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Preface

With increased awareness of the adverse impact on the environment resulting from
carbon emissions into the atmosphere, there is a growing demand for improving the
efficiency of power electronic systems. Power semiconductor devices are recog-
nized as a key component of all power electronic systems. It is estimated that at
least 50 percent of the electricity used in the world is controlled by power devices.
With the wide spread use of electronics in the consumer, industrial, medical, and
transportation sectors, power devices have a major impact on the economy because
they determine the cost and efficiency of systems. After the initial replacement of
vacuum tubes by solid state devices in the 1950s, semiconductor power devices
have taken a dominant role with silicon serving as the base material. These devel-
opments have been referred to as the Second Electronic Revolution.

In the 1970s, the power MOSFET product was first introduced by International
Rectifier Corporation. Although initially hailed as a replacement for all bipolar
power devices due to its high input impedance and fast switching speed, the silicon
power MOSFET has successfully cornered the market for low voltage (<100 V)
and high switching speed (>100 kHz) applications but failed to make serious
inroads in the high voltage arena. This is because the on-state resistance of silicon
power MOSFETs increases very rapidly with increase in the breakdown voltage.
The resulting high conduction loss, even when using larger more expensive die,
degrades the overall system efficiency.

The large on-state voltage drop for high voltage silicon power MOSFETSs and the
large drive current needed for silicon power bipolar transistors encouraged the
development of the insulated gate bipolar transistor (IGBT) [1]. First commercia-
lized in the early 1980s, the IGBT has become the dominant device used in all
medium and high power electronic systems in the consumer, industrial, transporta-
tion, and military systems, and even found applications in the medical sector. The
US Department of Energy has estimated that the implementation of IGBT-based
variable speed drives for controlling motors is producing an energy savings of over
2 quadrillion btus per year, which is equivalent to 70 Giga-Watts of power. This
energy savings eliminates the need for generating electricity from 70 coal-fired
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power-plants resulting in reducing carbon dioxide emissions by over one-Trillion
pounds each year.

With on-going investments in renewable energy sources such as wind and solar
power that utilize power semiconductor device in inverters, it is anticipated that
there will be an increasing need for technologists trained in the discipline of
designing and manufacturing power semiconductor devices. My recently published
textbook [2] provides a comprehensive analysis of the basic power rectifier and
transistor structures. This textbook has been complemented with a monograph on
“Advanced Power Rectifier Concepts” to familiarize students and engineering
professionals with structures that exhibit improved performance attributes.

This monograph introduces the reader to advanced power MOSFET concepts
that enable improvement of performance of these transistor structures. For the
convenience of readers, analysis of the basic transistor structures, with the same
voltage ratings as the novel device structures, have been included in the monograph
to enable comparison of the performance. As in the case of the textbook, analytical
expressions that describe the behavior of the advanced power MOSFET structures
have been rigorously derived using the fundamental semiconductor Poisson’s,
continuity, and conduction equations in this monograph. The electrical character-
istics of all the power MOSFETs discussed in this book can be computed using
these analytical solutions as shown by typical examples provided in each section. In
order to corroborate the validity of these analytical formulations, I have included
the results of two-dimensional numerical simulations in each section of the book.
The simulation results are also used to further elucidate the physics and point out
two-dimensional effects whenever relevant. Due to increasing interest in the utili-
zation of wide band-gap semiconductors for power devices, the book includes the
analysis of silicon carbide structures.

In the first chapter, a broad introduction to potential applications for power
devices is provided. The electrical characteristics for ideal power MOSFETs are
then defined and compared with those for typical devices. The second and third
chapters provide analyses of the planar DMOSFET structure and the trench-gate
UMOSFET structure with 30-V blocking capability, which can be used as a bench-
mark for understanding the improvements achieved using the advanced device
concepts. The analysis includes the on-resistance, the input capacitance, the gate
charge, and the output characteristics.

The next four chapters are devoted to various advanced power MOSFET struc-
tures that allow improvement in the performance of devices with 30-V blocking
capability. The fourth chapter discusses on the “Shielded Channel Planar Power
MOSFET” structure, which allows a significant reduction in the gate charge while
achieving a specific on-resistance close to that of the UMOSFET structure. The
fifth chapter discusses the power CC-MOSFET structure, which utilizes the two-
dimensional charge coupling effect to reduce the specific on-resistance by an order
of magnitude. This structure is favorable for use as a synchronous rectifier in the
sync-buck circuit topology used in voltage regulator modules for providing power
to microprocessors in computers.
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The next two chapters are devoted to high-voltage silicon device structures that
utilize the charge-coupling concept to reduce the resistance of the drift region. In
chapter six, the charge-coupling phenomenon is accomplished by using a graded
doping profile in conjunction with an electrode embedded in an oxide coated trench
to create the power GD-MOSFET structure. In chapter seven, the charge-coupling
phenomenon is accomplished with adjacent p-type and n-type layers in the drift
region to create the power SJ-MOSFET structure.

Chapter eight provides a detailed discussion of the body-diode within the various
silicon power MOSFET structures. The body-diode can be used in place of the fly-
back rectifier utilized in the H-bride circuit commonly used for motor control
applications. It is demonstrated in this chapter that the judicious utilization of a
Schottky contact within the power MOSFET cell structure can greatly improve the
reverse recovery behavior of the body-diode.

Improvement in the performance of high voltage power MOSFET structures can
also be achieved by replacing silicon with silicon carbide as the base material [3].
The much larger breakdown field strength for 4H-SiC allows increasing the doping
concentration in the drift region by a factor of 200-times while shrinking the
thickness of the drift region by one-order of magnitude. However, the silicon
power MOSFET structure must be modified to shield the gate oxide from the
much larger electric fields prevalent in silicon carbide to avoid rupture. In addition,
the base region must be shielded to avoid reach-through breakdown. The on-
resistance of these devices becomes limited by the channel resistance.

The final chapter provides a comparison of all the power MOSFET structures
discussed in this book. The devices are first compared for the 30-V rating suitable
for VRM applications and then with the 600-V rating suitable for motor control
applications. In addition, the performance of all the devices is compared over a
wide range of blocking voltages to provide a broader view.

I am hopeful that this monograph will be useful for researchers in academia and
to product designers in the industry. It can also be used for the teaching of courses
on solid state devices as a supplement to my textbook [2].

December, 2009 B. Jayant Baliga
Raleigh, NC
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Chapter 1
Introduction

Power devices are required for applications that operate over a broad spectrum of
power levels as shown in Fig. 1.1 [1]. Based up on this figure, the applications can
be broken down into several categories. The first category is applications that
require low operating current (typically less than 1 A) levels. These applications,
such as display drives, usually require a large number of transistors that must be
capable of blocking up to 300 V. The small size of the low-current transistors
allows their integration on a single chip with control circuits to provide a cost-
effective solution.

The second category is applications where the operating voltage of the power
circuit is relatively small (<100 V). Typical examples are automotive electronics
and power supplies used in desktop computers and laptops. Silicon power MOSFET
structures offer the best performance for these applications because of their low on-
resistance and fast switching speed. This monograph describes a variety of power
MOSFET structures that enable enhancement in their operating characteristics.

The third category is applications with high operating voltages (above 200 V).
Typical examples are lamp ballasts, consumer appliances that utilize motors, and
electric vehicle drives. The on-resistance of conventional silicon power MOSFET
structures is too large to serve these applications. Consequently, these applications
utilize silicon insulated gate bipolar transistors (IGBTs). The silicon IGBT com-
bines the physics of the MOSFET structure with the physics of the bipolar transistor
structure. Although the silicon IGBT has become ubiquitous for high voltage power
electronic applications, silicon power MOSFETSs that utilize two-dimensional
charge coupling can be competitive with silicon IGBTs as shown in this mono-
graph. In addition, power MOSFET structures built using silicon carbide as the base
material have been shown to exhibit very promising characteristics for applications
that require blocking voltages of up to 5,000 V [2]. Consequently, this monograph
includes the discussion of the power MOSFET structures that are specially config-
ured to obtain a high performance from silicon carbide.

B.J. Baliga, Advanced Power MOSFET Concepts, 1
DOI 10.1007/978-1-4419-5917-1_1, © Springer Science+Business Media, LLC 2010
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Fig. 1.1 Applications for power devices

1.1 Ideal Power Switching Waveforms

An ideal power device must be capable of controlling the flow of power to loads
with zero power dissipation. The loads encountered in systems may be inductive in
nature (such as motors and solenoids), resistive in nature (such as heaters and lamp
filaments), or capacitive in nature (such as transducers and LCD displays). Most
often, the power delivered to a load is controlled by turning-on a power switch on a
periodic basis to generate pulses of current that can be regulated by a control circuit.
The ideal waveforms for the power delivered through a power switch are shown in
Fig. 1.2. During each switching cycle, the switch remains on for a time up to toy
and maintains an off-state for the remainder of the period T. This produces pulses of
current that flow through the circuit as controlled by the turning-on of power
switches. For an ideal power switch, the voltage drop during the on-state is zero
resulting in no power dissipation. Similarly, during the off-state, the (leakage)
current in the ideal power switch is zero resulting in no power dissipation. In
addition, it is assumed that the ideal power switch makes the transition between
the on-state and off-state instantaneously resulting in no power loss as well.
Typical power MOSFET structures exhibit a finite voltage drop in the on-
state and leakage current flow in the off-state. In addition, the power MOSFET
structure exhibits power losses during the turn-on and turn-off transients. These
power losses are related to their large terminal capacitances which must be charged
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Fig. 1.2 Ideal switching waveforms for power delivery

and discharged during each operating cycle. The novel power MOSFET structures
that are discussed in this monograph were created to reduce the on-resistance and
capacitance.

1.2 Ideal and Typical Power MOSFET Characteristics

The i—v characteristics of an ideal power switch are illustrated in Fig. 1.3. The ideal
transistor conducts current in the on-state with zero voltage drop and blocks voltage
in the off-state with zero leakage current. In addition, the ideal device can operate
with a high current and voltage in the active region with the saturated forward
current in this mode controlled by the applied gate bias. The spacing between the
characteristics in the active region is uniform for an ideal transistor indicating a gain
(transconductance) that is independent of the forward current and voltage.

The i—v characteristics of a typical power MOSFET structure are illustrated in
Fig. 1.4. This device exhibits a finite resistance when carrying current in the on-
state as well as a finite leakage current while operating in the off-state (not shown in
the figure because its value is much lower than the on-state current levels). The
breakdown voltage of a typical transistor is also finite as indicated in the figure with
‘BV’. The typical transistor can operate with a high current and voltage in the active
region. This current is determined by a gate voltage for a MOSFET as indicated in
the figure. It is desirable to have gate voltage controlled characteristics because the
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Fig. 1.4 Characteristics of a typical power MOSFET structure

drive circuit can be integrated to reduce its cost. The spacing between the char-
acteristics in the active region is non-uniform for a typical MOSFET with a square-
law behavior for devices operating with channel pinch-off in the current saturation
mode. Recently, devices operating under a new super-linear mode have been pro-
posed and demonstrated for wireless base-station applications [3]. These devices



1.3 Typical Power MOSFET Structures 5

exhibit an equal spacing between the saturated drain current characteristics as the
gate voltage is increased. This is an ideal behavior when the transistor is used for the
amplification of audio, video or cellular signals because it eliminates signal distor-
tion that occurs with the characteristics shown in Fig. 1.4.

1.3 Typical Power MOSFET Structures

The most commonly used unipolar power transistor is the silicon power Metal-Oxide-
Semiconductor Field-Effect-Transistor or MOSFET. Although other structures, such
as JFETs or SITs have been explored [4], they have not been popular for power
electronic applications because of their normally-on behavior. The commercially
available silicon power MOSFETs are based upon the structures shown in Fig. 1.5.
The D-MOSFET was first commercially introduced in the 1970s and contains a
‘planar-gate’ structure. The P-base region and the N* source regions are self-aligned
to the edge of the polysilicon gate electrode by using ion-implantation of boron and
phosphorus followed by their respective drive-in thermal cycles. The n-type channel
is defined by the difference in the lateral extension of the junctions under the gate
electrode. The device supports positive voltage applied to the drain across the
P-base/N-drift region junction. The voltage blocking capability is determined by
the doping and thickness of the N-drift region. Although low voltage silicon power
MOSFETs have small on-resistances, the drift region resistance increases rapidly with
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/A0 B 7/ /7777000
DRAIN DRAIN

Fig. 1.5 Typical silicon power MOSFET structures
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increasing blocking voltage limiting the performance of silicon power D-MOSFETSs
to below 200 V.

The silicon U-MOSFET structure became commercially available in the 1990s.
It has a gate structure embedded within a trench etched into the silicon surface. The
N-type channel is formed on the side-wall of the trench at the surface of the P-base
region. The channel length is determined by the difference in vertical extension of
the P-base and N* source regions as controlled by the ion-implant energies and
drive times for the dopants. The silicon U-MOSFET structure was developed to
reduce the on-state resistance by elimination of the JFET component within the
D-MOSEFET structure.

1.4 Ideal Drift Region for Unipolar Power Devices

The power MOSFET structures discussed above contain a drift region which is
designed to support the blocking voltage. The properties (doping concentration and
thickness) of the ideal drift region can be analyzed by assuming an abrupt junction
profile with high doping concentration on one side and a low uniform doping
concentration on the other side, while neglecting any junction curvature effects
by assuming a parallel-plane configuration. The resistance of the ideal drift region
can then be related to the basic properties of the semiconductor material [5].

A Schottky rectifier structure is illustrated in Fig. 1.6. The solution of Poisson’s
equation in the voltage blocking mode leads to a triangular electric field distribu-
tion, as shown in Fig. 1.6, within a uniformly doped drift region with the slope of
the field profile being determined by the doping concentration. The same behavior
for the electric field profile occurs in the vertical power MOSFET structures as well.
The maximum voltage that can be supported by the drift region is determined by the
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Fig. 1.6 The ideal drift region and its electric field distribution
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maximum electric field (E,,) reaching the critical electric field (E.) for breakdown
for the semiconductor material. The critical electric field for breakdown and the
doping concentration then determine the maximum depletion width (Wp).

The specific resistance (resistance per unit area) of the ideal drift region is

given by:
Wp
Ropsp = 1.1
on.sp (C],unND> ( )

where Np, is the doping concentration of the drift region. Since this resistance was
initially considered to be the lowest value achievable with silicon devices, it has
historically been referred to as the ideal specific on-resistance of the drift region.
More recent introduction of the charge-coupling concept, described later in this
chapter, has enabled reducing the drift region resistance of silicon devices to
below the values predicted by this equation. The depletion width under breakdown
conditions is given by:

2BV

= 1.2
Wb E; (1.2)

where BV is the desired breakdown voltage. The doping concentration in the drift
region required to obtain this breakdown voltage is given by:

SSE%
Np = 1.3
D= 345y (1.3)

Combining these relationships, the specific resistance of the ideal drift region is
obtained:

4BV?

— (1.4)
espt,ES

Ron—ideat =

The denominator of (1.4) ( €s ,unE?:) is commonly referred to as Baliga’s Figure
of Merit for Power Devices. It is an indicator of the impact of the semiconductor
material properties on the resistance of the drift region. The dependence of the drift
region resistance on the mobility (assumed to be for electrons here because in
general they have higher mobility values than for holes) of the carriers favors
semiconductors such as Gallium Arsenide. However, the much stronger (cubic)
dependence of the on-resistance on the critical electric field for breakdown favors
wide band gap semiconductors such as silicon carbide [2]. The critical electric field
for breakdown is determined by the impact ionization coefficients for holes and
electrons in semiconductors.

As an example, the change in the specific on-resistance for the drift region with
critical electric field and mobility is shown in Fig. 1.7 for the case of a breakdown



8 1 Introduction

10'

| Breakdown Voltage = 1000 V |

/ Mobility = 1000 cm?2/Vs |

Mobility = 2000 cm?/Vs |

100

1074

10721

10734

104 | Mobility = 4000 cm?2/Vs

Specific On-Resistance (Ohm-cm?)

| Mobility = 8000 cm?2/Vs

107 .
10° 10° 107
Critical Electric Field for Breakdown (V/cm)

Fig. 1.7 Specific on-resistance of the ideal drift region

voltage of 1,000 V. The location of the properties for silicon, gallium arsenide, and
silicon carbide are shown in the figure by the points. The improvement in drift
region resistance for GaAs in comparison with silicon is largely due to its much
greater mobility for electrons. The improvement in drift region resistance for SiC in
comparison with silicon is largely due to its much larger critical electric field for
breakdown. Based upon these considerations, excellent high voltage Schottky
rectifiers were developed from GaAs in the 1980s [6] and from silicon carbide in
the 1990s [7]. Interest in the development of power devices from wide-band-gap
semiconductors, including silicon carbide and gallium nitride, continues to grow.

1.5 Charge-Coupled Structures: Ideal Specific On-Resistance

The depletion region extends in one-dimension from a junction or Schottky
contact during the blocking mode for the conventional structure discussed in the
previous section. In the charge coupled structure, the voltage blocking capability
is enhanced by the extension of depletion layers in two-dimensions. This effect is
created by the formation of a horizontal Schottky contact on the top surface as
illustrated in Fig. 1.18 which promotes the extension of a depletion region along
the vertical or y-direction. Concurrently, the presence of the vertical P-N junction
created by the alternate N and P-type regions promotes the extension of a
depletion region along the horizontal or x-direction. These depletion regions
conspire to produce a two-dimensional charge coupling in the N-drift region
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which alters the electric field profile. A similar phenomenon can be induced in the
case of power MOSFET structures under the P-base region as discussed later in
this monograph.

The optimization of the charge coupled structure requires proper choice of the
doping concentration and thickness of the N and P-type regions. It has been found
that the highest breakdown voltage occurs when the charge in these regions is
given by:

Qoplimum = 2qND\NN = &sEc (L.5)

where q is the charge of an electron (1.6 x 107" C), Np, is the doping concentra-
tion of the N-Type drift region, Wy is the width of the N-type drift region as shown
in Fig. 1.8, &g is the dielectric constant of the semiconductor, and Ec is the critical
electric field for breakdown in the semiconductor. For silicon, the optimum charge is
found to be 3.11 x 107" C/cm?” based upon a critical electric field of 3 x 10° V/cm.
The optimum charge is often represented as a dopant density per unit area, in which
case it takes a value of about 2 x 10'*/cm? for silicon. A slightly lower value for
the doping concentration in the drift region may be warranted as discussed later in
this section of the chapter.
The specific on-resistance for the drift region in the charge coupled structures is
given by:
Rpp= ppt (l) (1.6)
W

where pp, is the resistivity of the N-type drift region, t is the trench depth and p is the
cell pitch. Here, the uniform electric field is assumed to be produced only along the
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Fig. 1.8 Basic charge coupled Schottky diode structure
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trench where the charge coupling occurs and the resistance of the remaining portion
of the N-drift region is neglected. Using the relationship between the resistivity and
the doping concentration, this equation can be written as:

tp
R (1.7
PP q uyNpWy
Combining this expression with (1.5):
2tp
Rpgp= ———"— (1.8)
°P :u'NQoptimum

If the electric field along the trench, at the on-set of breakdown in the charge
coupled device structure, is assumed to be uniform at a value equal to the critical
electric field of the semiconductor:

BV
t =— 1.9
Ee (1.9)
Using this expression, as well as the second part of (1.5), in (1.8) yields:
2BV
Dap = iy (1.10)
finesEC

This is a fundamental expression for the ideal specific on-resistance of vertical
charge coupled devices. By comparison of this expression with that for the one
dimensional case (see 1.4), it can be observed that the specific on-resistance for the
charge coupled devices increases linearly with the breakdown voltage unlike the
more rapid quadratic rate for the conventional drift region. In addition, it is worth
pointing out that the specific on-resistance for the drift region in the charge coupled
structure can be reduced by decreasing the pitch. This occurs because the doping
concentration in the drift region increases when the pitch is reduced in order to
maintain the same optimum charge. The larger doping concentration reduces the
resistivity and hence the specific on-resistance.

However, the analysis of the specific on-resistance for the drift region in charge
coupled device structures must be tempered by several considerations. Firstly, it
must be recognized that the mobility will become smaller when the doping concen-
tration becomes larger. Secondly, the critical electric field for breakdown becomes
smaller for the charge coupled structures because the high electric field in the
drift region extends over a larger distance producing enhanced impact ionization.
If a critical electric field for breakdown in the drift region for charge coupled
structures is reduced to 2 x 10° V/ecm, an optimum charge of 2.07 x 107’ C/
cm?, with a corresponding dopant density of about 1.3 x 10'%/cm?, is more appro-
priate for silicon.

In designing the drift region for charge coupled structures, it is important to
recognize that, unlike in the conventional one-dimensional case, the doping con-
centration of the drift region is dictated by the cell pitch and not the breakdown
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Fig. 1.9 Drift region doping concentration for the charge coupled structure

voltage. The breakdown voltage in the charge coupled structure is determined
solely by the depth of the trench used to provide the charge coupling effect and is
independent of the doping concentration of the N-drift region. In the case of silicon
charge coupled devices, the doping concentration for the N-type drift region is
provided in Fig. 1.9 for the case of equal widths for the N-type and P-type charge
coupling regions. For a typical cell pitch of 1 um, the doping concentration in
the N-type drift region is about 2.5 x 10'®cm® when a critical electric field of
2 x 10° V/cm is assumed.

It is interesting to compare the ideal specific on-resistance for the drift region in
the silicon charge coupled structures to that for the one-dimensional parallel-plane
case. This comparison is done in Fig. 1.10 using three values for the cell pitch in
the case of the charge coupled structures. The doping concentration in the N-drift
region increases when the cell pitch is reduced from 5 to 0.2 um, as already shown
in Fig. 1.9, leading to a decrease in the specific on-resistance. The resulting
reduction of the mobility with increasing doping concentration was included during
the calculation of the specific on-resistance in Fig. 1.10. There is a cross-over in the
specific on-resistance for the two types of structures. For the cell pitch of 1 um, the
cross-over occurs at a breakdown voltage of about 50 V. The cross-over moves to a
breakdown voltage of about 130 V when the cell pitch is increased to 5 pm, and
to about 20 V if a smaller cell pitch of 0.2 pm is used. Consequently, the charge
coupled structure is more attractive for reducing the specific on-resistance when the
cell pitch is smaller. This entails a more complex process technology with higher
attendant costs.

As a particular example, consider the case of silicon devices designed to support
200 V. In the case of the conventional structure with a one-dimensional junction,
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Fig. 1.10 Ideal specific on-resistance for the charge coupled structure. (solid lines: charge coupled
structures; dashed line: one dimensional case)

the specific on-resistance of the drift region is found to be 3.4 mQ cm? if a critical
electric field for breakdown of 3 x 10° V/cm is used. In contrast, the specific on-
resistance for the drift region of the charge coupled structure with a cell pitch of
1 pm is found to be only 0.43 mQ cm? if a critical electric field for breakdown of
2 x 10° V/cm is used. In this calculation, a bulk mobility of 1,120 cmzN S was
used corresponding to a doping concentration of 2.6 x 10'°/cm® in the N-type
portion of the drift region. In this example, the drift region for the charge coupled
structure would have a thickness of 10 pm when compared with 12.5 pm needed in
the conventional structure.

1.6 Revised Breakdown Models for Silicon

In the textbook [1], the breakdown voltage for silicon devices was analyzed by
using the Fulop’s power law relating the impact ionization coefficient to the electric
field. The Fulop’s power law [8] for impact ionization in silicon is given by:

ap(Si) =1.80 x107*°E’ (1.11)

The values for the impact ionization coefficient obtained by using this equation
are compared with the impact ionization coefficients measured for electrons and
holes in silicon [9] as represented by Chynoweth’s equation in Fig. 1.11. It can be
observed that Fulop’s power law falls between that for electrons and holes and
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Fig. 1.11 Impact ionization coefficients for silicon

consequently underestimates the values for the impact ionization coefficients for
electrons. This results in the prediction of larger breakdown voltages than in
actual devices when performing the analytical calculations as pointed out in the
textbook.

A Dbetter prediction of breakdown in silicon devices using analytical models can
be achieved by improving the match between the power law and the measured data
for impact ionization coefficients for electrons and holes in silicon. The proposed
Baliga’s power law for impact ionization in silicon is given by:

ag(Si) =3.507 x 10 ¥E’ (1.12)

From Fig. 1.11, it can be observed that this equation provides a larger value for
the impact ionization coefficients which will result in reducing the breakdown
voltage.

In the case of one-dimensional parallel-plane junctions discussed in Chap. 3 of
the textbook, the electric field takes a triangular distribution in the lightly doped
side of the P-N junction given by:

N
E(x) = —%(WD—X) (1.13)

where Wp, is the depletion layer width, and Np, is the doping concentration on the
lightly doped side of the junction. The breakdown voltage in this case is determined
by the ionization integral becoming equal to unity:
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Wb
/ adx =1 (1.14)
0

Substituting (1.12) into the above equation with the distribution given by (1.13), an
expression for the depletion layer width at breakdown can be obtained:

Wpps(Si) =2.404 x10'°N"/* (1.15)

In contrast, the expression for the depletion layer width at breakdown obtained by
using Fulop’s power law is given by:

Wpp.r(Si) =2.67 x10'°N”/® (1.16)

The depletion layer widths at breakdown obtained for silicon devices by using the
above equations can be compared in Fig. 1.12. The depletion layer widths com-
puted using Baliga’s power law are 11% smaller than those predicted by Fulop’s
power law.

The maximum electric field located at the P-N junction for the one-dimensional
parallel-plane case is given by:

N
Ev= 2w, (1.17)
&s
10° =
g S\
= 102 x Fulop’s
=] = Power Law
= for Silicon
g N
E NN
I - )
aQ Baliga’s 1
p 10! Power Law
E for Silicon
=
= ™
100 13 14 15 16 17
10 10 10 10 10

Doping Concentration (cm™)

Fig. 1.12 Depletion layer width at breakdown in silicon for the one-dimensional parallel-plane
junction



