely intertwined with a specific project (“tightly coupled,” to use
the OOP terminology). Everything worked exactly the way I wanted, but the design had a
fundamental flaw: the classes couldn’t be used for any other project. Worse still, it was a
large project—a bilingual, searchable database with more than 15,000 records—so any
changes I wanted to make to it involved revising the whole code base.

The purpose of this book is to help you avoid the same mistake. Although most chapters
revolve around mini-projects, the classes they use are project-neutral. Rather than being a
“how to” cookbook, the aim is to help developers with a solid knowledge of PHP basics add
OOP to their skill set.

So, what is OOP? To oversimplify, OOP groups together functions (known in OOP-speak as
“methods”) in classes. In effect, a class can be regarded as a function library. What makes
OOP more powerful is the fact that classes can be extended to add new functionality. Since
many of the new features added to PHP 5 are object-oriented, this means you can easily
extend core PHP classes to add new functionality or simply make them work the way you
want them to. In fact, Chapter 3 does precisely that: it extends the PHP DateTime class to
make it easier to use. The project in Chapter 4 takes the PHP filter functions and hides them
behind a much more user-friendly interface.

Chapter 5 shows how to create a class that retrieves a text file from a remote server by auto-
matically detecting the most efficient available method. Chapters 6 and 7 cover two of the
most important OOP features added to core PHP in version 5: SimpleXML and the Standard
PHP Library (SPL). The XML theme continues in the final two chapters, which use the PHP
XMLWriter class to generate XML on the fly from a database and show you how to create a
news feed from your site.

The need for OOP has come about because PHP is being used increasingly for large-scale
web applications. Object-oriented practices break down complex operations into simple
units, each responsible for a defined task. This makes code much easier to test and maintain.
However, ease of maintenance is just as important in small-scale projects, so OOP can play a

xvii

role in projects of any size. This is an introductory book, so the object-oriented solutions it
contains are designed for use in small projects, but the principles they demonstrate apply
equally to large-scale projects.

By the time you have finished this book, you should understand what OOP is and how to
write PHP classes that conform to current best practices, making your code easier to main-
tain and deploy across multiple projects. The information contained in this book will also
provide a solid foundation for anyone planning to use an object-oriented framework, such
as the Zend Framework (www.zend.com/en/community/framework).

Although everything in this book is devoted to OOP, it’s important to emphasize that OOP
is only part of PHP. OOP helps you create portable, reusable code. Use it where appropri-
ate, but there’s no need to throw out all of your existing PHP skills or code.

Another important thing to emphasize is that all the code in this book requires a minimum
of PHP 5, and preferably PHP 5.2 or 5.3. It has also been designed to work in PHP 6. The
code will not work in PHP 4, nor will any support be provided for converting it to PHP 4.
Even though at the time of publication, it’s estimated that more than half of all PHP-driven
websites still run on PHP 4, all support for PHP 4 officially ended on August 8, 2008. PHP 4
is dead. Long live PHP 5 (and PHP 6 when it’s released). If you haven’t yet made the switch
from PHP 4, now is the time to do it.

Who should read this book
If you develop in PHP, but haven’t yet got your feet wet with OOP, this is the book for you.
No previous knowledge of OOP is necessary: Chapter 1 covers the basic theory and
explains how OOP fits into PHP; Chapter 2 then goes into the mechanics of writing object-
oriented code in PHP. The remaining seven chapters put all the theory into practice, show-
ing you how to create and use your own classes and objects, as well as covering
object-oriented features that have been built into core PHP since version 5.

You don’t need to be a PHP expert to follow this book, but you do need to know the
basics of writing your own PHP scripts. So, if you’re comfortable with concepts such as
variables, loops, and arrays, and have ever created a function, you should be fine.
Throughout the book, I make extensive use of core PHP functions. In some cases, such as
with the filter functions in Chapter 4, I go into considerable detail about how they work,
because that knowledge is essential to understanding the chapter. Most of the time,
though, I explain what the function is for and why I’m using it. If you want a more in-
depth explanation, I expect you to look it up for yourself in the PHP online documenta-
tion at http://docs.php.net/manual/en/.

The book aims to be a gentle introduction to OOP in PHP, but it moves at a fairly fast pace.
The code involved isn’t particularly difficult, but it might take a little more time for some
of the concepts to sink in. The best way to achieve this is to roll up your sleeves and start
coding. Exercises at strategic points demonstrate what a particular section of code does
and help reinforce understanding.

INTRODUCTION

xviii

Using the download code
All the files necessary to work with this book can be downloaded from the friends of ED
website by going to www.friendsofed.com/downloads.html and scrolling down to the link
for PHP Object-Oriented Solutions. Download the ZIP file, and unzip its contents into a new
folder inside your web server document root. I named the folder OopSolutions, but you
can call it whatever you want. In addition to a series of folders named ch2_exercises
through ch9_exercises, the folder should contain the following:

Ch2: This contains example class definitions for use with ch2_exercises.

class_docs: This contains full documentation in HTML format for all the classes
developed in the book. Double-click index.html to view them in your browser.

finished_classes: This contains a full set of completed class definitions.

Pos: This folder is empty. It is where you should create your own versions of the
class definitions as you work through each chapter. If you don’t want to type out
everything yourself, you need to copy each class definition from finished_classes
to this folder for the files in the exercise folders for each chapter to work.

Understanding the file numbering system

Most download files have a filename ending in an underscore and a number before the
.php filename extension (e.g., Book_01.php, Book_02.php). This is because the files repre-
sent a class definition or exercise at a particular stage of development.

If you are typing out the exercises and class definitions yourself, leave out the underscore
and number (e.g., use Book.php instead of Book_01.php). Throughout the text, I indicate
the number of the current version so you can compare the appropriate supplied version
with your own, or simply use it directly if you don’t want to type everything yourself.

To get the best out of this book, I strongly urge you to type out all the exercises and class
definitions yourself. It’s a lot of work, but hands-on practice really does reinforce the
learning process.

What to do if things go wrong
Every effort has been made to ensure accuracy, but mistakes do slip through. If something
doesn’t work the way you expect, your first port of call should be www.friendsofed.com/
book.html?isbn=9781430210115. A link to any known corrections since publication will be
posted there. If you think you have found a mistake that’s not listed, please submit an
error report to www.friendsofed.com/errataSubmission.html. When friends of ED has
finished with the thumbscrews and forced me to admit I’m wrong, we’ll post the details for
everyone’s benefit on the friends of ED site.

If the answer isn’t on the corrections page, scan the chapter subheadings in the table of
contents, and try looking up a few related expressions in the index. Also try a quick search

INTRODUCTION

xix

through Google or one of the other large search engines. My apologies if all this sounds
obvious, but an amazing number of people spend more time waiting for an answer in an
online forum than it would take to go through these simple steps.

If you’re still stuck, visit www.friendsofed.com/forums/. Use the following guidelines to
help others help you:

Always check the book’s corrections page first. The answer may already be there.

Search the forum to see if your question has already been answered.

Give your message a meaningful subject line. It’s likely to get a swifter response and
may help others with a similar problem.

Give the name of the book and a page reference to the point that’s giving you
difficulty.

“It doesn’t work” gives no clue as to the cause. “When I do so and so, x happens” is
a lot more informative.

If you get an error message, say what it contains.

Be brief and to the point. Don’t ask half a dozen questions at once.

It’s often helpful to know your operating system and which version of PHP you’re
using.

Don’t post the same question simultaneously in several forums. If you find the
answer elsewhere, have the courtesy to close the forum thread and post a link to
the answer.

Please be realistic in your expectations when asking for help in a free online forum. I’m
delighted if you have bought one of my books and will try to help you if you run into
problems; but I’m not always available and can’t offer unlimited help. If you post hundreds
of lines of code, and expect someone else to scour it for mistakes, don’t be surprised if
you get a rather curt answer or none at all. And if you do get the help that you need, keep
the community spirit alive by answering questions that you know the answer to.

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions
are used throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudocode and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

INTRODUCTION

xx

Where I want to draw your attention to something, I’ve highlighted it like this:

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow
like this: ➥.

This is a very, very long section of code that should be written all ➥

on the same line without a break.

Ahem, don’t say I didn’t warn you.

INTRODUCTION

xxi

1 WHY OBJECT-ORIENTED PHP?

Let’s get things straight right from the start: PHP (PHP Hypertext Preprocessor) is not an
object-oriented language, but it does have extensive object-oriented features. These
underwent comprehensive revision and enhancement when PHP 5 was released in July 2004,
and the PHP 5 object-oriented programming (OOP) model remains essentially unchanged
in PHP 6. The purpose of this book is to help you leverage those features to make your
code easier to reuse in a variety of situations. I assume you’re familiar with basic PHP con-
cepts, such as variables, arrays, and functions. If you’re not, this isn’t the book for you—at
least not yet. I suggest you start with a more basic one, such as my PHP Solutions: Dynamic
Web Design Made Easy (friends of ED, ISBN13: 978-1-59059-731-6).

In this introductory chapter, you’ll learn about the following topics:

How OOP evolved and the thinking behind it

What an object is and how it differs from a class

What terms such as encapsulation, inheritance, and polymorphism really mean

How the object-oriented model has developed in PHP

Which tools make it easier to work with classes in PHP

I don’t intend to bombard you with dense theory. The emphasis will be on gaining practi-
cal results with a minimum of effort. If you’re lazy or in a hurry, you can just use the PHP
classes in the download files (available from www.friendsofed.com/downloads.html) and
incorporate them into your own scripts. However, you’ll get far more out of this book if
you type out the code yourself, and follow the description of how each section works and
fits into the overall picture.

The techniques taught in this book are intended to improve the way you work with PHP,
not replace everything you’ve learned so far. However, should you decide to delve deeper
into OOP, they lay a solid foundation for further study. You’ll find the knowledge in this
book indispensible if you intend to use a PHP framework, such as the Zend Framework
(www.zend.com/en/community/framework). Although frameworks take a lot of the hard
work out of writing code, without a working knowledge of OOP, you’ll be completely lost.

So what is OOP, and how does it fit into PHP?

Understanding basic OOP concepts
Object-oriented programming (OOP) is one of those great buzzwords that tend to mys-
tify or intimidate the uninitiated. Part of the mystique stems from the fact that OOP was
originally the preserve of graduates in computer science—a mystique deepened by con-
cepts with obscure sounding names, such as encapsulation, polymorphism, and loose
coupling. But OOP is finding its way increasingly into web development. ActionScript 3, the

The techniques and code used in this book require PHP 5 or PHP 6.
They will not work with PHP 4.

PHP OBJECT-ORIENTED SOLUTIONS

4

language behind Adobe Flash and Flex, is a fully fledged OOP language, and the many
JavaScript frameworks, like jQuery (http://jquery.com/) and script.aculo.us (http://
script.aculo.us), that have recently become so popular—although not 100 percent OOP—
make extensive use of objects.

In spite of all the high sounding words, the underlying principles of OOP are very simple.
To begin with, let’s take a look at why OOP developed.

How OOP evolved

Object-oriented programming traces its roots back to the 1960s, when computer pro-
grammers realized that increasingly complex programs were becoming harder to maintain.
Programs sent a series of instructions to the computer to be processed sequentially, in
much the same way as PHP is usually written. This approach—known as procedural
programming—works fine for short, simple scripts, but once you get beyond more than
a few hundred lines of code, it becomes increasingly difficult to spot mistakes. If you make
a change to part of the program’s logic, you need to ensure that the same change is
reflected throughout.

The answer was to break up long, procedural code into discrete units of programming
logic. In many ways, this is similar to creating custom functions. However, OOP takes things
a step further by removing all functions from the main script, and grouping them in spe-
cialized units called classes. The code inside the class does all the dirty work—the actual
manipulation of data—leaving the main script like a set of high-level instructions. To take
a common example that will be familiar to PHP developers, before using input from an
online form, you need to make sure it doesn’t contain anything that could be used to sab-
otage your database or relay spam. The procedural approach looks at the specific project,
and writes tailor-made code, usually a series of conditional statements designed to check
each input field in turn. For instance, this sort of code is commonly used to make sure a
username is the right length:

if (strlen($username) < 6 || strlen($username) > 12) {
$error['username'] = 'Username must be between 6 and 12 characters';

}

OOP looks at programming in a more generic way. Instead of asking “How do I validate this
form?” the object-oriented approach is to ask “How do I validate any form?” It does so by
identifying common tasks and creating generic functions (or methods, as they’re called in
OOP) to handle them. Checking the length of text is one such task, so it makes sense to
have a method that checks the length of any input field and automatically generates the
error message. The method definition is tucked away inside the class file, leaving some-
thing like this in the main script:

$val->checkTextLength('username', 6, 12);

At this stage, don’t worry about what the code looks like or how it works (this object-
oriented approach to input validation is explained fully in Chapter 4). Don’t worry about
the terms, class, and method, either; they will be described shortly.

WHY OBJECT-ORIENTED PHP?

5

1

The approach taken by OOP has two distinct advantages, namely:

Code reusability: Breaking down complex tasks into generic modules makes it
much easier to reuse code. Class files are normally separate from the main script,
so they can be quickly deployed in different projects.

Easier maintenance and reliability: Concentrating on generic tasks means each
method defined in a class normally handles a single task. This makes it easier to
identify and eliminate errors. The modular nature of code stored outside the main
script means that, if a problem does arise, you fix it in just one place. Once a class
has been thoroughly tried and tested, you can treat it like a black box, and rely on
it to produce consistent results.

This makes developing complex projects in teams a lot easier. Individual developers don’t
need to concern themselves with what happens inside a particular unit; all that matters is
that it produces the expected result.

So, how’s it done? First, let’s take a look at the basic building blocks of OOP: classes and
objects.

Using classes and objects

Many computer books begin explaining OOP by using a car as an example of an object,
describing the number of wheels or color of the bodywork as typical properties, and accel-
erate or brake as methods. Although this is a conceptually appealing way of illustrating
some basic OOP terminology, it has nothing to do with building a web site, which involves
practical things such as processing forms, validating input, and so on.

So, forget all about cars—and even objects—for the moment. Let’s think in terms of code.
The fundamental building block of all object-oriented code is called a class. This is simply
a collection of related variables and functions, all wrapped up in a pair of curly braces and
labeled with the name of the class. In OOP-speak, a variable associated with a class is
referred to as a property, and a function is called a method—nothing scary or mysterious
at all. If you have built up a library of your own custom PHP functions for reuse in differ-
ent projects, creating a class will seem very familiar. We’ll look at the actual syntax in the
next chapter, but the main difference is that a class groups everything together.

Not all variables in a class are properties. A property is a special type of
variable that can be used anywhere inside a class and sometimes outside
as well. The distinction between ordinary variables and properties will
become clearer later.

See http://en.wikipedia.org/wiki/Object-oriented_programming for
a more detailed background to OOP.

PHP OBJECT-ORIENTED SOLUTIONS

6

So, if you want to validate user input, you could create a class called Validator (by con-
vention, class names always begin with an initial capital) to group together a series of
methods (in other words, functions) to perform such tests as these:

Is this a number?

Is it within a specified range?

Is this a valid email address?

Does this text have potentially malicious content?

In fact, you’ll build just such a class in Chapter 4. Since other developers are likely to cre-
ate classes for similar purposes, it’s recommended that you prefix class names with a
three- or four-letter prefix followed by an underscore. All classes in this book will be pre-
fixed with Pos_ (for PHP Object-Oriented Solutions), so the class in Chapter 4 will be
called Pos_Validator.

When you want to use any of the class’s properties or methods, you need to create an
instance of the class by using the new keyword like this:

$val = new Pos_Validator();

This creates an object called $val. As you can see, it looks just like an ordinary PHP vari-
able, so what is an object? In this particular case, it’s principally a device that gives you
access to all the methods defined in the Pos_Validator class. Without $val, you have no
way of using them. In addition to methods, a class can have properties. In the case of
Pos_Validator, one of them stores an array of required fields that the user has failed to
fill in; another property stores an array of error messages. Because of the way the class has
been designed, these arrays are populated automatically, holding the information until
you’re ready to use it. In programming terms, you might think of an object as a super-
charged multidimensional array that controls functions as well as variables. However, in
conceptual terms, the $val object is the tool that validates the user input. It uses its meth-
ods to run specific validation tests, and stores all the results. In other applications, objects
can be envisaged in a similar way to real life objects. An e-commerce application might use
a Product class to represent items of stock, or an online forum might have a Member class
to represent individual contributors.

Let’s take a quick look at an example of the Pos_Validator class in action. As I said earlier,
you need to create an instance of the class to be able to use it. This is known as instanti-
ating an object. As you probably noticed, when instantiating the $val object earlier, I
placed a pair of empty parentheses after the name of the class. In the same way as you
pass arguments to functions, you can also pass arguments to an object at the time of
instantiation. The Pos_Validator class accepts two arguments, both of them optional. The
first optional argument is an array of required form fields. So, the script to instantiate a
Pos_Validator object to validate a simple form might look like this:

// create an array of required form fields
$required = array('age', 'name', 'comments');

// instantiate a validator object, and pass it the $required array
$val = new Pos_Validator($required);

WHY OBJECT-ORIENTED PHP?

7

1

The way you access an object’s properties and methods is with the -> operator (a dash fol-
lowed by a greater-than sign, with no space in between). Even if you don’t know anything
about OOP, it shouldn’t take long to work out what the following code does (try to guess,
and then read the next paragraph to see if you were right):

// use class methods to validate individual fields
$val->isInt('age');
$val->removeTags('name', 0, 0, 1);
$val->checkTextLength('comments', 5, 500);
$val->removeTags('comments', 0, 0, 1);
$val->isEmail('email');

// validate the input and get any error messages
$filtered = $val->validateInput();
$missing = $val->getMissing();
$errors = $val->getErrors();

The $val object begins by checking if age is an integer. It then removes HTML tags from
the name field, checks that the comments field contains between 5 and 500 characters, and
strips all tags from it before checking that the email field contains a properly formed
email address. The final three lines validate the input, and get the names of missing fields
and details of errors. It might look mysterious at the moment, but it’s a lot easier to read
than dozens of lines of conditional statements.

Another advantage is that objects are independent of each other, even if they’re instances
of the same class. You can create two separate instances of the Pos_Validator class to val-
idate user input from both the $_POST and $_GET arrays. Because the objects are separate,
you can identify where an error message has come from and take appropriate action.

Each object acts like a black box, keeping the data passed to each one completely separate
from the other. The black box analogy also applies to one of the main concepts behind
OOP: encapsulation.

Protecting data integrity with encapsulation

The idea of encapsulation is to ensure that each part of an application is self-contained
and doesn’t interfere with any others, except in a clearly defined manner. OOP breaks
down complex tasks into their component parts, so it’s necessary to ensure that changing
the value of a property doesn’t trigger an unintended chain effect through other parts of
the application. When defining a property in a class, you must specify whether it’s public,
private, or protected. Public properties are accessible to all parts of a PHP script, both
inside and outside the class definition, and their values can be changed in the same way as
any variable. Protected and private properties, on the other hand, are hidden from exter-
nal scripts, so they cannot be changed arbitrarily.

To save space, opening and closing PHP tags have been omitted through-
out this book, except where required for clarity.

PHP OBJECT-ORIENTED SOLUTIONS

8

Methods can also be public, protected, or private. Since methods allow objects to do
things, such as validate input, you frequently need them to be public. However, protected
and private methods are useful for hiding the inner workings of a class from the end user.

You’ll see how this works in the next two chapters when you start working with actual
code, but one of the properties of the Pos_Validator class is $_inputType, which deter-
mines whether the input being validated comes from the $_POST or $_GET array. To pre-
vent the value of $_inputType from being changed, the class definition declares it
protected like this:

protected $_inputType;

The value of $_inputType is set internally by the class at the time of instantiating the
object. If you attempt to change it directly, PHP generates a fatal error, bringing everything
to a grinding halt. Inconvenient though this might sound, this preserves the integrity of
your code by preventing an attacker from tricking a validation routine to handle variables
from the wrong type of source. As long as a class is well designed, encapsulation prevents
the values of important properties from being changed except by following the rules laid
down by the class.

Encapsulation also makes the final code much simpler and easier to understand, and this is
where the example of a car as an object begins to make sense. Unless you’re a motor
mechanic or enthusiast, you don’t need to know the details of the internal combustion
engine to get in a car and drive. It doesn’t matter whether it’s an old-fashioned gas guzzler
or one that runs on biofuel; all you need to do is turn on the ignition and put your foot
down on the accelerator. What this means in terms of OOP is that you can create a class
with a method called accelerate(), and the user doesn’t need to worry about the internal
code. As long as the accelerate() method performs the expected task, the user is happy.

This leaves the developer free to make improvements to the method’s internal code with-
out forcing users to make similar changes throughout their own scripts. If you’re working
on your own, this might not seem all that important, as you’re both the developer and end
user. However, if you’re working in a team, or decide to use a third-party class or frame-
work, knowing what goes on inside the black box of the object is irrelevant. All you want
to know is that it works and provides consistent results.

Encapsulation is a great advantage for the end user, but it places an important responsibil-
ity on the developer to ensure that changes to the internal code don’t produce unex-
pected changes in output. If a method is expected to return a string, it shouldn’t suddenly
return an array. The black box must work consistently. Otherwise, all dependent code will
be affected, defeating the whole purpose of OOP.

Closely related to this is another key feature of OOP: polymorphism.

It’s a common convention to begin the names of protected and private properties with
an underscore as a reminder that the property’s value should be changed only in strictly
controlled circumstances. You’ll learn more about public, protected, and private prop-
erties and methods in the next chapter.

WHY OBJECT-ORIENTED PHP?

9

1

Polymorphism is the name of the game

In spite of its obscure-sounding name, polymorphism is a relatively simple concept. It
applies to both methods and properties and means using the same name in different con-
texts. If that doesn’t make it any clearer, an example from the real world should help. The
word “polymorphism” comes from two Greek words meaning “many shapes.” A human
head is a very different shape from a horse’s head, but its function is basically the same
(eating, breathing, seeing, and so on), so we use the same word without confusion. OOP
applies this to programming by allowing you to give the same name to methods and prop-
erties that play similar roles in different classes.

Each class and object is independent, so method and property names are intrinsically asso-
ciated with the class and any objects created from it. There’s no danger of conflicts, so
when a method or property is used similarly in different classes, it makes sense to use the
same name each time. Continuing the example from the previous section, accelerate()
makes a car go faster, but the way this is achieved depends on its type. In a regular car, you
put your foot down on the accelerator pedal; but in a car specially adapted for a wheel-
chair user, the accelerator is usually on the steering wheel; and in a child’s pedal car, you
need to move your legs backward and forward quickly. There’s no confusion, because each
type of car is different, and they all achieve the same effect in different ways. It doesn’t
matter how many new classes are created to cover different types of cars, you can use
accelerate() for all of them, leaving the implementation of how they go faster encapsu-
lated inside the class. This is far more convenient than having to use footDown(),
squeezeHandle(), or pedalFaster() depending on the type of car. Polymorphism and
encapsulation go hand in hand, with polymorphism providing a common interface and
encapsulation taking care of the inner details.

In a web site context, you might create different classes to interact with MySQL and SQLite
databases. Although the code needed to connect to each database and run queries is dif-
ferent, the concepts of connecting and running queries are common to both, so it makes
sense to give both classes connect() and query() methods, and a $_result property. A
MySQL object will automatically use the code encapsulated in its black box, and a SQLite
object will do likewise. But thanks to polymorphism, both classes use methods and prop-
erties with common names.

Contrast this to the need in procedural programming to use different functions, such as
mysql_connect() and sqlite_open(). If you want to change the database your web site
uses, you need to change every single line of database code. With the object-oriented
approach, the only changes you need to make are the connection details and instantiating
a MySQL object instead of a SQLite object, or vice versa. As long as your SQL is database-
neutral, the rest of the code should work seamlessly.

This brings us to the final basic concept in OOP: inheritance.

Extending classes through inheritance

Since a class is simply a collection of related functions and variables, one way of adding
new functionality is to amend the code. In the early stages of development, this is usually
the correct approach, but a fundamental aim of OOP is reusability and reliability. Once a

PHP OBJECT-ORIENTED SOLUTIONS

10

class has been developed and tested, it should be a stable component that users can rely
on. Once the wheel has been invented, there’s no need to reinvent it—but you can
improve it or adapt it for specialized uses. However, there’s no need to code everything
from scratch; you can base a new class on an existing one. OOP classes are extensible
through inheritance.

Just as you have inherited certain characteristics from your parents, and developed new
ones of your own, a child class or subclass in OOP can inherit all the features of its
parent (or superclass), adapt some of them, and add new ones of its own. Whereas
humans have two parents, in PHP, a child class can have only one parent. (Some object-
oriented languages, such as Python and C++, permit inheritance from more than one par-
ent class, but PHP supports only single inheritance.)

The subclass automatically inherits all the properties and methods of its superclass, which
can be a great timesaver if the superclass contains a lot of complex code. Not only can you
add new methods and properties of your own, but you can also override existing methods
and properties (this is polymorphism at play), adapting them to the needs of the new class.
You see this in action in Chapter 3, when you extend the built-in PHP DateTime class. The
extended class inherits all the basic characteristics of the DateTime class and creates an
object to store a date, time, and time zone. Some of the original class’s methods, such as
for setting and getting the time zone, are fine as they are, so they are inherited directly.
However, the original DateTime class doesn’t check a date for validity, so you’ll override
some methods to improve their reliability, as well as adding new methods to format and
perform calculations with dates.

Generally speaking, you can extend any class: one you have built yourself, a third-party
one, or any of those built into PHP. However, you cannot extend a class or method that has
been declared final. I explain the significance of final classes and methods in the next
chapter, and in Chapter 3, you’ll learn how to inspect a class to find out which properties
and methods can be inherited and/or overridden.

Deciding on a class hierarchy
The ability to create subclasses through inheritance is undoubtedly one of the main bene-
fits of OOP, but it also poses a dilemma for the developer: how to decide what each class
should do. The object-oriented solutions in this book take a relatively simple approach,
either extending an existing PHP class or creating a class that stands on its own. However,
if you plan to go more deeply into OOP, you will need to give considerable thought to the
structure of your inheritance hierarchy.

Say, for example, that you have an e-commerce site that sells books. If you create a Book
class, you run into problems as soon as you decide to sell DVDs as well. Although they
share a lot in common, such as price, weight, and available stock, DVDs don’t need a prop-
erty that stores the number of pages, and books don’t have a playing time. Add T-shirts to
your product range, and the inheritance problems become even worse. Hopefully, you
picked up the clue in the previous sentence: start with a generic concept, such as product,
and use inheritance to add the specific details.

Inheritance is extremely powerful, but there is a danger of overusing it. So, to round out
this brief overview of OOP principles, I want to take a quick look at two principles of best
practice: loose coupling and design patterns.

WHY OBJECT-ORIENTED PHP?

11

1

Using best practice

Once you appreciate the advantages of OOP, there’s a temptation to go overboard and use
it for everything, particularly creating lots of child classes. Well designed classes are said to
be loosely coupled. This means that changes to one part of the code don’t have a domino
effect forcing changes elsewhere. Loose coupling is achieved by giving classes and objects
clearly defined tasks, so that one class is not dependent on the way another works. For
example, you might have two classes: one to query a database, and the other to display the
results. If the second expects a mysql_result resource, it’s tightly coupled to the class per-
forming the query. You can’t switch to using a different database without changing both
classes. If the first class returned an array instead, the second class would continue work-
ing regardless of where the data came from.

The general advice about loose coupling is to avoid coding for a particular project.
However, this is easier said than done. At some stage, you need to get down to the
specifics of the project in hand, and it’s often necessary to create classes that you won’t be
able to reuse elsewhere. Don’t worry about this too much. When creating a new class, just
ask yourself whether the same technique could be useful in other projects. If it could be,
then you know it should be loosely coupled—made more generic.

Many of the problems you try to solve, while new to you, are likely to be the same issues
that countless other developers have come across before. If you can find a tried and
tested way of doing something, it’s often best to adopt that solution, and spend your time
tackling issues specific to your own project. Over the years, the accumulated wisdom of
OOP developers has been crystallized into what are known as design patterns. A design
pattern isn’t a block of code that you can pick off the shelf and plug into your project;
it describes an approach to a problem and a suggested solution. The Pos_Validator class
in Chapter 4 is an example of the Facade design pattern, the purpose of which is to define
“a higher-level interface that makes the subsystem easier to use.” PHP 5.2 introduced a set
of filter functions designed to validate user input. Unfortunately, it relies on a large num-
ber of predefined constants, such as FILTER_FLAG_ALLOW_THOUSAND, that are difficult to
remember and tedious to type out. The Pos_Validator class encapsulates this complexity
and hides it behind a set of user-friendly methods.

In the course of this book, I make use of some design patterns and describe them briefly
at the appropriate point. However, this isn’t a book about PHP design patterns. The
emphasis is on learning how to write PHP classes and put them to practical use in the con-
text of website development. If you want to study design patterns in detail, I suggest PHP
Objects, Patterns, and Practice, Second Edition by Matt Zandstra (Apress, ISBN13: 978-1-
59059-909-9). Another good book is Head First Design Patterns by Eric Freeman and
Elizabeth Freeman (O’Reilly, ISBN13: 978-0-596-00712-6). Even though all the examples in
the second book are written in Java, they are easy to understand, and the unconventional
approach brings the subject to life.

The names and descriptions of most design patterns come from Design Patterns:
Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson,
and Vlissides (Addison-Wesley, ISBN13: 978-0201633610), affectionately known
as the “Gang of Four (GoF) book.”

PHP OBJECT-ORIENTED SOLUTIONS

12

How OOP has evolved in PHP
As I said before, PHP is not an object-oriented language. In fact, support for OOP wasn’t
added until PHP 3. Unfortunately, the way OOP was originally incorporated into PHP
lacked many essential features. The biggest problem was the way variables were handled
internally, resulting in unexpected behavior. These shortcomings weren’t addressed in
PHP 4 because the main emphasis was on preserving backwards compatibility.

The addition of support for OOP was unexpectedly popular, but it was impossible to rec-
tify the shortcomings without breaking existing scripts. So, when PHP 5 was released in
July 2004, the way classes and objects work in PHP was changed radically. PHP 4 objects are
incompatible with those designed for PHP 5. The good news is that, apart from a few
advanced features beyond the scope of this book, the way PHP 6 handles objects is identi-
cal to PHP 5.

OOP since PHP 5

PHP’s handling of objects was completely rewritten in PHP 5 to improve performance and
conform to standards common to other object-oriented languages. Aside from a long list
of new features, the biggest change from PHP 3 and 4 is the way objects and their proper-
ties are handled. Take the following line of code:

$objectB = $objectA;

In PHP 3 and 4, this makes a copy of $objectA and stores it as $objectB. Both objects then
act independently of each other; changes made to $objectA don’t affect $objectB, and
vice versa. This is known as copying by value and is the way PHP handles variables. In
short, PHP 3 and 4 treated objects like any other variable.

Since PHP 5, objects are treated differently from other variables. Instead of making a copy
of $objectA, the previous line of code stores a reference to $objectA in $objectB. Both
variables refer to the same object; changes made to one affect the other. This is known as
copying by reference. If you find this difficult to grasp, it’s like adopting a nickname in an
online forum. In public, you might call yourself Haven’tAClue, but you remain the same per-
son. To make a copy of an object since PHP 5, you need to use the clone keyword like this:

$objectB = clone $objectA;

The clone keyword is used only with objects. All other variables act the same
way as in PHP 4. To learn more about references in PHP, see http://docs.
php.net/manual/en/language.references.php.

All the code in this book is designed to work in both PHP 5 and PHP 6. To ensure
full compatibility, you should be using a minimum of PHP 5.2.

WHY OBJECT-ORIENTED PHP?

13

1

Other important differences include the addition of the following features:

Modifiers to control access to properties and methods (essential for encapsulation)

A unified constructor name, __construct()

Support for explicitly cleaning up resources through a destructor function

Support for interfaces and abstract classes

Final classes

Static classes, properties, and methods

Automatic class loading

All these features are covered in the remaining chapters. If you have worked with objects
and classes in PHP 4, you’ll find some things familiar, but I advise you to forget most of
what you already know. The new OOP model is very different.

Preparing for PHP 6

PHP 6 has been a long time in the making. It was originally expected to come out in early
2007. The timetable then slipped to the end of 2007, but even as 2008 dawned, the
months rolled by with still no sign of PHP 6. One factor behind the delay was the need to
continue supporting PHP 4, which still represented nearly three-fourths of all PHP installa-
tions at the end of 2007. Since PHP 5 was released in 2004, this meant the development
team was maintaining two major releases at the same time as trying to develop the next
one. The pressure was too great, so a decision was made to terminate support for PHP 4.
All support came to an end on August 8, 2008 after the release of the final security update
(PHP 4.4.9). By the time you read this, PHP 4 should have been consigned to the dustbin of
history. It served the web community well, but it’s time to move on. If you’re still using
PHP 4, you’re living on borrowed time.

With PHP 4 out of the way, the development team could finally concentrate on the future
of PHP, rather than patching up the past, but the task is enormous. The main goal of PHP 6
is to make it Unicode-compliant. Computers store letters and characters by assigning a
number to each one. The problem is that different encoding systems have evolved to cope
with the different writing systems used around the world. To make things worse, different
computer operating systems don’t always use the same numbers to indicate a specific
character. Unicode changes all that by providing a unique number for every character, no
matter what the platform, no matter what the program, no matter what the language
(www.unicode.org/standard/WhatIsUnicode.html).

If you work exclusively in English, and never use accented characters, the switch to
Unicode is nothing to worry about, as the 26 letters of the alphabet and basic punctuation
use the same encoding in both Latin 1 (iso-8859-1) and the most common Unicode stan-
dard (utf-8). However, as Figure 1-1 shows, accented characters cause major problems if
you mix encodings. Even English-speaking Britain isn’t safe, as the encoding for the pound
sterling symbol (£) is different.

PHP OBJECT-ORIENTED SOLUTIONS

14

Figure 1-1. Mixing character encoding results in garbled output onscreen.

Since PHP manipulates character data, making PHP 6 Unicode-compliant means updating
thousands of functions. It has also generated a vigorous debate about whether to make
Unicode the default. As of mid-2008, a final decision had still not been made. The prob-
lems posed by the transition to Unicode resulted in a decision to bring forward many of
the features originally planned for PHP 6. The most important of these, support for name-
spaces in OOP, was introduced in PHP 5.3.

One of the core developers, Andi Gutmans, is on record as saying “the migration path may
be extremely hard moving from PHP 5 to PHP 6” (http://marc.info/?l=php-internals&m=
120096128032660&w=2), and there is a widespread expectation that PHP 5 will remain the
common standard for a long time to come. Even if you decide to postpone the move to
PHP 6, it’s important to make sure you don’t use code that will break when you finally
make the transition. In addition to becoming Unicode-compliant, PHP 6 is dropping sup-
port for many deprecated features that could be lurking in existing scripts. The following
guidelines should help you future-proof your PHP applications:

Unify the way you gather and store data, making sure that the same encoding,
preferably utf-8, is used throughout.

Be aware that versions of MySQL prior to 4.1 do not support utf-8. Any data
imported from older versions needs to be converted.

Eliminate $HTTP_*_VARS from existing scripts, and replace them with the shorter
equivalents, such as $_POST and $_GET.

PHP 6 does not support register_globals. Make sure you don’t have any scripts
that rely on register_globals.

Magic quotes have been removed from PHP 6.

Replace all ereg_ functions with their preg_ equivalents, and use Perl-compatible
regular expressions (PCRE). Support for ereg_ and Portable Operating System
Interface (POSIX) regular expressions is turned off by default.

Those are the main issues you need to address to prepare for PHP 6, as code that relies on
deprecated features just won’t work. However, since they already represent best practice,
there’s nothing arduous about implementing these guidelines. Other best practice that
you should adopt includes the following:

Always use the full opening PHP tag, <?php. It’s the only one guaranteed to work on
all servers.

Although function and class names are not case-sensitive, always treat them as such,
because there are moves to make them case-sensitive in the same way as variables.

WHY OBJECT-ORIENTED PHP?

15

1

Choosing the right tools to work with PHP
classes

PHP code is written and stored on the web server in plain text. The web server compiles
PHP scripts into byte code at runtime, so there’s no need for any special tools or a com-
piler. All you need is a text editor to write the scripts and a PHP-enabled server to run
them on. Since you need to be familiar with PHP basics before embarking on this book, I
assume that you already have access to a web server. Although you can test the code on a
remote web server, you’ll find a local testing environment is much more efficient. Detailed
instructions for setting up a local testing environment are in my earlier books, PHP
Solutions: Dynamic Web Design Made Easy, Foundation PHP for Dreamweaver 8, and The
Essential Guide to Dreamweaver CS3 with CSS, Ajax, and PHP (all friends of ED), so I won’t
go over the same ground here.

If you don’t want to configure a testing environment yourself, I suggest you try XAMPP
for Linux or Windows (www.apachefriends.org/en/xampp.html) or MAMP for Mac OS X
(www.mamp.info/en/mamp.html). Both are easy to set up and have a good reputation.
Alternatively, you might want to invest in a specialized PHP integrated development environ-
ment (IDE), such as Zend Studio for Eclipse (www.zend.com/en/products/studio/) or PhpED
(www.nusphere.com/products/phped.htm). Both have built-in PHP servers for testing.

Let’s take a quick look at choosing a suitable program to write PHP classes.

Using a specialized script editor

Although you can write PHP classes in Notepad or TextEdit, you can make your life a lot
easier by choosing a specialized editor with built-in support for PHP. A good script editor
should offer at least the following features:

Line numbering: Being able to find a specific line quickly makes troubleshooting a
lot easier, because PHP error messages always identify the line where a problem
was encountered.

A “balance braces” feature: Parentheses, square brackets, and curly braces must
always be in matching pairs, but the opening and closing ones can be dozens or
even hundreds of lines apart. Some editors automatically insert the closing one as
soon as you type the opening one of the pair; others simply provide a way of iden-
tifying the matching pairs. Either way, this is a huge time-saver.

Syntax coloring: Most specialized script editors highlight different parts of code in
distinctive colors. If your code is in an unexpected color, it’s a sure sign that you
have made a typing mistake.

The code in this book was developed before the final release of PHP 6. Any changes
that affect its operation in PHP 6 will be listed on the friends of ED web site
(www.friendsofed.com) and my web site at http://foundationphp.com/pos/.

PHP OBJECT-ORIENTED SOLUTIONS

16

