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FOREWORD

Regional cancer therapies remain important options in the management of malignant
disease, in spite of the venue of more targeted agents for systemic therapies. New tech-
nologies and better guidance systems for radiofrequency ablation and intrastitial laser
therapies,  highly selective intravascular approaches with improved catheters and guid-
ance systems, improved agents for embolizations,  and new vasoactive drugs for isolated
limb and liver perfusions are just a few of the new developments in a field that is alive
and progressing.

Regional Cancer Therapy, so well put together by the editors Peter M. Schlag and
Ulrike S. Stein, presents an overview of today’s realities and tomorrow’s possibilities.
Regional cancer therapy models provide ways to make new discoveries about tumor
biology and new agents that may be used regionally as well as systemically. This book
should therefore be of interest to all clinicians and scientists with an interest in tumor
biology as well as clinical advances.

Alexander M. M. Eggermont, MD, PhD

Professor and Head of Surgical Oncology
Erasmus University MC—Daniel den Hoed Cancer Center

Rotterdam, the Netherlands



PREFACE

The treatment of malignant tumors has been substantially improved in recent years due
to developments in clinical medicine and technology as well as by advances in molecu-
lar biological research. Modern molecular and genetic techniques allow the character-
ization of molecules that are decisive for tumor development and progression.
Considerable success has been achieved in selected solid tumors using molecular-
targeted therapies, e.g., for GIST treated with Gleevec or breast cancer treated with
Herceptin. These remain, perhaps, the most successful examples of molecular-targeted
systemic cancer therapies.  Avastin, acting to inhibit VEGF signaling, is another example
with apparently wider utility, owing to the more general importance of angiogenesis in
tumor biology. Therapies directed against the process of metastasis could potentially
provide an additional dimension to therapeutic regimens in the future.

Curative treatment requires control of both local and systemic disease.  Advances in
diagnostic procedures have made it possible to more accurately assess the distribution
and extent of malignant disease and define a role for both surgery and regional therapy
in modern cancer treatment. The concept of regional cancer therapy aims at a targeted
destruction of a tumor disease that is not accessible by classical surgical tumor resection
or radiotherapeutic ablation. Modern regional tumor therapy, based on progress in tech-
nology and research, will contribute to new dimensions in this exciting field of oncology.

Regional Cancer Therapy describes findings and technical features of regional tumor
therapy with diverse facets considered for various tumor entities and locations. New
developments and conceptual formulations are presented with respect to both tumor
biology and technical aspects. Clinical trial concepts and treatment protocols currently
employed to improve regional tumor therapy are discussed in this book in detail. Thus,
the book represents not only a therapeutic vade mecum for the current possibilities for
effective regional tumor therapy, but also provides numerous suggestions for future
advances. The book will be of value not only for clinical  oncologists, but also for
scientists who are interested in the fundamentals of regional tumor therapy as it relates
to optimizing translational approaches.

Regional tumor therapy, in general, is an excellent example of an interdisciplinary
strategy.  Thus, not only the classical oncological disciplines, such as surgical oncology,
radiotherapy, and medical oncology, but also interventional radiology and nuclear medi-
cine, and medical students and other medical support staff will benefit from reading
Regional Cancer Therapy.

The editors are very thankful to all authors for their valuable contributions, which
provide a thorough description of the concepts of regional cancer therapy. This enabled
us to bring the reader a balanced book where all sides of the regional cancer therapy issues
are covered fairly. We hope that Regional Cancer Therapy will stimulate interest and
rapid advances in the important field of regional cancer therapy for the improved treat-
ment of patients.

Peter M. Schlag, MD, PhD

Ulrike S. Stein, PhD
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Biological Background
Multidrug Resistance—Clinical Implications

Ulrike S. Stein*, PhD, Wolfgang Walther, PhD,
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SUMMARY

Drug resistance of human tumors to a variety of chemotherapeutic agents remains
the major cause of cancer treatment failure. Although multiple mechanisms of drug
resistance may occur in parallel or sequentially at all different levels of drug action,
one resistance mechanism was identified within the last two decades that very likely
represents the most frequent cause for the development of drug resistance in cancer
cells: the phenomenon of multidrug resistance (MDR). MDR, the simultaneous resis-
tance toward structurally and functionally unrelated cytostatic drugs, depends mainly
on the presence of different transporter proteins, their genetic polymorphisms, and
their regulation/deregulation. Thus, decreased uptake and/or increased efflux, low-
ered net accumulation, and, in consequence, less efficiency of anticancer drugs is the
clinical hurdle.

The biology of the most prominent members of the MDR-associated, membrane-
spanning ATP-binding cassette (ABC) transporter proteins (MDR1, MRP1, and
BCRP), their transport mechanisms, and the spectra of cytostatic drugs are summa-
rized in this chapter. The clinical importance of these MDR-associated molecules
(their basal and therapy-induced expression) is discussed for different solid tumors
with respect to clinical outcome parameters. Resistance profiling and response pre-
diction as essential prerequisites for tailor-made, patient-individual MDR reversal as
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well as intervention strategies targeting functional, translational, and transcriptional
levels are evaluated.

Key Words: Multidrug resistance; MDR1; MRP1; BCRP; prediction; reversal;
inhibitors.

1. INTRODUCTION: DRUG RESISTANCE AND CANCER

Treatment of most locally confined malignant tumors is presently based on surgical
and radiotherapeutic approaches. For advanced and metastatic tumors, chemotherapy is
the most effective treatment, with clinical success differing from patient to patient. Some
patients are cured, others respond transiently, and a third group has incomplete responses.
Furthermore, clinical oncologists have noted that cancer patients treated with multiple
anticancer drugs developed cross-resistance to many other chemotherapeutics to which
they had never been exposed. As a consequence, the possibility of curing these patients
with chemotherapy is dramatically reduced (1,2).

Multiple mechanisms of drug resistance may occur in parallel or sequentially at all
different levels of drug action, leading to intrinsic (without any treatment) or acquired
(therapy-induced) resistance toward cytotoxic drugs. Anticancer drugs have different
ways to enter the cell. Uptake of hydrophilic drugs into the cell depends on transporters,
carriers, or channels, since these drugs are not able to cross the cell membrane by them-
selves. Defects in drug uptake proteins lead to reduced influx, resulting in lowered intra-
cellular drug concentration, and the cell becomes resistant to a single drug. Natural
anticancer products such as anthracyclines, vinca alkaloids, epipodophyllotoxins, and
taxanes are hydrophobic and enter the cell by diffusion across the cell membrane. Resis-
tance toward these drugs develops by increased drug efflux depending on the activity of
efflux pumps, such as transmembrane energy (ATP)-dependent transporter proteins.
Thus, intracellular drug concentration is reduced; the cell becomes resistant to a panel of
hydrophobic drugs. Furthermore, activation of proteins that are involved in metabolism
or detoxification of drugs may cause drug resistance without affecting drug accumula-
tion. Intracellular drug redistribution, e.g., the nucleocytoplasmic drug transport by vaults,
may contribute to drug resistance. Moreover, cytostatic-induced activation of nuclear
proteins such as mismatch repair genes involved in enhanced repair of drug-induced
DNA damage may lead to drug resistance. Cells may also become resistant to drug-
induced cell death by activation of anti-apoptotic proteins and by affecting the cell cycle
and checkpoints (1–3).

Although several mechanisms might be able to contribute to a drug resistance pheno-
type, one resistance mechanism was identified within the last two decades that very likely
represents the most frequent cause for the development of drug resistance in cancer cells:
the phenomenon of multidrug resistance (MDR). MDR reflects the ability of a tumor cell
to resist typically lethal or sublethal doses of multiple usually cytotoxic drugs. MDR is
defined as the simultaneous resistance to structurally and functionally unrelated natural
product anticancer drugs. To date, MDR of human tumors to a variety of chemotherapeu-
tic agents still represents the major cause of failure of cancer chemotherapy. Therefore,
the need to identify those tumors with high intrinsic and/or therapy-inducible MDR is
desired. Patient-individual response prediction and tailor-made reversal of MDR are the
ultimate goals to improve cancer chemotherapy.
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2. MULTIDRUG RESISTANCE, ABC TRANSPORTERS,
AND DRUG TRANSPORT

The development of the MDR phenotype is dependent on expression of MDR-
associated genes encoding energy-dependent transmembrane transporter proteins (4).
They act as drug efflux pumps, thereby lowering the intracellular concentration of cyto-
toxic drugs through increased drug efflux. These drug efflux pumps belong to the inten-
sively studied protein superfamily of ATP-binding cassette (ABC) transporter proteins
representing the largest gene family of transmembrane proteins (5). The normal physi-
ological functions of these transporters are the protection of epithelial cells (e.g., those
of the gastrointestinal tract, liver and kidney) and brain capillaries for the uptake of
xenobiotics and the promotion of their excretion in the bile and urine. They also transport
multiple classes of anticancer drugs such as anthracyclines, vinca alkaloids, epipodophyl-
lotoxins, taxanes, and others out of the cell, making it multidrug resistant. ABC trans-
porter-mediated drug transport is energy dependent, driven by hydrolysis of ATP (4).

In the human genome, 48 ABC transporters have been identified so far (5). Based on
sequence similarities—they share common features such as nucleotide binding sites and
transmembrane domains—they have been classified into seven subfamilies by phyloge-
netic analysis. Important ABC transporters associated with the MDR phenotype are
encoded by the following genes:

1. The multidrug resistance gene 1 (MDR1, or ABCB1; subfamily ABCB) encodes
P-glycoprotein, causing the so-called classical, P-glycoprotein-mediated MDR.

2. The genes for the multidrug resistance-associated proteins 1, 2, and 3 (MRP1–3, or
ABCC1–3; subfamily ABCC) as well as the gene for the breast cancer resistance protein
(BCRP); also called ABC transporter in placenta [ABCP] and mitoxantrone resistance
gene [MXR or ABCG2; subfamily ABCG] lead to the so-called atypical, non-P-glyco-
protein-mediated MDR.

For some of these MDR-associated ABC transporters, a causal role for generation of
the MDR phenotype has been demonstrated, e.g., MDR1, MRP1, BCRP; for others, an
ability to transport multiple cytotoxic compounds has been shown. The spectrum of
anticancer drugs transported by the ABC transporters includes anthracyclines such as
doxorubicin, daunorubicin, epirubicin, and mitoxantrone, vinca alkaloids such as vinc-
ristine and vinblastine, epipodophyllotoxins such as etoposide and tenoposide, and
taxanes such as paclitaxel and docetaxel. Interestingly, the drug spectra of single MDR-
associated ABC transporters are overlapping but not identical. Moreover, it has been
shown for several transporters that their substrate specificities might vary owing to
defined point mutations within their genes.

2.1. MDR1/P-Glycoprotein
The ABCB subfamily of ABC transporters harbors 12 members, with the most promi-

nent being, the MDR1 gene, which was first described about three decades ago (6,7).
MDR1/P-glycoprotein is the first cloned human ABC transporter, for which direct gen-
eration of the MDR phenotype was shown by gene transduction (8,9). The MDR1 gene
encodes P-glycoprotein, a multidrug efflux pump with two nucleotide binding sites and
two transmembrane domains each consisting of 12 membrane-spanning -helices that is
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believed to determine the substrate specificity of the drug transported. P-glycoprotein is
able to bind a wide spectrum of hydrophobic, neutral, or positively charged substrates,
such as anthracyclines, vinca alkaloids, epipodophyllotoxins, and taxanes. After binding
of the drug, ATP hydrolysis leads to conformational changes in the protein as an essential
prerequisite for release of the substrate out of the cell. Then ATP hydrolysis is necessary
for resetting of the transporter molecule (4,5).

MDR1 gene expression has been analyzed in an enormous number of studies. In
humans, high expression levels have been repeatedly detected in normal tissues with
excretory or secretory functions, such as on the apical surface of columnar epithelial cells
of small and large intestines, the biliary canalicular membrane of hepatocytes, the apical
surface of epithelial cells of the proximal tubules of the kidney, the apical surface of
epithelial cells of the placenta, and the apical surface of endothelial cells in blood cap-
illaries of the brain (10,11). Interestingly, MDR1 expression appears to increase progres-
sively over the total length of the gastrointestinal tract, with low levels in the stomach,
intermediate levels in the jejunum, and high levels in the colon (12).

In tumors of these tissues, such as colon, kidney, adrenocortical, and hepatocellular
cancers, P-glycoprotein expression is inherently overexpressed, making them primarily
chemotherapy-resistant toward a wide panel of anticancer drugs (12). This basically is a
major reason for the limited selection of chemotherapeutics to tumors of these organs,
e.g., for therapy of gastrointestinal cancer (1,12–15).

Furthermore, in addition to basal expression levels of MDR1, external factors such as
components of multimodal cancer therapy are able to induce expression of the MDR1
gene. Thus, cytostatics, but also heat or radiation, might lead to elevation of MDR1 gene
expression (e.g., refs. 16–20). Several studies have shown that in approx 50% of all
treated tumors, induction of MDR1 expression has been observed (21). By identification
of the MDR1 gene promoter and generation of promoter deletion mutants, drug- and heat-
responsive elements have been identified, mediating therapy-caused stress signals into
transcriptional activation of the MDR1 gene (22). This is in agreement with the chemo-
therapy- or hyperthermia-induced elevation of MDR1 gene expression that have been
detected in patients. However, single-nucleotide polymorphisms, either of the MDR1
promoter (23,24) or of the MDR1 gene (25) may alter basal expression levels as well as
drug inducibility. Mutations mainly affecting positions 2677 and 3435 of the MDR1 gene
were associated with altered P-glycoprotein expression and function. Thus, MDR1 gene
polymorphisms may also play a role in patients who do not respond to drug treatment.

Tumors that are more sensitive to chemotherapy show low or intermediate basal
MDR1 expression but develop upregulation of MDR1 expression following chemo-
therapy, which results in the acquired type of drug resistance (26,27). For example,
expression of P-glycoprotein was increased after treatment in myeloma (pretreatment/
posttreatment 6%/43%), in breast cancer (14%/43% and 11%/30%), and in ovarian (15%/
48%) and cervical cancer (39%/88%) (29–32). Moreover, in patients with unresectable
pulmonary sarcoma metastases, who underwent isolated single lung perfusion with doxo-
rubicin, relative MDR1 expression was measured in metastastic tumor nodules after
initiation of chemoperfusion. Increases in MDR1 expression (up to 15-–fold) were
detected 50 min after administration of doxorubicin. This observation demonstrates that
MDR1 expression can be activated very rapidly in human tumors after transient exposure
to chemotherapy (33). Heat, as an external stress factor, may also induce MDR1 gene
expression. However, hyperthermic isolated limb perfusion of sarcoma and melanoma
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patients did not lead to induction of ABC transporters, probably because of the mild
temperatures applied. Interestingly, expression of the major vault protein, a component
of vault-mediated drug resistance, was induced (34,35). On the other hand, regional
cancer therapy techniques for organ-specific administration of drugs, such as lung per-
fusion, isolated limb perfusion, hepatic arterial infusion, intrathecal therapy, hyper-
oxygenation, and hyperthermia, are all strategies aiming at increasing drug delivery.
However, this goal of an elevated drug accumulation at the tumor site must be evaluated
in the context of the treatment modalities/external stress factors such as radiation, hyper-
thermia, or chemotherapy itself, balancing the increased organ-site drug accumulation
with risk of MDR induction.

For nonsolid cancers, e.g., acute myelogenous leukemia, the most reproducible results
on MDR1 expression levels, treatment-caused inductions, and correlations to clinical
outcome have been reported (e.g., ref. 36). Although the prognostic implications of
MDR1 expression are controversial, the value of P-glycoprotein as marker for poor
prognosis has been repeatedly supported (e.g., ref. 37). For a variety of solid tumors, in
particular for those more chemosensitive to drug treatment, acquired chemoresistance
was accompanied with upregulated levels of MDR1 after exposure to chemotherapy.
Correlation of clinical outcome parameters with MDR1 expression have been reported
for bone and soft tissue sarcomas (38–40), breast cancer (41,42), and others.

2.2. The MRP Family
The ABCC subfamily of ABC transporters consists of 11 members with 9 MRP-

related gene-associated proteins (MRP1–9 or ABCC1–6 and ABCC10–12). The most
studied member, MRP1, was identified more than a decade ago in a non-P-glycoprotein-
expressing, but multidrug-resistant human tumor cell line (43). MRP1 is structurally
similar to P-glycoprotein, however, with an amino-terminal extension of five membrane
spanning -helices. Like MRP1, MRP2, MRP3, and MRP6 harbor these extra amino-
terminal transmembrane domains when compared with P-glycoprotein.

The spectrum of transported hydrophobic natural anticancer drugs overlap those trans-
ported by P-glycoprotein and also includes compounds of anthracyclines, vinca alka-
loids, and epipodophyllotoxins. Like P-glycoprotein, the substrate specificity of MRP1
is altered owing to single amino acid substitutions within the respective transporter
protein. However, the mechanism of drug transport is different. The MRPs transport
anionic and neutral drugs conjugated to acidic ligands, such as glutathione, glucuronate,
or sulfate. Alternatively, they can cause resistance to neutral drugs without conjugation
but by cotransporting these drugs with free glutathione (3,44–46). MRP4, MRP5, and
MRP7 lack the additional helical regions but show higher sequence similarities to MRP1
than to P-glycoprotein or other ABC transporters. Both MRP4 and MRP5, are also
organic anion transporters, like MRP1, -2, and -3, which have been identified to pump
nucleotide analogs.

Gene transduction has shown that MRP1 plays a causal role in conferring the MDR
phenotype on previously chemosensitive cells. Basal expression of MRP1 has been
found to be ubiquitous in human tissues. Moreover, in almost all malignant tissues, basal
MRP1 expression levels have been determined (47), as reported, for example, in mye-
loma (in 100% of the tumors analyzed), breast cancer (100%), lung cancer (88% for small
cell lung cancer [SCLC], 100% for non-small cell lung cancer [NSCLC]), sarcomas
(80%) (48–51). High MRP1 expression levels have been observed for lung, breast, and
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ovarian cancer (26). Moreover, for several tumor entities, correlations of high MRP1
expression with clinical outcome parameters such as response to chemotherapy and
disease-free survival have been reported, e.g., for mammary, lung, and ovarian carcino-
mas, as well as for leukemias; in refractory hematological malignancies, increases in
MRP1 have also been observed (52). Moreover, a prognostic significance of MRP1
expression has been reported for primary breast cancer (53). However, the clinical
importance of MRP1 is still a matter of discussion, since studies have both confirmed and
rejected a correlation of MRP1 expression level and outcome.

2.3. BCRP
BCRP (also called ABCP and MXR) was originally identified in a mitoxantrone-

resistant, but P-glycoprotein and MRP1-negative human carcinoma cell line and was
given three names because of its almost simultaneous discovery by three independent
groups (54–56). BCRP also encodes an ABC transporter and, together with four addi-
tional members, constitutes the ABCG subfamily. By contrast, this so-called half-
transporter harbors only one nucleotide binding site and only one transmembrane domain
with six membrane-spanning -helices; full transporters such as P-glycoprotein and the
MRPs contain two nucleotide binding sites and two transmembrane domains, suggesting
BCRP homodimerization to gain full transport activity (55).

Transduction of BCRP cDNA also caused the resistance phenotype. The drug spectra
of BCRP considerably overlap with those of P-glycoprotein, including mitoxantrone,
topotecan, and doxorubicin, with differing efficiences, however. High levels of BCRP
were mainly detected in several mitoxantrone-resistant mammary, colon, ovarian, and
gastric human cell lines (57–61). Thus, BCRP showed high affinities for mitoxantrone,
representing the long-sought transporter for this cytotoxic compound. Further BCRP
substrates are methotrexate and flavopiridol. Tyrosine kinase inhibitors such as imatinib
and gefitinib are also transported by BCRP (and also by P-glycoprotein). Vincristine and
taxanes, typical P-glycoprotein substrates, are not included in the BCRP drug spectrum.
It has been shown for P-glycoprotein and MRP1 that defined point mutations leading to
amino acid substitutions, particularly within the transmembrane domains, alter substrate
specificity and transport efficiency. This has also been confirmed for BCRP, e.g., for
substitutions of arginine at position 482 for threonine or glycine, occurring during drug
selection (62,63).

BCRP was mainly detected in human tissues such as intestine, colon, mammary, liver
canaliculi, and renal tubules and is highly expressed in placenta and the blood-brain
barrier (1,2,13). Intrinsic BCRP expression was frequently observed in human tumors of
different entities. So far, high BCRP expression levels have been published for carcino-
mas of the digestive tract, for lung carcinomas, and for melanomas (64). Its clinical
relevance of high and/or therapy-induced BCRP expression in the context of clinical
parameters such as response to chemotherapy and survival remains to be elucidated.

3. PREDICTION OF CHEMOSENSITIVITY
AND TREATMENT RESPONSE

Different mechanisms and genes contribute to intrinsic and/or acquired drug resis-
tance. For patients to qualify for a respective treatment regime, and for tailor-made
patient-individual therapies, knowledge of the expression and function of genes and
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proteins related to drug resistance represents an essential prerequisite. Since single indi-
vidual markers have shown limited predictive value, the simultaneous analysis of a panel
of resistance-associated genes is desired.

However, up to now clinical tests for predicting cancer chemotherapy response are not
available. So far, several reports have described the generation of expression profiles for
the prediction of chemosensitivity. For three human cell lines, expression profiles of 38
ABC transporters have been generated by using low-density microarrays combined with
quantitative real-time polymerase chain reaction (PCR) (65). For the 60-cell line panel
of the National Cancer Institute (NCI), expression profiles of the known 48 ABC trans-
porters have been created by means of quantitative real-time reverse transcription (RT)-
PCR (66). Furthermore, doxorubicin sensitivity in human breast tumors was predicted on
the basis of microarray-generated and quantitative real-time RT-PCR-validated expres-
sion profiles and correlated with patient survival (67). These approaches demonstrate the
significance of in vitro experiments and may serve for the development of diagnostic
tools for cancer response prediction in clinical samples.

4. INTERVENTION STRATEGIES FOR REVERSAL OF MDR

The failure of certain cancer chemotherapies was primarily linked to basal and/or
induced expression of P-glycoprotein. The identification of MDR1/P-glycoprotein and
its correlation with parameters of clinical outcome gave rise to the following optimistic
assumption: “The high hope of P-glycoprotein was that here was a single protein that
confers resistance to a whole array of structurally unrelated anticancer drugs. That was
a very attractive idea. It raised the possibility that drug resistance could be overcome,
because if a single mechanism is responsible, all you have to do is learn to understand that
mechanism, find strategies to overcome it, and you could cure people of cancer” (68).
Thus, the inhibition of P-glycoprotein aiming at reversal of the MDR phenotype has been
extensively studied for more than two decades. Several approaches have been made to
target the function and the expression of MDR-associated genes and proteins, such as the
employment of specific antibodies, inhibiting drug transport, the introduction of antisense
oligonucleotides and ribozymes, or, one of the newest developments, the transduction of
small interfering RNA (siRNA) molecules. However, the most promising attempts to
reverse the MDR phenotype have been made with inhibitory compounds targeting
P-glycoprotein function.

4.1. Approaches Targeting the Function of MDR-Associated
ABC Transporters

4.1.1. INHIBITORS

Based on this early optimism, numerous approaches have been made with so-called
first-generation inhibitors of P-glycoprotein representing antagonists that have already
been used for other indications, such as the calcium channel blocker verapamil and the
immunosuppressive agent cyclosporine A. First-generation inhibitors are themselves
substrates for P-glycoprotein and compete with the cytotoxic drug for binding and efflux
by the P-glycoprotein pump, thereby limiting the efflux of the drug. As a consequence,
intracellular drug concentrations increase, leading to elevated cytotoxicity; the cell
becomes chemosensitive. These inhibitors worked with great success on cultured cells
to overcome MDR. In the clinic, however, they produced disappointing results. A variety
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of problems slowed down the optimism of the early years: different intrinsic and/or
therapy-induced expression profiles in certain tumors/tissues, or varying correlations of
expression and clinical response in certain cancers following chemotherapy. Both might
be owing to nonstandardized techniques for expression analysis. Moreover, sequence
polymorphisms may also have led to modulated drug transport. In particular, in order to
reverse MDR, extremely high inhibitor concentrations were needed, causing unaccept-
able toxicity. Furthermore, these inhibitors are not transported exclusively by P-glyco-
protein, resulting in unpredictable pharmacokinetic interactions when coadministered
with the drug.

In addition to the major player, P-glycoprotein, a variety of further MDR-associated
genes/proteins have been identified in recent years, mainly the discovery of MRP1 with
its family members, or the discovery of BCRP, and, of course, relatives of P-glycoprotein
itself (69). The phenotype of MDR could nolonger be attributed to a sole, even well-
characterized protein but had to be understood as the net effect of a multifactorial process
of an entire panel of resistance genes controlling an array of alternative resistance mecha-
nisms.

Second-generation P-glycoprotein inhibitors, also acting as competitive substrates,
were created with the aim of overcoming specifically the P-glycoprotein-mediated resis-
tance. Compared with first-generation inhibitors, they showed less toxicity and greater
potency for inhibition of P-glycoprotein. Examples of second-generation inhibitors are
valspodar (PSC833, Novartis), a nonimmunosuppressive cyclosporine analog, and
biricodar (VX710, Vertex Pharmaceuticals), both designed to restore the effectiveness
of chemotherapeutic agents in multidrug resistant tumors. Clinical trials have demon-
strated that administration of second-generation inhibitors together with the anticancer
drug might lead to reversal of the MDR phenotype, e.g., when one is treating refractory
cancers (26,70). However, certain limitations, as seen with the early inhibitors, could not
be resolved, such as unacceptable toxicity and interaction with additional transporter
molecules.

Third-generation inhibitors were developed based on structure-activity relationships
(70). These newly generated compounds inhibit P-glycoprotein more specifically and
with greater potency and do usually not interact with other transporter molecules. They
are not substrates for a defined ABC transporter, as is described for first- and second-
generation inhibitors. Inhibitors of the third-generation bind noncompetitively to the
pump. Thereby conformational changes of the transporter protein are caused, hindering
ATP hydrolysis. Consequently, drug transport out of the cell is prevented, leading to
increased intracellular concentration of the cytotoxic drug and enhanced cytotoxicity.
For example, the chemosensitizer zosuquidar (LY335979, Eli Lilly) reversed mitox-
antrone resistance in part and vinorelbine resistance completely in P-glycoprotein-
overexpressing cells; in MRP1- or BCRP-overexpressing cells, however, drug resistance
was not modulated (71). To date, tariquidar has been one of the most potent MDR-
modulating agents (XR-9576, Xenova Group plc/QLT Inc). It was applied very success-
fully, achieving complete MDR reversal at low concentrations, and it holds a long duration
of activity in a panel of resistant tumor cells. Tariquidar is now under evaluation in several
clinical trials (see Subheading 4.1.2.).

These results demonstrate the specificity of third-generation inhibitors with respect to
the ABC transporter P-glycoprotein. Moreover, it was demonstrated for several newly
created inhibitors that the pharmacokinetics of classical MDR-associated drugs such as
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doxorubicin, vincristine, etoposide, and paclitaxel were not affected in patients. Based
on these first findings obtained with the third-generation inhibitors, MDR of cancer cells
might be overcome. If the mechanisms of resistance can be overcome, the spectrum of
traditional agents and of treatable tumor entities will certainly be extended.

4.1.2. CLINICAL TRIALS

So far, nine randomized clinical studies have been conducted to evaluate the impact
of P-glycoprotein inhibitors (72). However, only three of these have shown statistically
significant differences in overall survival, those performed in acute myeloid leukemia
(AML) (73), breast cancer (74), and lung cancer patients (75). One reason for the
disappointing results has been the need for dose reduction of the chemotherapeutic
drug in the context of the inhibitor. At present, the U.S. National Institutes of Health
(NIH) is recruiting patients for three clinical phase I and II trials to evaluate the impact
of the third-generation P-glycoprotein inhibitor tariquidar in solid tumors such as brain
tumors, Ewing sarcomas, neuroblastomas, and rhabdomyosarcomas in children, in
adrenal cortex neoplasms, as well as in lung, ovarian, and cervical neoplasms, with
respect to the anticancer drugs doxorubicin, vinorelbine, vincristine, docetaxel, and
etoposide (www.ClinicalTrials.gov). Most of these studies use Tc-99m sestamibi for
expressional and functional control of P-glycoprotein.

4.1.3 SURROGATE ASSAY: TC-99M SESTAMIBI

To evaluate the expression and, in particular, the function of MDR1/P-glycoprotein
with respect to clinical settings, Tc-99m sestamibi is employed. Tc-99m sestamibi har-
bors two main features in that context: it is a radionucleotide imaging agent, already in
clinical use to determine cardiac dysfunction. Moreover, it is also a substrate and thus is
transported by P-glycoprotein. Using this imaging agent, normal tissues and tumor areas
with high P-glycoprotein expression can be identified; furthermore, the impact of
P-glycoprotein inhibitors, measured as increased intratumoral drug accumulation, can be
evaluated. It has been observed, e.g., in normal liver and kidney, that the uptake of
Tc-99m sestamibi is increased following treatment with the inhibitors valspodar,
biricodar, and tariquidar (76–78). For hepatocellular carcinoma, a correlation of Tc-99m
liver imaging with P-glycoprotein expression was reported (79). Furthermore, increased
Tc-99m sestamibi accumulation was reported for metastastic cancers following treat-
ment with tariquidar (78). For NSCLC, Tc-99m was used to predict the response to
paclitaxel-based chemotherapy on the basis of P-glycoprotein detection, as demonstrated
by chest images (80). These findings confirm that MDR inhibitors are able to increase the
accumulation of the respective substrate in P-glycoprotein-expressing normal and tumor
tissues of patients. Moreover, the inhibitor concentrations achieved at the tumor site are
sufficient to modulate P-glycoprotein function and thereby the MDR phenotype (72,81).

At present, the NIH is recruiting patients for a clinical phase II trial to evaluate the use
of sestamibi for imaging drug resistance in solid tumors (www.ClinicalTrials.gov).
Patients are also being recruited for clinical trials to evaluate the impact of third-genera-
tion P-glycoprotein inhibitors in combination with chemotherapy; the monitoring of
P-glycoprotein expression and function is carried out by administration of Tc-99m
sestamibi. In addition, a correlation of Tc-99m imaging with expression of MRP1 in
patients with hepatocellular carcinoma has been shown recently, possibly extending the
use of imaging agents to MRP1-mediated MDR (82).
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4.1.4. TYROSINE KINASE INHIBITORS

Several new molecular cancer therapeutics have been developed in recent years, such
as a large variety of tyrosine kinase inhibitors. These agents are known to inhibit malig-
nant cell growth and metastasis. Their therapeutic potential, however, depends on their
access to the intracellular target, which might be disturbed by MDR-associated ABC
transporters. Iressa (gefitinib), an epidermal growth factor tyrosine kinase inhibitor, as
well as Gleevec (imatinib), a BCR-Abl, platelet-derived growth factor receptor (PDGFR)
and c-kit tyrosine kinase inhibitor, belong to these recently developed compounds. Both
Iressa and Gleevec might interact with MDR1 and also with BCRP as competitive ATP
inhibitors; for both, the reversal of chemotherapy resistance has been demonstrated
(83,84).

4.1.5. MRP1 AND BCRP INHIBITORS

Although MDR1/P-glycoprotein is the central molecule in the context of MDR, the
aforementioned P-glycoprotein inhibitors may also target additional ABC transporters
with different affinities, e.g., biricodar also targetting MRP and BCRP and tariquidar also
targetting BCRP in addition to P-glycoprotein (85,86). Specific inhibitors, e.g., MK-571
for MRP1 (61,87) or fumitremorgin C for BCRP (61,88), were used in experimental
studies and worked successfully in terms of the respective transporter. However, their
ability to increase accumulation of anticancer drugs associated with the MRP1- or BCRP-
mediated MDR must be determined in a clinical setting.

4.1.6. ANTIBODIES AND IMMUNOTOXINS

Antibody-directed approaches might represent alternative stragegies for reversal of
MDR. Monoclonal P-glycoprotein-specific antibodies have been shown to affect the
proliferation of P-glycoprotein-expressing tumor cells (89,90). However, the best
chemosensitizing results were achieved when the monoclonal antibodies were applied in
combination with inhibitors (91,92). An interesting approach is the use of immunotoxins,
consisting of monoclonal antibodies coupled to cytotoxic agents. After binding to the
antigen and internalization, cytotoxic activity toward P-glycoprotein-expressing cells
was demonstrated (93,94).

4.2. Approaches Targeting Transcription, Posttranscription,
and Posttranslation

Further interventional strategies affect the control of expression of MDR-associated
genes. Several approaches have been used to prevent or disturb transcription of the
MDR1 gene, e.g., by using MDR1-specific transcriptional repressors, by cytostatic block-
ing of induced but not constitutive MDR1 expression, or by targeting MDR1 transcrip-
tion factors (86,95–97). Moreover, alternative approaches interfere with translational
expression by targeting the MDR1 or MRP1 mRNA. These intervention strategies use,
e.g., complementary oligodeoxyribonucleotides to form complexes with the target
mRNA, so-called antisense RNAs (98–101). Catalytic RNAs, so-called ribozymes,
hybridize to a complementary mRNA, thereby catalyzing site-specific cleavage of the
substrate. A panel of ribozymes specific for several MDR-associated ABC transporters
(MDR1, MRP1, and BCRP) has been successfully applied, leading to reduced expression
and reversal of MDR in vitro (102–104). One of the most interesting approaches is the
employment of siRNA, also known as posttranscriptional gene silencing. For MDR1 and
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BCRP, some promising reports have been published, demonstrating specific expression
inhibition by degradation of the complementary mRNA using siRNA as well as by
vector-based transfection in vitro and in vivo (105–108).

N-glycosylation and phosphorylation are posttranslational modifications for P-glyco-
protein, as well as for other MDR-associated ABC transporters. With the use of
glycosylation inhibitors, such as tunicamycin, it turned out that N-glycosylation may
contribute to correct folding and/or stabilization of P-glycoprotein; the MDR transport
function, however, was not affected (109). Since the phosphorylation of P-glycoprotein
is an essential prerequisite for its transporter function, protein kinases represent a poten-
tial target for overcoming MDR. Because protein kinase C is known to phosphorylate and
thereby activate P-glycoprotein, inhibitors of that enzyme have been used to reverse
MDR (110). More selective inhibitors targeting P-glycoprotein directly will certainly
improve this approach (111). Although all expression-based intervention approaches
work well in experimental settings, we have no data so far for clinical application.s

5. PROSPECTS

MDR, caused by ABC transporter molecules, remains the major cause of inadequate
responses in cancer chemotherapy. Forty-eight ABC transporters have been identified
through the Human Genome Project. Sixteen of them have known functions, and 14 are
discussed in the context of human diseases. Physiological functions are mainly the trans-
port of lipids, bile acids, toxic compounds, and peptides for antigen presentation. Since
it is unlikely that many new ABC transporters will be discovered, the phenotype and
development of MDR must be elucidated further in the context of the about 10 already
known MDR-associated ABC transporters.

Detailed knowledge of these transporter molecules, their sequence polymorphisms,
their transcriptional, translational, and posttranslational regulation, and functional fea-
tures of substrate binding and transport represent the basis for the development of specific
and thus successful intervention strategies for MDR reversal in the clinic. Moreover, a
patient-individual resistance profiling is desired that will provide the scientific basis for
selection and application of specific chemotherapeutic drugs in defined therapy regimes;
it would also provide the rationale and essential prerequisite for tailor-made approaches
to overcome drug resistance. Therefore, patient-individual response prediction, MDR
reversal, and possibly MDR prevention strategies are the ultimate goals to improve
chemotherapy, in particular when applied as regional cancer therapy.
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SUMMARY

The pharmacological rational for regional cancer therapy is based on delivering a
high dose intensity of the chemotherapeutic drug, resulting in an advantageous tumor
cure/normal tissue complication differential (high therapeutic ratio). Only patients with
an anatomically confined tumor and technical feasibility of antitumor therapy admin-
istration are expected to reach clinical benefit. Specific pharmacological characteristics
of the delivered drug are of potential additional benefit. The pharmacological back-
ground of intraperitoneal chemotherapy, isolated hepatic perfusion, and isolated
extremity perfusion are given as an example of the advantages and opportunities of
regional anticancer therapy.

Key Words: Intraperitoneal; chemotherapy; isolated hepatic perfusion; extremity
perfusion; pharmacology; regional cancer therapy.

1. INTRODUCTION

Regional cancer therapy is based on the concept of delivering a high dose intensity to
an anatomically confined tumor site. The effectiveness of the procedure depends on the
biology of the tumor (see Chapter 1), the technique (see Chapter 3), and the pharmacology


