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Preface

Strain is an old concept in semiconductor physics. However, strain applied in
Si logic technology is a relatively new response to the diminishing returns of
pure geometric scaling. Process-induced strain was the first additive feature
enhancement introduced into planar Si MOSFET transistors by Intel in 2002
which heralded a new age of feature enhanced CMOS scaling. Prior to strain in
logic technologies, Si and Ge piezoresistive strain sensors were initiated much
earlier, circa 1957, to respond to variable strain. Strain has also been used
to enhance optoelectronic devices such as quantum well lasers incorporated
via lattice-mismatched heterostructures. Before the advent of strain enhanced
MOSFETs, there were already many, though scattered, research reports on
strain effects in semiconductors. However, there had not been a strong driv-
ing force for strain studies in semiconductors until it began to play a major
role in the mainstream VLSI semiconductor industry. Now in almost every
semiconductor workshop, strain is induced by various means to boost device
performance. Device and process engineers apply advantageous strain to im-
prove electronic product performance and power at low additive cost to meet
the demand of consumers.

There are excellent books on strain physics, such as Symmetry and Strain-
induced Effects in Semiconductor by Pikus and Bir, and also many books on
device physics, such as Fundamentals of Solid-State Electronics by Sah and
Physics of Semiconductor Devices by Sze, as well as numerous papers pub-
lished on the topic of strained Si, Ge, and other semiconductors, but there is a
lack of a single text that combines both strain and device physics. Therefore,
drawing from our experience both in the semiconductor industry and in the
academic field, we have attempted to summarize in this book some of the
latest efforts to reveal the physics underlying the advantages that strain has
brought forth as well as its applications in devices, and perhaps help guide
the development of strained semiconductor devices. Thus in this book, we
have included much of our own research, and have collected many valuable
achievements and ideas by the research community. However, due to space

XI



XII Preface

constraints, we note that unfortunately only representative papers and not all
key papers have been cited in this work.

This book is designed for two levels of readers. For readers such as students
and applications engineers who seek a qualitative discussion, we provide a
qualitative overview at the beginning of every chapter. For advanced gradu-
ate students and research and development engineers with a background in
semiconductor physics who wish to dig deeper, the second part of each chap-
ter provides a more systematic and mathematically involved treatment of the
subject. We hope this book provides useful insight into the common physics
of strain effects in semiconductors that serve as the foundation for the varied
strained semiconductor device applications for both sets of readers.



1

Overview: The Age of Strained Devices

1.1 ORIGIN OF THE STRAINED-SI TECHNOLOGY

One of the predecessors of strained Si to enhance MOSFET performance
is the research that showed enhanced electron mobilities in n-type (100)
Si/Si1−xGex multilayer heterostructures and hole mobilities in p-type (100)
Si/i-Si1−xGex/Si double-heterostructures in the early 1980s (Manasevit et al,
1982; R.People et al, 1984). Strain caused by the lattice mismatch was sus-
pected as one of the factors for the mobility enhancement. The physical mech-
anism for the enhancement can be traced back to the theoretical formulation
of deformation potentials by Bardeen and Shockley (Bardeen and Shockley,
1950; Shockley and Bardeen, 1950) in 1950 and the experimental measure-
ments of the piezoresistance effect, a change in resistance with mechanical
stress, by Smith (Smith, 1954).

In an era of rapidly changing technology, strain is a relatively old topic in
semiconductor physics, yet its tangible effects on band structure and carrier
transport have spurred a renewed interest in strained semiconductor physics.
To model lattice scattering, deformation potential theory was developed by
Bardeen and Shockley to characterize the band energy shift with strain caused
by phonons (Bardeen and Shockley, 1950; Shockley and Bardeen, 1950).
Herring and Vogt (Herring and Vogt, 1956) then extended deformation po-
tentials to model transport in strained semiconductors. Deformation potential
theory is still the primary method to model the band shift and warping in
energy band calculations (Oberhuber et al, 1998; Fischetti and Laux, 1996).

1.2 STRAIN IN SEMICONDUCTOR DEVICES

While strain physics is fundamental, the source of strain is technology and
device dependent. For example, strain can result from phonon-induced lattice
vibrations in homogeneous semiconductors, lattice-mismatched film growth

Y. Sun et al., Strain Effect in Semiconductors: 1
Theory and Device Applications, DOI 10.1007/978-1-4419-0552-9 1,
c© Springer Science+Business Media, LLC 2010



2 1 Overview: The Age of Strained Devices

in epitaxial heterostructures, intrinsic stress in deposited thin films, and ap-
plied external stress. Prior to the development of heteroepitaxy and chem-
ical vapor deposition, variable strain transducers were developed to exploit
the piezoresistive effect in Si and Ge to construct strain gauges and stress
transducers (Mason and Thurston, 1957; Burns, 1957) that responded to dif-
ferent values of strain or stress. With the advent of micromachining, more
elaborate piezoresistive transducers have been fabricated using microelec-
tromechanical systems (MEMS) technology. Simultaneously, integrated cir-
cuits were invented and evolved exponentially in density and performance
along the path portended by Moore’s law through improvements in lithogra-
phy and microelectronics fabrication technologies until various obstacles began
to loom. Finally, continual geometric scaling of the metal-oxide-semiconductor
field-effect transistor (MOSFET) channel length, gate dielectric thickness, and
junction depth led to increasing off-state channel leakage, gate leakage, source–
drain resistance, and short-channel effects. Performance improvement at each
technology node by simple geometrical scaling became more problematic and
costly until the end of simple scaling for CMOS was predicted.

1.2.1 Conventional Simple Scaling

The end of simple scaling for a solid state device technology is not new. Scaling
of silicon bipolar junction transistors (BJT) ended in the 90s for various rea-
sons including voltage, base width, and power density limits. However, the
unrelenting scaling of the competing complementary MOS (CMOS) as an-
other factor cannot be overestimated. By the mid-90s, the performance of
0.1-μm CMOS devices measured by the unity current gain frequency, fT, was
comparable to the highest reported values for BJTs, but at lower power and
cost (Taur et al, 1997). Now more than a decade later, conventional CMOS has
reached its simple scaling limits. However, unlike the 90s, there is presently no
new device to realistically compete with or potentially replace the industry
work horse for VLSI applications. Carbon nanotubes and silicon nanowires
are considered to be leading contenders but have yet to achieve commercial
success in even a niche logic or memory market.

1.2.2 Feature-Enhanced CMOS

In order to meet customer needs for a continuation of Moore’s law, feature en-
hancement instead of simple geometric scaling of the silicon CMOS platform is
recognized as the necessary driver for the microelectronics industry. Key fea-
tures include strain, metal gate, high-κ dielectric, nonplanar geometries, and
heterogeneous semiconductor integration. The first key feature to enhance
90, 65, and 45-nm technology nodes is uniaxial process-induced stress (Chan
et al, 2003; Murthy et al, 2003; Ghani et al, 2003; Yang et al, 2004)
(Chidambaram et al, 2004; Chien-Hao et al, 2004; Liu et al, 2005). Suc-
cessive features have been added to stress including metal gate and high-κ
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dielectric (Mistry et al, 2007; Packan et al, 2008). Instead of increasing the
geometrical scaling, future advancements are expected to be an increase in
additive feature enhancements.

The development of the first commercial strain feature-enhanced silicon
technology is reviewed in (Thompson et al, 2006a). An early question was on
the source of the strain: lattice-mismatched epitaxial layers on a fully relaxed
substrate or process-induced source/drain stress or intrinsic stress in deposited
thin films. Following the promising Si/Si1−xGex heteroepitaxy results, wafer
based substrate strain was experimentally and theoretically studied by a large
number of researchers (Rim et al 2003, and references therein). In the 90s, two
process-induced strain sources were investigated, high stress capping layers
deposited on MOSFETs (Shimizu et al, 2001; Ito et al, 2000) and embedded
SiGe source and drain (Gannavaram et al, 2000) although the SiGe source
and drain was originally proposed for higher boron activation and reduced
external resistance. The embedded SiGe literature prompted Intel to evaluate
the technology, which resulted in larger than expected device performance
enhancement, which after considerable internal debate was later attributed to
compressive channel stress (Thompson et al, 2002). However, neither biaxial
nor uniaxial stress was immediately adopted in CMOS logic technologies for
several reasons (Thompson et al, 2006a). For biaxial stress, issues included
defects in the substrate and performance loss at high vertical electric fields
(Fischetti et al, 2003). Process-induced uniaxial channel stress was not initially
adopted since different stress types (compressive and tensile for n and p-
channel respectively) were needed.

After careful analysis of the hole mobility enhancement at high vertical
electric fields and the potential for continued effectiveness at nanoscale di-
mensions, process-induced uniaxial strain was adopted over biaxial stress.
Uniaxial stress provided significantly larger hole mobility enhancement at
both low strain and high vertical electric field (Thompson et al, 2004b). Since
high strain can lead to strain relaxation via defect formation, large mobility
enhancement at low strain is critical for yield. Uniaxial stress also provided
larger drive current improvement for nanoscale short channel devices since the
enhanced electron and hole mobility arises mostly from reduced conductivity
effective mass instead of primarily from reduced scattering for biaxial stress.
Another important consideration was the strain effect on the threshold volt-
age. Process-induced uniaxial stress resulted in an approximately five times
smaller n-channel threshold voltage shift. The smaller threshold voltage shift
was manifested in a smaller penalty for threshold voltage shift retargeting by
adjusting the channel doping. Alternately, the larger threshold voltage shift
for the substrate-induced biaxial tensile stress causes approximately half of
the stress-enhanced electron mobility to be lost (Fossum and Weimin, 2003).
Based on the merits of uniaxial stress and the necessity for opposite stress
types for n- and p-channel MOSFETs, two process flows were developed that
independently targeted the stress magnitude and direction (Thompson et al,
2006b). The first involved embedded and raised SiGe in the p-channel source
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and drain and a tensile capping layer on the n-channel device. The second
used dual stress liners: compressive and tensile silicon nitride (SiN) for p- and
n-channel devices, respectively. As a feature enhancement for CMOS, process-
induced stress is employed in nearly all high-performance logic technologies
at the 90, 65, and 45-nm technology nodes for both microprocessor and con-
sumer products (Zhang et al, 2005; Bai et al, 2004; Yang et al, 2004; Chan
et al, 2003; Thompson et al, 2004a; Qiqing et al, 2005; Ghani et al, 2003; Pidin
et al, 2004; Liu et al, 2005; Mistry et al, 2007; Packan et al, 2008).

1.2.3 Variable Strain Sensors

In contrast to the fixed strain incorporated in logic devices for a fixed or
constant improvement in device performance, piezoresistive strain sensors re-
spond to variable strain through a modulation in the device resistance. The
underlying physics of performance improvement in logic devices and strain
transduction in piezoresistive strain sensors is the same. While improvement
of logic device performance requires an increase in mobility, which dictates the
“sign” of the fixed strain, strain sensors respond to both negative (compres-
sive) and positive (tensile) strains. Since the strain is fixed in logic devices,
the linearity of mobility increase with strain is not an issue since the strain is
theoretically frozen into the device by stressors incorporated into the device
structure during the manufacturing process. In contrast, piezoresistive strain
sensors are designed to transduce or detect varying strains by producing a pro-
portional change in resistance. Hence, linear resistance change with strain is
important to sense/transduce strains of varying amplitudes into an electrical
signal without introducing distortion.

In contrast to discrete strain gauge sensors that are assumed to measure
the local strain without significantly affecting the stiffness of the structure in
question, integrated stress transducers are devices that integrate the piezore-
sistive strain gauge within a sensing structure. The combination of MEMS
and semiconductor strain gauges has enabled the development of integrated
stress transducers. A conventional discrete strain transducer is contrasted
with a MEMS piezoresistive pressure stress transducer (microphone) and a
fixed stress-enhanced p-channel MOSFET in Fig. 8.13 which is also repro-
duced as Fig. 1.1 here for an example.

Although it is possible to construct a discrete thin and compliant silicon
strain gauge in the same manner as a metal film strain gauge, the vast silicon
integrated circuit manufacturing knowledge base coupled with the fortuitous
mechanical properties of silicon (Peterson, 1982) has enabled the fabrication
of MEMS stress transducers that integrate silicon piezoresistors with a me-
chanical structure made of the same silicon material.

1.2.4 Strained Quantum Well Optoelectronics

Strain has been an inevitable part of modern heterostructure devices employed
in advanced quantum well solid-state lasers and other optoelectronic devices.
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Fig. 1.1. Applications of strain and stress: (a) Discrete strain gauge (Omega.com,
2003–2009) (b) Si MEMS piezoresistive variable stress transducer with four
integrated Si piezoresistors (Arnold et al, 2001) and (c) fixed stress enhanced
transistor (Thompson et al, 2004a)

While a positive feature enhancement for CMOS, in optoelectronic devices
strain was a undesirable by-product from lattice-mismatched semiconductor
interfaces, a scourge to be managed in order to avoid quantum efficiency-killing
nonradiative defects created by strain relaxation. However, due to improve-
ments in semiconductor film growth technology, strain grading buffer layers,
and scaling of device size, strain relaxation is better controlled. With bet-
ter defect control, strain effects on the band structure offer great potential for
enhancing the performance of optoelectronic devices such as solid-state lasers.

Because of the different operation mechanisms, the emphasis of strain ef-
fects on band structure is different for optoelectronic devices compared with
CMOS. While strain feature enhancement for CMOS is tied primarily to
its benefits for electron transport, strain effects on photon emission caused
by radiative electron transitions are key for emissive optoelectronic devices.
Photon emission is caused by radiative electron transitions in semiconduc-
tors such as electron–hole recombination. Since recombination involves two
electronic states, the transition probability is determined by the electronic
state properties such as energy and wave function. The collective processes of
photons, i.e., light emission (as well as absorption), depend on the semicon-
ductor band structure. Strain affects the band structure and thus also affects
the performance of optoelectronic devices such as wavelength, gain, linewidth,
and quantum efficiency. As will be seen, strain effects on the band structure
that affect optoelectronic devices include shifts of the bandgap, changes of
energy level density of states (DOS), and electronic wavefunction variation or
mixing.

1.3 ORGANIZATION

This book is organized in three major parts. The overall arc of the book
follows a trajectory beginning with strain fundamentals for a semiconductor
at equilibrium through nonequilibrium transport to strain applications on
semiconductor devices.
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Part I, “Band Structures of Strained Semiconductors,” first reviews stress
and strain and crystal symmetry. Strain effects on semiconductors are then
introduced by its effects on symmetry. The main physics of interest here that
underpins all of the physics of strain is its effects on band structure, which is
discussed next initially for an unstrained semiconductor crystal. Strain effects
are introduced within two major band structure calculation frameworks, the
tight-binding approach and the k . p approach. Since the discussion of band
structure is originally for a bulk semiconductor, i.e., one that is unconstrained
in dimension, the first part finishes with a discussion of the unique differences
in the band structure and its strain effects for low-dimensional structures such
as a two-dimensional (2D) electron gas such as that created in a MOSFET
and a quantum well heterostructure and a one-dimensional nanowire.

Part II, “Transport Theory of Strained Semiconductors,” discusses how
changes in band structure coupled with changes in carrier scattering caused
by strain affect carrier transport. Carrier transport is first reviewed beginning
with the Drude model for electron transport in an unstrained semiconduc-
tor followed by a qualitative discussion of how strain affects each component
of carrier transport. A key transport factor, scattering, is then reviewed by
covering the primary scattering processes, lattice, phonon, piezoelectric, and
impurity scattering, in a three-dimensional (3D) spatially unconfined struc-
ture. Strain effects on the bulk scattering rates are then discussed followed by a
discussion of the scattering mechanism unique to spatially confined structures,
surface roughness scattering. Finally, the strain effects on carrier transport are
summarized in terms of the piezoresistance effect, electron and hole transport,
and surface roughness scattering. Strain effects on the high lateral field and
near-ballistic transport are also explored.

With the formalities of strain effects on equilibrium and nonequilibrium
semiconductors largely discussed, Part III discusses applications of strain to
semiconductor devices. Three categories of strain applications are included: (1)
fixed strain feature enhancement of electron devices such as Si and SiGe pla-
nar and nonplanar MOSFETs, (2) variable strain transducers such as discrete
strain gauges and integrated MEMS piezoresistive stress transducers, and (3)
optoelectronic devices where strain is a by-product of the quantum well het-
erostructures employed and an effect to be managed as well as exploited.
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Band Structures of Strained Semiconductors
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Stress, Strain, Piezoresistivity,
and Piezoelectricity

2.1 STRAIN TENSOR

Strain in crystals is created by deformation and is defined as relative lattice
displacement. For simplicity, we use a 2D lattice model in Fig. 2.1 to illus-
trate this concept, but discuss the general concept in 3D cases. As shown in
Fig. 2.1a, we may use two unit vectors x̂, ŷ to represent the unstrained lattice,
and in a simple square lattice, they correspond to the lattice basis vectors.
Under a small uniform deformation of the lattice, the two vectors are distorted
in both orientation and length, which is shown in Fig. 2.1b. The new vectors
x̂′ and ŷ′ may be written in terms of the old vectors:

x̂′ = (1 + εxx)x̂ + εxyŷ + εxz ẑ, (2.1)
ŷ′ = εyxx̂+ (1 + εyy)ŷ + εyzẑ, (2.2)

and in the 3D case, we also have

ẑ′ = εzxx̂+ εzy ŷ + (1 + εzz)ẑ. (2.3)

The strain coefficients εαβ define the deformation of the lattice and are
dimensionless. The 3 × 3 matrix

¯̄ε =

⎛
⎝
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠ (2.4)

is called the strain tensor. A tensor is a mathematical notation, usually
represented by an array, to describe a linear relation between two physical
quantities. A tensor can be a scalar, a vector, or a matrix. A scalar is a zero-
rank tensor, a vector is a first-rank tensor, and a matrix is a second-rank
tensor, and so on. The strain tensor is a second-rank tensor, which in this
book is labeled with two bars over the head. However, in places without con-
fusion, we usually neglect the bars. Suppose a lattice point is originally located

Y. Sun et al., Strain Effect in Semiconductors: 9
Theory and Device Applications, DOI 10.1007/978-1-4419-0552-9 2,
c© Springer Science+Business Media, LLC 2010



10 2 Stress, Strain, Piezoresistivity, and Piezoelectricity

Undeformed lattice Deformed lattice

y

ŷ y'^

x̂
x'^

x

a b

Fig. 2.1. Diagram for (a) an undeformed lattice and (b) a deformed lattice

at r = xx̂ + yŷ + zẑ, then with a uniform deformation this point will be at
r′ = xx̂′ + yŷ′ + zẑ′. For a general varying strain, the strain tensor may be
written as

εα,β =
∂uα

∂xβ
, uα = ux, uy, uz, xβ = x, y, z, (2.5)

where uα is the displacement of lattice point under study along xα. A strain
tensor (2.4) is symmetric, i.e.,

εαβ = εβα =
1
2

(
∂uα

∂xβ
+
∂uβ

∂xα

)
. (2.6)

The antisymmetric part of tensor (2.4) represents a rotation of the entire body.
Usually people work with the other set of strain components, which are

defined as
exx = εxx; eyy = εyy; ezz = εzz, (2.7)

which describe infinitesimal distortions associated with a change in volume,
and the other strain components exy, eyz, and ezx are defined in terms of
changes of angle between the basis vectors. Neglecting the terms of order ε2

in the small strain approximation, they are

exy = x̂′ · ŷ′ = εxy + εyx,

eyz = ŷ′ · ẑ′ = εyz + εzy,

ezx = ẑ′ · x̂′ = εzx + εxz. (2.8)

These six coefficients completely define the strain. We can write these six
strain coefficients in the form of an array as e = {exx, eyy, ezz, eyz, ezx, exy}.
The introduction of this set of notation for the strain components is merely for
the convenience of describing the relations between strain and the other strain-
related physical quantities. The relation between two second-rank tensors
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must be described by a fourth-rank tensor, which is very complicated; while
after transforming the second-rank tensors to first-rank, only a second-rank
tensor is required.

The crystal dilation under deformation can be evaluated through calculat-
ing the volume defined by x̂′, ŷ′, and ẑ′,

V ′ = x̂′ · ŷ′ × ẑ′ = 1 + exx + eyy + ezz, (2.9)

and the dilation δ then is given by

δ =
δV

V
= exx + eyy + ezz, (2.10)

which is the trace of the strain tensor. The dilation is negative for hydrostatic
pressure.

2.2 STRESS TENSOR

Crystal deformations can be induced by externally applied forces, or in other
words, a solid resists deformations, thus deformations will generate forces.
Stress is defined as the force in response to strain in a unit area. Stress has
nine components and is a second-rank tensor, which we write as ταβ , α, β =
x, y, z. On the surface of an infinitesimal volume cube, the stress distribution is
illustrated in Fig. 2.2, where τxx represents a force applied in the x direction to
a unit area of the plane whose outward-drawn normal lies in the x direction,
and τxy represents a force applied in the x direction to a unit area of the

x

z tzz

tzx

txz

tyz

tzy

tyy

txy
tyx

txx
y

Fig. 2.2. Illustration for stress components on the surfaces of an infinitesimal cube
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Fzx

Fyx

FxxA

z

y

x

Fig. 2.3. Illustration of the forces applied on one surface with area of A of the cube
shown in Fig. 2.2

plane whose outward-drawn normal lies in the y direction. The stress tensor
is symmetric just as the strain tensor. The antisymmetric part of the stress
tensor represents a torque, and in a state of equilibrium, all torques must
vanish inside a solid.

The stress and force relation is better illustrated in Fig. 2.3 where we
show a force applied on an infinitesimal plane whose normal is along x and
has an area A. In such a case, we resolve the force into components along
the coordinate axes, i.e., Fxx, Fyx, and Fzx. The stress components in this
plane are

τxx =
Fxx

A
, τyx =

Fyx

A
, τzx =

Fzx

A
. (2.11)

We now study some simple stress cases to determine the stress tensors.

1. Hydrostatic pressure:
Under a hydrostatic pressure P , all shear stress is zero. Stress along any
principle direction is −P , namely,

τ =

⎛
⎝

−P 0 0
0 −P 0
0 0 −P

⎞
⎠ . (2.12)

Here the sign convention is that tensile stress is positive and compressive
stress is negative.

2. Uniaxial stress T along the [001] direction:
For a uniaxial stress T along the [001] direction, all stress components but
τzz are zero, and τzz = T . So

τ =

⎛
⎝

0 0 0
0 0 0
0 0 T

⎞
⎠ . (2.13)
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3. Uniaxial stress T along the [110] direction:
The case for a uniaxial stress along the [110] direction is a little more
complicated. Generally when we talk about a stress T along the 〈110〉
direction, it refers to the force exerted along the 〈110〉 direction divided by
the cross section of the (110) surface, but not necessarily equal to any of the
stress tensor elements. To find the stress elements, we can use two methods.
First is to resolve the force into three coordinate axes. For [110] uniaxial
stress T as shown in Fig. 2.4a, the force along the [110] direction is F = Ta2.
Its component along [001] is zero. Along both x and y direction, the force is
F/

√
2. However, the cross area for the force along [110] shown in Fig. 2.4a

is a2 and is
√

2a2 for the forces along the x and y direction. Thus, the stress
along both x and y is F/2a2 = T/2. The shear stress on both [100] and [010]
planes is also T/2. The second method to obtain the stress components is
through the coordinate transformation method. Suppose in an unprimed
coordinate system, stress T is along the x direction, and thus τxx = T ,
and all the other stress components are zero. We can rotate the x and y
axes 45◦ clockwise, and then an original [100] uniaxial stress that only has
one nonvanishing component τxx = T now corresponds to a [110] uniaxial
stress in a primed coordinate system, as shown in Fig. 2.4b. The stress
elements in the primed coordinate system are given by the transformation,

τ
′
ij =

∑
mn

τmn
∂x

′
i

∂xm

∂x
′
j

∂xn
, (2.14)

where ∂x
′
i

∂xm
, etc. represent the directional cosines of the transformed axes

made to the original axes. This equation results from the general tensor
transformation of S to S′ under an orthogonal coordinate transformation A,

S′ = ASAT, (2.15)

a

a

x

y

F 110

Fy

Fx

a

x

x�

y

y�

0

45

a b

Fig. 2.4. (a) The decomposition of a force along the [110] direction along the x and
y directions, and their stress relations. Please note that in this figure, the x and y
directions are along the diagonals of the surfaces instead of along the edges. (b) The
coordinate systems before and after a 45◦ rotation clockwise. The unprimed and
primed systems are the coordinate systems before and after the rotation
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where AT is the transpose of matrix A. The stress tensor under the [110]
uniaxial stress found using both methods is

τ =
T
2

⎛
⎝

1 1 0
1 1 0
0 0 0

⎞
⎠ . (2.16)

Because a stress tensor is symmetric, similar to the strain tensor case, the
six coefficients, τxx, τyy, τzz, τyz, τzx, and τxy completely define the stress.
Similar to a strain tensor, a second-rank stress tensor can be reduced to a 1D
array form.

2.3 ELASTIC COMPLIANCE AND STIFFNESS
CONSTANTS

In the linear elastic theory, Hooke’s law is justified and stress is proportional
to strain

τij =
∑
αβ

Cijαβeαβ , i, j, α, β = x, y, z, (2.17)

where the coefficients Cijαβ are called elastic stiffness constants. Elastic stiff-
ness constants are a fourth-rank tensor. Because of the symmetry of both the
strain tensor and the stress tensor, we have

Cijαβ = Cjiαβ = Cijβα, (2.18)

so we may write both strain and stress tensor as a six-component array as

e = (exx, eyy, ezz, eyz, ezx, exy) (2.19)

and
τ = (τxx, τyy, τzz , τyz, τzx, τxy) (2.20)

and reduce the elastic stiffness tensor to a 6 × 6 matrix

τi =
∑
m

Cimem. (2.21)

This 6× 6 matrix has a very simple form in cubic crystals due to the high
symmetry. It has only three independent components and has the form

Cij =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.22)
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This is easy to understand by inspecting (2.21) and considering the transfor-
mation of this equation under symmetry operations. First, the elastic stiffness
tensor must be symmetric. Second, since for cubic crystals, the three axes are
equivalent, therefore we must have C11 = C22 = C33, and C44 = C55 = C66.
Third, a shear strain cannot cause a normal stress, so terms like C14 = 0.
And a shear strain along one axis cannot induce forces causing a shear along
another axis, so terms like C45 = 0. Finally in the view of a force along one
axis, the other two axes are equivalent, and thus we have C12 = C13, etc.
These results can also be obtained by investigating the transformation of the
components in (2.17) under symmetry operations using an equation similar
to (2.14)

C
′
lkγδ =

∑
ijαβ

Cijαβ
∂x

′
l

∂xi

∂x
′
k

∂xj

∂x
′
γ

∂xα

∂x
′
δ

∂xβ
. (2.23)

For example, it is easy to verify that under a reflection and thus x → −x,
Cxyzz = −Cxyzz, so in the 6 × 6 matrix, C63 = 0.

In many cases it is convenient to work with the inverse of the elastic
stiffness tensor, which is defined through the relation between strain and stress

εαβ =
∑
ij

Sαβijτij . (2.24)

The fourth-rank tensor Sαβij , called the compliance tensor, can also be re-
duced into a 6×6 matrix. Under cubic symmetry, it has the same form as the
stiffness tensor ⎛

⎜⎜⎜⎜⎜⎜⎝

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.25)

and the strain–stress relation can be written as

em =
∑

i

Smiτi. (2.26)

Because the elastic stiffness tensor and compliance tensor are inverse to each
other, so it is easy to work out the relations between the components as

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)
,

S12 =
−C12

(C11 − C12)(C11 + 2C12)
,

S44 =
1
C44

. (2.27)
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In mechanical engineering, Young’s modulus Y and Poisson ration ν are
commonly used. For a homogeneous, isotropic material, strain is related to
stress through

εxx =
1
Y

(τxx − ν(τyy + τzz)),

εyy =
1
Y

(τyy − ν(τzz + τxx)),

εzz =
1
Y

(τzz − ν(τxx + τyy)). (2.28)

In cubic systems Young’s modulus and Poisson ration ν are related to the
compliance constants by

Y =
1
S11

, ν = −S12

S11
. (2.29)

2.4 EXAMPLES OF STRESS–STRAIN RELATIONS

Now we use two examples to illustrate how to determine the strain tensor
from stress using the relations we have discussed earlier.

1. Biaxial stress:
A semiconductor layer pseudomorphically grown on a (001)-oriented lattice-
mismatched substrate is schematically shown in Fig. 2.5. In this case, the
top layer is biaxially strained, and the strain components exx and eyy are

exx = eyy =
a0 − a

a
. (2.30)

z

x

a

a

a0

Unstrained Strained

a0

a0

a0

a b

Fig. 2.5. Illustration of biaxial stress (strain). (a) Two different material layers
have different lattice constant before growth; (b) After pseudomorphic film growth,
the lattice constant of the top layer conforms to that of the bottom layer and is
under biaxial stress (strain)
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The strain is tensile in the x-y plane. To obtain the strain in the z direction,
we use the strain–stress relation (2.26), i.e.,

⎡
⎢⎢⎢⎢⎢⎢⎣

exx

eyy

ezz

ezx

eyz

exy

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

τxx

τyy

τzz

τzx

τyz

τxy

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.31)

In the current case, τxx = τyy = T , τzz = 0, and τzx = τyz = τxy = 0.
Therefore, we have

exx = eyy = (S11 + S12)T,
ezz = 2S12T. (2.32)

Thus,

ezz =
2S12

S11 + S12
exx. (2.33)

Strain tensor in this case is

e =

⎛
⎝
exx 0 0
0 exx 0
0 0 ezz

⎞
⎠ . (2.34)

2. [110] uniaxial stress:
The x-y plane of a cubic crystal under a [110] uniaxial stress is illustrated
in Fig. 2.6. The stress tensor is already obtained in Eq. (2.16), i.e., τxx =
τyy = τxy = T/2, and τzz = τzx = τyz = 0. Substituting into (2.31), we
obtain

x

y

T

T

Fig. 2.6. Illustration of the [110] uniaxial compressive stress (strain)
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exx = eyy =
S11 + S12

2
T,

exy =
S44

2
T,

ezz = S12T. (2.35)

The strain tensor in this case then is

ε =

⎛
⎝

exx exy/2 0
exy/2 exx 0

0 0 ezz

⎞
⎠ . (2.36)

2.4.1 Hydrostatic and Shear Strain

An arbitrary strain tensor can be decomposed into three separate tensors as
following:

⎛
⎝
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞
⎠ =

1
3

⎛
⎝
εxx + εyy + εzz 0 0

0 εxx + εyy + εzz 0
0 0 εxx + εyy + εzz

⎞
⎠

+
1
3

⎛
⎝

2εxx − (εyy + εzz) 0 0
0 2εyy − (εzz + εxx) 0
0 0 2εzz − (εxx + εyy)

⎞
⎠

+

⎛
⎝

0 εxy εxz

εyx 0 εyz

εzx εzy 0

⎞
⎠ ,

(2.37)

where the first constant tensor whose diagonal element is one-third of the trace
of the original strain tensor accounts for the volume change [see (2.10)], and
the latter two traceless tensors account for the shape change of an infinitesimal
cube. Correspondingly, the first tensor describes the effect of a hydrostatic
strain, and the latter two tensors describe the effect of shear strain. Among the
two shear strain tensors, the diagonal one is related to the change of lengths
along the three axes and the other one with diagonal elements being zero is
related to the rotation of the axes of an infinitesimal cube. For a cubic crystal,
the first type of shear occurs when a uniaxial stress is applied along any of the
three 〈100〉 axes, and the second type of shear is nonzero only when stresses are
applied along 〈110〉 or 〈111〉 axes. Obviously, for a cube under the hydrostatic
strain, the shape does not change, while under an arbitrary first type of shear,
the shape of the cube will become orthorhombic, and under an arbitrary
second type of shear, the shape of the cube will become triclinic. A cubic
crystal under biaxial stress becomes tetragonal, and it becomes orthorhombic
under a uniaxial stress along 〈110〉.
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For a first look, applying a compressive uniaxial stress along [001] and a
biaxial tensile stress in the x-y plane to a cubic crystal seems identical. Indeed,
if for both cases the stress is T , and we decompose the resulting strain tensor
into the hydrostatic and shear parts, the shear strain coincides. However, the
hydrostatic strain differs in sign and a factor of 2 in magnitude.

2.5 PIEZORESISTIVITY

Piezoresistivity is an effect of stress-induced resistivity change of a material.
The piezoresistance coefficients (π coefficients) that relate the piezoresistivity
and stress are defined by

π =
ΔR/R

T
, (2.38)

where R is the original resistance that is related to semiconductor sample
dimension by R = ρ l

wh , ΔR signifies the change of resistance, and T is the
applied mechanical stress. The ratio of ΔR to R can be expressed in terms
of relative change of the sample length Δl/l, width Δw/w, height Δh/h, and
resistivity Δρ/ρ as

ΔR

R
=
Δl

l
− Δw

w
− Δh

h
+
Δρ

ρ
, (2.39)

where resistivity ρ is inversely proportional to the conductivity. The first three
terms of the RHS of (2.39) depict the geometrical change of the sample under
stress, and the last term Δρ/ρ is the resistivity dependence on stress. For
most semiconductors, the stress-induced resistivity change is several orders of
magnitude larger than the geometrical change-induced resistance change, so
the resistivity change by stress is the determinant factor of the piezorestivity.

In general conditions, resistivity ρ = 1/σ is a second-rand tensor, and stress
T is also a second-rank tensor. The resistivity change, Δρij , is connected to
stress by a fourth-rank tensor πijkl, the piezoresistance tensor. Under arbitrary
stress in linear response regime,

Δρij

ρ
= −Δσij

σ
=

∑
k,l

πijklτkl, (2.40)

where summation is over x, y, and z.
Following the same discussion for compliance and stiffness tensor, and

writing Δρij to a vector form Δρi, where i = 1, 2, . . . , 6, as we did for stress
and strain, we can rewrite (2.40) as

Δρi

ρ
=

6∑
k=1

πikτk, (2.41)
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where πik is a 6×6 matrix. For cubic structures, it has only three independent
elements due to the cubic symmetry,

πik =

⎛
⎜⎜⎜⎜⎜⎜⎝

π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.42)

Among the three independent π-coefficients, π11 depicts the piezoresistive
effect along one principal crystal axis for stress along this principal crystal axis
(longitudinal piezoresistive effect), π12 depicts the piezoresistive effect along
one principal crystal axis for stress directed along one perpendicular crystal
axis (transverse piezoresistive effect), and π44 describes the piezoresistive effect
on an out-of-plane electric field by the change of the in-plane current induced
by in-plane shear stress.

The detailed discussion of semiconductor piezoresistivity will be covered
in Chap. 5.

2.6 PIEZOELECTRICITY

Different from the piezoresistive effect, the piezoelectric effect arises from
stress-induced charge polarization in a crystal that lacks a center of inver-
sion. Thus, the piezoelectric effect does not exist in Si, Ge, etc. elementary
semiconductors. The zinc-blende semiconductors are the simplest crystals with
this property. The polarization is related to stress through the piezoelectric
tensor ¯̄e,

P = [e]estrain, (2.43)

where P is the polarization vector and estrain is the strain written as a six-
component vector. Thus the piezoelectric tensor is a 3 × 6 matrix. For zinc-
blende semiconductors, the piezoelectric tensor only has one nonvanishing
tensor element, e14, and the polarization induced by strain is then given by

⎛
⎝
Px

Py

Pz

⎞
⎠ =

⎛
⎝

0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

exx

eyy

ezz

eyz

ezx

exy

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.44)

Because of the special form of the piezoelectric tensor, only the shear strain
generates the piezoelectricity. For zinc-blende semiconductors such as GaAs
grown on (001) direction, the biaxial strain does not generate piezoelectricity.



2.6 Piezoelectricity 21

The piezoelectric effect is largest along the 〈111〉 axes, since the anions and
cations are stacked in the (111) planes, thus strain creates relative displace-
ment between them.

The piezoelectric constants of GaAs were measured and theoretically cal-
culated (Adachi, 1994). The commonly adopted value is

e14 = −0.16 C/m2
. (2.45)

On the other hand, the applied electric field across the piezoelectric material
can generate strain. The piezoelectric strain tensor ¯̄d has the same form as
the piezoelectric tensor and also has only one nonvanishing component, d14,
for zinc-blende semiconductors. It is related to e14 by

d14 = S44e14. (2.46)

The commonly adopted value for d14 for GaAs is −2.7 × 10−12 m/V.
The sign of e14 or d14 is negative for III–V semiconductors. If the crystal

is expanded along the 〈111〉 direction, the A-faces (cation faces) becomes
negatively charged. This is different from the II–V semiconductors, where e14
is positive.

For the other semiconductors lacking inversion symmetry, the piezoelec-
tric tensor may have more than one nonvanishing component. In wurtzite
semiconductors such as GaN, there are three nonvanishing components, e13,
e33, and e15. Piezoelectric effect may play an important role in semiconductor
transport. In an AlGaN/GaN heterostructure, the spontaneous polarization
and the piezoelectric effect can induce large density of electrons even when
there is no doping (Bernardini and Fiorentini, 1997; Jogai, 1998; Sacconi et al,
2001). In GaAs/InGaAs superlattices grown in the 〈111〉 direction, piezoelec-
ticity induced band bending can greatly change the potential profile, and thus
alter the charge distribution and transport properties (Smith and Mailhiot,
1988; Kim, 2001).


