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Ecole Polytechnique Fédérale

de Lausanne
1015 Lausanne, Switzerland
milos.stanisavljevic@epfl.ch

Yusuf Leblebici
Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland
yusuf.leblebici@epfl.ch

Alexandre Schmid
Ecole Polytechnique Fédérale

de Lausanne
1015 Lausanne, Switzerland
alexandre.schmid@epfl.ch

ISBN 978-1-4419-6216-4 e-ISBN 978-1-4419-6217-1
DOI 10.1007/978-1-4419-6217-1
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010936070

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)
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Preface

The invention of integrated circuits and the continuing progress in their manufactur-
ing processes are the fundamental engines for the implementation of semiconductor
technologies that support today’s information society. The vast majority of micro-
electronic applications presented nowadays exploit the well-established CMOS pro-
cess and fabrication technology which exhibit high reliability rates. During the past
few decades, this fact has enabled the design of highly complex systems, consisting
of several millions of components, where each one of these components could be
deemed as fundamentally reliable, without the need for extensive redundancy.

The steady downscaling of CMOS technology has led to the development of
devices with nanometer dimensions. Future integrated circuits are expected to be
made of emerging nanodevices and their associated interconnects. The expected
higher probabilities of failures, as well as the higher sensitivities to noise and varia-
tions, could make future integrated circuits prohibitively unreliable. The systems to
be fabricated will be made of unreliable components, and achieving 100% correct-
ness of operation not only will be extremely costly, but may turn out to become
impossible. The global picture depicts reliability emerging as one of the major
threats to the design of future integrated computing systems. Building reliable sys-
tems out of unreliable components requires increased cooperative involvement of the
logic designers and architects, where high-level techniques rely upon lower-level
support based on novel modeling including component and system reliability as
design parameters.

In the first part, this book presents a state of the art of the circuits and systems,
architectures, and methodologies focusing on the enhancement of the reliability of
digital integrated circuits. This research field spans over 60 years, with a remark-
able revival in interest in recent years, which is evidenced by a growing amount
of literature in the form of books, or scholarly articles, and comes as a reaction to
an expected difficult transition from the CMOS technology that is widely perceived
as very reliable into nanotechnology which is proven very unreliable in contrast.
Circuit- and system-level solutions are proposed to overcome high defect density.
Their performance is discussed in the context of a trade-off solution, where relia-
bility is suggested as a design parameter to be considered in addition to the widely
used triplet consisting of delay, area, and power.
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Reliability, fault models, and fault tolerance are presented in Chapter 2, establish-
ing the major concepts further discussed in the book. Chapter 3 depicts an overview
of nanotechnologies that are considered in the fabrication of future integrated cir-
cuits. This work is focused at device level and addresses technologies that are still
in relative infancy. Nanoelectronic devices prove to be very sensitive to their envi-
ronment, during fabrication and operation, and eventually unreliable, thereby moti-
vating the stringent need to provide solutions to fabricate reliable systems. Fault-
tolerant circuits, architectures, and systems are explored in Chapter 4, presenting
solutions provided in the early ages of CMOS, as well as recent techniques. Relia-
bility evaluation, including historical developments, and also recent methodologies
and their supporting software tools are presented in Chapter 5.

In the second part of the book, original circuit- and system-level solutions are
presented and analyzed. In Chapter 6, an architecture suitable for circuit-level and
gate-level redundant module implementation and exhibiting significant immunity
to permanent and random failures as well as unwanted fluctuation of the fabrication
parameters is presented, which is based on a four-layer feed-forward topology, using
averaging and thresholding as the core voter mechanisms. The architecture with both
fixed and adaptable threshold is compared to triple and R-fold modular redundancy
techniques, and its superiority is demonstrated based on numerical simulations as
well as analytical developments. Its applicability in single-electron-based nanoelec-
tronics is analyzed and demonstrated.

A novel general method enabling the introduction of fault tolerance and evalua-
tion of the circuit and architecture reliability is proposed in Chapter 7. The method
is based on the modeling of probability density functions (PDFs) of unreliable com-
ponents and their subsequent evaluation for a given reliability architecture. PDF
modeling, presented for the first time in the context of realistic technology and
arbitrary circuit size, is based on a novel reliability evaluation algorithm and offers
scalability, speed, and accuracy. Fault modeling has also been developed to support
PDF modeling.

In the third part of the book, a new methodology that introduces reliability in
existing design flows is proposed. The methodology is presented in Chapter 8, which
consists of partitioning the full system to design into reliability-optimal partitions
and applying reliability evaluation and optimization at the local and system level.
System-level reliability improvement of different fault-tolerant techniques is studied
in depth. Optimal partition size analysis and redundancy optimization have been
performed for the first time in the context of a large-scale system, showing that a
target reliability can be achieved with low to moderate redundancy factors (R < 50),
even for high defect densities (device failure rate up to 10−3).

The optimal window of application of each fault-tolerant technique with respect
to defect density is presented as a way to find the optimum design trade-off between
the reliability and power area. R-fold modular redundancy with distributed voting
and averaging voter is selected as the most promising candidate for the implemen-
tation in trillion-transistor logic systems.

The recent regain of interest in reliability that the community of micro and nano-
electronics researchers and developers shows is fully justified. The advent of novel
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methodologies enabling the development of reliable systems made of unreliable
devices is a key issue to sustain the consumer and industry demands related to
integrated systems with improved performance, lower cost, and lower power dissi-
pation. This ultimate goal must be tackled at several levels of the VLSI abstraction,
simultaneously, where the improvements at the lower levels provide benefits at the
higher levels. Finally, also the upper levels including the compiler and software
should be included in a common effort to reach this striving goal.

Lausanne Miloš Stanisavljević
June 2010 Alexandre Schmid

Yusuf Leblebici
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