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Preface

As a young professor in 1997 I taught my graduate course in Stochastic Image Pro-
cessing for the first time. Looking back on my rough notes from that time, the course
must have been a near impenetrable disaster for the graduate students enrolled, with
a long list of errors, confusions, and bad notation.

With every repetition the course improved, with significant changes to notation, con-
tent, and flow. However, at the same time that a cohesive, large-scale form of the
course took shape, the absence of any textbook covering this material became in-
creasingly apparent. There are countless texts on the subjects of image processing,
Kalman filtering, and signal processing, however precious little for random fields or
spatial statistics. The few texts that do cover Gibbs models or Markov random fields
tend to be highly mathematical research monographs, not well suited as a textbook
for a graduate course.

More than just a graduate course textbook, this text was developed with the goal of
being a useful reference for graduate students working in the areas of image pro-
cessing, spatial statistics, and random fields. In particular, there are many concepts
which are known and documented in the research literature, which are useful for stu-
dents to understand, but which do not appear in many textbooks. This perception is
driven by my own experience as a PhD student, which would have been considerably
simplified if I had had a text accessible to me addressing some of the following gaps:

e FFT-based estimation (Section 8.3)
e A nice, simple, clear description of multigrid (Section 9.2.5)
e The inference of dynamic models from cross-statistics (Chapter 10)

e A clear distinction and relationship between squared and unsquared kernels
(Chapter 5)
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e A graphical summary relating Gibbs and Markov models (Figure 6.11)

To facilitate the use of this textbook and the methods described within it, I am making
available online (see page XV) much of the code which I developed for this text. This
code, some colour figures, and (hopefully few) errata can be found from this book’s
home page:

http://ocho.uwaterloo.ca/book

This text has benefited from the work, support, and ideas of a great many people.
I owe a debt of gratitude to the countless researchers upon whose work this book
is built, and who are listed in the bibliography. Please accept my apologies for any
omissions.

The contents of this book are closely aligned with my research interests over the
past ten years. Consequently the work of a number of my former graduate students
appears in some form in this book, and I would like to recognize the contributions of
Simon Alexander, Wesley Campaigne, Gabriel Carballo, Michale Jamieson, Fu Jin,
Fakhry Khellah, Ying Liu, and Azadeh Mohebi.

I would like to thank my Springer editor, John Kimmel, who was an enthusiastic
supporter of this text, and highly tolerant of my slow pace in writing. Thanks also
to copy editor Valerie Greco for her careful examination of grammar and punctua-
tion (and where any remaining eirors are mine, not hers). I would like to thank the
anonymous reviewers, who read the text thoroughly and who provided exceptionally
helpful constructive criticism. I would also like to thank the non-anonymous review-
ers, friends and students who gave the text another look: Werner Fieguth, Betty Pries,
Akshaya Mishra, Alexander Wong, Li Liu, and Gerald Mwangi.

I would like to thank Christoph Garbe and Michael Winckler, the two people who
coordinated my stay at the University of Heidelberg, where this text was completed.
My thanks to the Deutscher Akademischer Austausch Dienst, the Heidelberg Gradu-
ate School, and to the Heidelberg Collaboratory for Image Processing for supporting
my visit.

Many thanks and appreciation to Betty for encouraging this project, and to the kids
in Appendix C for just being who they are.

Waterloo, Ontario Paul Fieguth
July, 2010


http://ocho.uwaterloo.ca/book
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Nomenclature

The following tables of nomenclature are designed to assist the reader in understand-
ing the mathematical language used throughout this text. In the author’s opinion this
is of considerable value particularly for readers who seek to use the book as a ref-
erence and need to be able to understand individual equations or sections without
reading an entire chapter for context. Four sets of definitions follow:

1. Basic syntax
2. Mathematical functions
3. Definitions of commonly-used variables

4. Notation for spatial models

Page references are given to provide a few examples of use and some context to the
notation, but are in no way intended to be exhaustive.

We limit ourselves here to just defining the notation. For an explanation of algebraic
concepts (matrix transpose, eigendecomposition, inverse, etc.) the reader is referred
to Appendix A. For an explanation of related statistical concepts (expectation, co-
variance, etc.), see Appendix B. A brief overview of image processing can be found
in Appendix C. Most of the spatial models are explained in Chapters 5 and 6.
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Syntax

Rn
kan
[A] [A]nxl
(4],
[a] ,

h

j=}
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e 8 e &
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B T
8o
= 2O
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ol
Co

]l 1Al
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[zl p =" Pz
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x~P
z~ (u, P)
z ~N(u, P)

Nomenclature

Definition Page References

scalar, random variable
column vector, random vector
ith element of vector a

ith vector in a sequence

1, jth element of matrix A

matrix

matrix transpose

matrix Hermitian (complex transpose)
matrix inverse

matrix determinant 63
kernel corresponding to stationary matrix A 142
kernel corresponding to A™*, but A7 # (A) 7!

kernel corresponding to AT, but AT #£ (A)T 146
real vector of length n 19
real k X n array

reordering of matrix to column vector 133

reordering of column vector to n X m matrix
reordering to m1 X n2 X ... multidimensional array

estimate of a, a, A
estimation error in a
transformation of a, a, A
given sample data of a

estimation error covariance 68
probability of some event ) 119
probability density of x 42
conditional probability density 45
aset

number of elements in set S 15

vector norm for x, matrix norm for A
vector squared-norm for x with respect to covariance P 31

convolution kernel origin 145

is distributed as . ..

x has covariance P; the mean is zero or not of interest 28
x has mean p and covariance P, distribution unknown 37
x is Gaussian with mean p and covariance P 28

Tab. Notation.1. Basic vector, matrix, and statistical syntax

16
13
16
15
299

13
31

20
386
143

152

253
143
141
133

22
64
41
201
72

181
65
179

15
121

22
63

152

49
141
69
63

411
414
414
294
385

383
385
392
386
418
151
146
166

384
383
166
146
265

58
108
241
412
294

411
411
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415
203

59
73

268

355
241
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Function

sign(a)
a mod b

min(-)
mingex(+)
arg, min(-)

Ra(A)
Nu(A)
rank(A)
dim(-)

tr(A)
det(A)
k(A)
diag(A)
Diag(z)

I
FFT,
FFT,;"
WT
WT ™!

©
@

<>><

Definition
-1 a<0
the sign of scalar a, sign(a) = 0 a=0
1 a>0
division modulus (remainder)

the minimum value in a set
the minimum value of a function over range X
the value of = which minimizes the function

the range space of A

the null space of A

the rank of A

the dimension of a space

the trace, the sum of the diagonal elements of A
the determinant of A

matrix condition number of A

a vector containing the diagonal elements of A
a diagonal matrix with x along the diagonal

the identity matrix

the d-dimensional fast Fourier transform

the d-dimensional inverse fast Fourier transform
the wavelet transform

the inverse wavelet transform

element-by-element matrix multiplication
element-by-element matrix division

convolution
circular convolution

variance
covariance
expectation

expectation over variable a, if otherwise ambiguous

is equivalent to, identical to
is defined as
inequalities, in positive-definite sense for matrices

Nomenclature

XIX

Page References

155

198

30

19
19

247
24
26
54

165
37

267

273

146

146

142

4
4

81

144

262

385

63

53
53
53

387
386
104
140
264

277

361
265
347
275

165
254

146
427

164
67
64

232

31
15
100

Tab. Notation.2. Mathematical functions and operations (see Appendix A)

400

392

385
401
409

385
384
385
384

395
387
246
266
294

357

428
361
428
290

266
265

424
428

389

87
412
363

61
58
388



XX Nomenclature

Symbol Definition Page References
b linear system target 245 293 403
b estimator bias 65 66
c random field clique 193 368
d spatial dimensionality 262 267
e error 54 58 298
e, the 7th unit vector: all zeros with a one in the ith position 384
f  forward problem 13 15 30
g Markov random field model coefficient 186 202

1,7  general indices 17 37
k,n,q matrix and vector dimensions 19 140 148
m  measurement 13 40 58
p  probability density 42 65 411
r linear system residual 298 306 314
s,t  time 42 86
v measurement noise 13 40 58
v eigenvector 249 304 396
w  dynamic process noise 42 86 325
z,y spatial location or indices 35 150 221
z system state 13 40 58
A linear system, normal equations 245 293 403
A dynamic model predictor 86 143 325
B dynamic model stochastic weight 42 86 325
C  measurement model 13 40 58
E  expectation 42 64 412
F Fourier transform 257 263
F change of basis (forwards) 241 247 314
G Markov random field model 186 201
H  energy function 192 222 371
1 identity matrix 37 277 357
J  optimization criterion 198 249
K estimator gain 97 108 330
L constraints matrix 150 157 293
M  measurements field (multidimensional) 170 215 267
N image or patch size 134 214 329
P state covariance 40 143 160
(Q  squared system constraints 152 152
R measurement noise covariance 40 63 87
S change of basis (backwards) 246 247 314
T  annealing temperature 192 368
U,V  orthogonal matrices 245 250 400
W wavelet transform 277 348
Z random field (multidimensional) 133 141 327

Tab. Notation.3. Symbol definitions
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Symbol Definition Page References
a, 8,7 constants 41 98 164
154 Gibbs inverse temperature 192 228 355
) Dirac delta 87 197 200
o small offset or perturbation 26 160 184
€ small amount 21 305
K matrix condition number 26 104 246
0 model parameters 50 170
A regularization parameter 31 35 63
A eigenvalue 304 396 420
n mean 37 67 412
v estimator innovations 95 96 110
p correlation coefficient 390 413
P spectral radius 300 398
o standard deviation 69 102 412
o singular value 27 256 400
T time offset or period 44 111
13 correlation length 28 124
¢ threshold 198 300 432
r covariance square root 104 166 401
A, ¥ covariance 66 93 389
v state space or alphabet 119 122 181
N problem space (multidimensional lattice) 184 193 415
= region subset operator 167 342
B matrix banding structure 144 146 167
C clique set 193 194
N neighbourhood 184 189 226
N (i, P) Gaussian distribution with mean y, covariance P 28 63 417
O(-)  complexity order 143 326
R real 374
R™  real vector of length n 19 253 384
R*¥*™  real k x n array 143 383
Z Gibbs partition function 192 355
0, 1  scalar constant zero, one 24 59
0, 1  vector constants of all zeros, all ones 19 45 72
0, 1 matrix constants of all zeros, all ones 66 76

Tab. Notation.3. Symbol definitions (cont’d)



XXII  Nomenclature

Nonstationary ~ Stationary
Model Model Type

Model
(Dense)

A B
I
P

Q<

(Kernel)

A, B Square root model (dynamic)
r Square root model (static)
P Squared model (covariance)
% Square root inverse model (Gibbs field)
g Squared inverse model (Markov field)
L Square root deterministic model (constraints)
Q Squared deterministic model

C,R  Measurement model

Tab. Notation.4. Spatial model definitions

Page References

86 143
104 166
40 143

186

150 157
152

13 40

325
401
160

193
201

293
152

58



Introduction

Images are all around us! Inexpensive digital cameras, video cameras, computer web-
cams, satellite imagery, and images off the Internet give us access to spatial imagery
of all sorts. The vast majority of these images will be of scenes at human scales —
pictures of animals / houses / people / faces and so on — relatively complex images
which are not well described statistically or mathematically. Many algorithms have
been developed to process / denoise / compress / segment such images, described
in innumerable textbooks on image processing [36, 54, 143, 174,210], and briefly
reviewed in Appendix C.

Somewhat less common, but of great research interest, are images which do allow
some sort of mathematical characterization, and to which standard image-processing
algorithms may not apply. In most cases we do not necessarily have images here, per
se, but rather spatial datasets, with one or more measurements taken over a two- or
higher-dimensional space.

There are many important problems falling into this latter group of scientific im-
ages, and where this text seeks to make a contribution. Examples abound throughout
remote sensing (satellite data mapping, data assimilation, sea-ice / climate-change
studies, land use), medical imaging (denoising, organ segmentation, anomaly detec-
tion), computer vision (textures, image classification, segmentation), and other 2D /
3D problems (groundwater, biological imaging, porous media, etc.).

Although a great deal of research has been applied to scientific images, in most
cases the resulting methods are not well documented in common textbooks, such
that many experienced researchers will be unfamiliar with the use of the FFT method
(Section 8.3) or of posterior sampling (Chapter 11), for example.

The goal, then, of this text is to address methods for solving multidimensional in-
verse problems. In particular, the text seeks to avoid the pitfall of being entirely
mathematical / theoretical at one extreme, or primarily applied / algorithmic on the
other, by deliberately developing the basic theory (Part I), the mathematical mod-
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2 1 Introduction

elling (Part IT), and the algorithmic / numerical methods (Part III) of solving a given
problem.

Inverse Problems

So, to begin, why would we want to solve an inverse problem?

There are a great many spatial phenomena that a person might want to study ...

e The salinity of the ocean surface as a function of position;
e The temperature of the atmosphere as a function of position;
e The height of the grass growing in your back yard, as a function of location;

e The proportions of oil and water in an oil reservoir.

In each of these situations, you aren’t just handed a map of the spatial process you
wish to study, rather you have to infer such a map from given measurements. These
measurements might be a simple function of the spatial process (such as measuring
the height of the grass using a ruler) or might be complicated nonlinear functions
(such as microwave spectra for inferring temperature).

The process by which measurements are generated from the spatial process is nor-
mally relatively straightforward, and is referred to as a forward problem. More diffi-
cult, then, is the inverse problem, discussed in detail in Chapter 2, which represents
the mathematical inverting of the forward problem, allowing you to infer the process
of interest from the measurements. A simple illustration is shown in Figure 1.1.

Large Multidimensional Problems

So why is it that we wish to study large multidimensional problems?

The solution to linear inverse problems (see Chapter 3) is easily formulated analyt-
ically, and even a nonlinear inverse problem can be reformulated as an optimization
problem and solved. The challenge, then, is not the solving of inverse problems in
principle, but rather actually solving them in practice.

For example, the solution to a linear inverse problem involves a matrix inversion. As
the problem is made larger and larger, eventually the matrix becomes computation-
ally or numerically impossible to invert. However, this is not just an abstract limit
— even a modest two-dimensional problem at a resolution of 1000 x 1000 pixels
contains one million unknowns, which would require the inversion of a one-million
by one-million matrix: completely unfeasible.
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Process of Interest Measurements

Forward

Inverse

Fig. 1.1. An inverse problem: You want a nice clear photo of a face, however your camera
yields blurry measurements. To solve this inverse problem requires us to mathematically invert
the forward process of blurring.

Therefore even rather modestly sized two- and higher-dimensional problems become
impossible to solve using straightforward techniques, yet these problems are very
common. Problems having one million or more unknowns are littered throughout the
fields of remote sensing, oceanography, medical imaging, and seismology, to name
a few.

To be clear, a problem is considered to be multidimensional if it is a function of
two or more independent variables. These variables could be spatial (as in a two-
dimensional image or a three-dimensional volume), spatio-temporal (such as a video,
a sequence of two-dimensional images over time), or a function of other variables
under our control.

Multidimensional Methods versus Image Processing

What is it that the great diversity of algorithms in the image processing literature
cannot solve?

The majority of images which are examined and processed in image processing are
“real” images, pictures and scenes at human scales, where the images are not well
described mathematically. Therefore the focus of image processing is on making
relatively few explicit, mathematical assumptions about the image, and instead fo-
cusing on the development of algorithms that perform image-related tasks (such as
compression, segmentation, edge detection, etc.).
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Face Grass Clouds

Fig. 1.2. Which of these might be best characterized mathematically? Many natural phenom-
ena, when viewed at an appropriate scale, have a behaviour which is sufficiently varied or
irregular that it can be modelled via relatively simple equations, as opposed to a human face,
which would need a rather complex model to be represented accurately.

In contrast, of great research interest are images taken at microscopic scales (cells
in a Petri dish, the crystal structure of stone or metal) or at macroscopic scales (the
temperature distribution of the ocean or of the atmosphere, satellite imagery of the
earth) which do, in general, allow some sort of mathematical characterization, as
explored in Figure 1.2. That is, the focus of this text is on the assumption or inference
of rather explicit mathematical models of the unknown process.

Next, in order to be able to say something about a problem, we need measurements
of it. These measurements normally suffer from one of three issues, any one of which
would preclude the use of standard image-processing techniques:

1. For measurements produced by a scientific instrument, acquiring a measurement
normally requires time and/or money, therefore the number of measurements is
constrained. Frequently this implies that the multidimensional problem of interest
is only sparsely sampled, as illustrated in Figure 1.3.

There exist many standard methods to interpolate gaps in a sequence of data, how-
ever standard interpolation knows nothing about the underlying phenomenon be-
ing studied. That is, surely a grass-like texture should be interpolated differently
from a map of ocean-surface temperature.

2. Most measurements are not exact, but suffer from some degree of noise. Ideally
we would like to remove this noise, to infer a more precise version of the under-
lying multidimensional phenomenon.

There exist many algorithms for noise reduction in images, however these are
necessarily heuristic, because they are designed to work on photographic images,
which might contain images of faces / cars / trees and the like. Given a scientific
dataset, surely we would wish to undertake denoising in a more systematic (ide-
ally optimal) manner, somehow dependent on the behaviour of the underlying
phenomenon.
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(each point represents the concentration of water in a block of concrete)

Fig. 1.3. Multidimensional measurements: Three examples of two- or three-dimensional mea-
surements which could not be processed by conventional means of image processing. The
altimetric measurements are sparse, following the orbital path of a satellite; the ship-based
measurements are irregular and highly sparse, based on the paths that a ship followed in tow-
ing an instrument array; the MRI measurements are dense, but at poor resolution and with
substantial noise.

3. In many cases of scientific imaging, the raw measurement produced by an in-
strument is not a direct measurement of the multidimensional field, but rather
some function of it. For example, in Application 3 we wish to study atmospheric
temperature based on radiometric measurements of microwave intensities: the air
temperature and microwave intensity are indeed related, but are very different
quantities.

Standard methods in image processing normally assume that the measurements
(possibly noisy, possibly blurred) form an image. However, having measurements
being some complicated function of the field of interest (an inverse problem) is
more subtle and requires a careful formulation.



6 1 Introduction

Statistics and Random Fields

What is it that makes a problem statistical, and why do we choose to focus on statis-
tical methods?

An interest in spatial statistics goes considerably beyond the modelling of phenom-
ena which are inherently random. In particular, multidimensional random fields offer
the following advantages:

1. Even if an underlying process is not random, in most cases measurements of the
process are corrupted by noise, and therefore a statistical representation may be
appropriate.

2. Many processes exhibit a degree of irregularity or complexity that would be
extremely difficult to model deterministically. Two examples are shown in Fig-
ure 1.4; although there are physics which govern the behaviour of both of these
examples (e.g., the Navier—Stokes differential equation for water flow) the models
are typically highly complex, containing a great number of unknown parameters,
and are computationally difficult to simulate.

A random-fields approach, on the other hand, would implicitly approximate these
complex models on the basis of observed statistics.

A random field! X is nothing but a large collection of random variables arranged on
some set of points (possibly a two- or three-dimensional grid, perhaps on a sphere,
or perhaps irregularly distributed in a high-dimensional space). The random field is
characterized by the statistical interrelationships between its random variables.

The main problem associated with a statistical formulation is the computational com-
plexity of the resulting solution. However, as we shall see, there exists a compre-
hensive set of methods and algorithms for the manipulation and efficient solving of
problems involving random fields. The development of this theory and of associated
algorithms is the fundamental goal of this text.

Specifically, the key problem explored in this text is representational and computa-
tional efficiency in the solving of large problems. The question of efficiency is easily
motivated: even a very modestly sized 256 x 256 image has 65536 elements, and
the glass beads image in Figure 1.4 contains in excess of 100 million elements! It
comes as no surprise that a great part of the research into random fields involves the
discovery or definition of implicit statistical forms which lead to effective or faith-
ful representations of the true statistics, while admitting computationally efficient
algorithms.

Broadly speaking there are four typical problems associated with random fields
[112]:

! Random variables, random vectors, and random fields are reviewed in Appendix B.1.
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(Microscopic Data from M. Ioannidis, Dept. Chemical Engineering, University of Waterloo)
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Fig. 1.4. Two examples of phenomena which may be modelled via random fields: packed
glass beads (top), and the ocean surface temperature (bottom). Alternatives to random fields
do exist to model these phenomena, such as ballistics methods for the glass beads, and coupled
differential equations for the ocean, however such approaches would be greatly more complex
than approximating the observed phenomena on the basis of inferred spatial statistics.

1. Representation: how is the random field represented and parametrized?
2. Synthesis: how can we generate “typical” realizations of the random field?

3. Parameter estimation: given a parametrized statistical model and sample image,
how can we estimate the unknown parameters in the model?
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4. Random fields estimation: given noisy observations of the random field, how can
the unknown random field be estimated?

All four of these issues are of interest to us, and are developed throughout the text.

For each of these there are separate questions of formulation,
How do I write down the equations that need to be solved?
as opposed to those of solution,
How do I actually find a solution to these equations?

Part I of this text focuses mostly on the former question, establishing the mathemat-
ical fundamentals that are needed to express a solution, in principle. This gives us a
solution which we might call

1. Brute Force: The direct implementation of the solution equations, irrespective
of computational storage, complexity, and numerical robustness issues.

Parts II and III then examine the latter question, seeking practical, elegant, or indirect
solutions to the problems of interest. However, practical should not be interpreted to
mean that the material is only of dry interest to the specialist sitting at a computer,
about to develop a computer program. Many of the most fundamental ideas expressed
in this text are particularly in Part II, where deep insights into the nature of spatial
random fields are explored.

A few kinds of efficient solutions, alternatives to the direct implementations from
Part I, are summarized as follows:

2. Dimensionality Reduction: Transforming a problem into one or more lower-
dimensional problems.

3. Change of Basis: A mathematical transformation of the problem which simpli-
fies its computational or numerical complexity.

4. Approximate Solution: An approximation to the exact analytical solution.

5. Approximated Problem: Rather than solving the given problem, identifying a
similar problem which can be solved exactly.

6. Special Cases: Circumstances in which the statistics or symmetry of the problem
gives rise to special, efficient solutions.

These six points give a broad sense of what this text is about.



