National Institute of Allergy and Infectious Diseases, NIH

Volume 1

Frontiers in Research
National Institute of Allergy and Infectious Diseases, NIH

Volume 1

Frontiers in Research

Edited by

Vassil St. Georgiev, PhD
Karl A. Western, MD
John J. McGowan, PhD

National Institute of Allergy and Infectious Diseases,
National Institutes of Health, DHHS, Bethesda, MD
Dedication

To the thousands of investigators who, for more than 50 years, have received the support of the National Institute of Allergy and Infectious Diseases (NIAID) and have dedicated their lives and careers to biomedical research.

RESEARCH IS NOT A SYSTEMATIC OCCUPATION
BUT AN INTUITIVE ARTISTIC VOCATION

Albert Szent-Györgyi
Preface

For more than 50 years, as part of the National Institutes of Health, the mission of the National Institute of Allergy and Infectious Diseases (NIAID) has been to conduct and support basic and applied research to better understand, treat, and prevent infectious, immunologic, and allergic diseases with the ultimate goal of improving the health of individuals in the United States and around the world.

In recent years, NIAID has responded to new challenges including emerging and re-emerging infectious diseases, potential bioterrorism threats, and an increase in pediatric asthma prevalence. A cornerstone of NIAID-supported research also continues to be the discovery and improvement of vaccines focused on an array of infectious diseases with global public health importance.

As part of its mission to foster biomedical discovery and to reduce the burden of human disease, NIH and NIAID in particular, are committed to encouraging the accelerated translation of biomedical discoveries into effective clinical care and public health practice throughout the world. In pursuit of this goal and its disease-specific scientific objectives, NIAID seeks to broaden research opportunities and collaborations involving scientists and institutions outside the United States.

During 2006, special emphasis was given to fostering scientific collaboration between U.S. researchers and investigators in Central and Eastern Europe, the Baltic Region, Russia, Ukraine, and other newly independent states that were formerly part of the Soviet Union. Although the countries of Central and Eastern Europe have strong traditions in biomedical research, scientists from this region have been less successful than their Western European colleagues in competing for NIAID funding and in forming partnerships with U.S. scientists. To help address this situation, NIAID convened a research conference in Opatija, Croatia (June 24–30, 2006) so that U.S. and European scientists could explore shared research interests with a focus on microbiology and infectious diseases, HIV/AIDS, and basic and clinical immunology.

In the field of microbiology and infectious diseases, major presentations at the conference focused on recent research developments in emerging and re-emerging infections (anthrax and other potential biological weapons, vector-borne infections, tuberculosis, and influenza). A number of presentations discussed ongoing research targeting the development of infectious disease prophylactics and therapeutics.

One of the most serious problems worldwide that confronts efforts to control and treat infectious diseases is the increasing resistance of some pathogens to the current armamentarium of drugs. Microorganisms belonging to all four classes of infectious agents (bacteria, viruses, parasites, and fungi) have developed resistance to previously effective chemotherapeutics, thereby becoming serious threats to individual well-being and international public health. One striking example of drug resistance is the emergence of extensively drug-resistant tuberculosis. Several conference presentations were therefore focused on drug resistance.

HIV/AIDS also remains a major infectious disease research priority and it was well addressed during the conference. Since the start of the HIV/AIDS pandemic in the early 1980s, nearly 20 million people worldwide have died of the disease. According to an estimate issued by the Joint United Nations Programme on HIV/AIDS (UNAIDS) by the end of 2003, about 38 million adults and children were living with HIV/AIDS and in many countries overall prevalence still is rising. Although much progress has been made in the treatment of AIDS and in understanding effective strategies to prevent HIV transmission, research is urgently needed on vaccines, microbicides, therapeutic agents, behavioral prevention strategies, and the management of HIV-related co-morbidities.

NIAID-funded research in basic and clinical immunology has led to significant discoveries that have guided the effective treatment of a host of immunological conditions. For example, “tolerance induction” research has enabled the selective blocking of inappropriate or destructive immune responses while leaving protective immune responses intact. Major presentations at
the conference discussed various topics in immunomodulation, autoimmunity, infections and immunity, and vaccine development.

Finally, two sessions at the research conference were designed to inform participants about NIAID’s research funding mechanisms and the NIH application process.

With more than 100 participants, the 2006 NIAID Research Conference in Croatia clearly demonstrated NIAID’s commitment to a cutting-edge scientific exchange to help generate more research cooperation. Following the meeting, numerous research collaborations have been explored and numerous joint research applications have been prepared and submitted.

NIAID is pleased to have supported this important and unusual meeting and it welcomes publication of the important scientific findings presented there. The future of science lies in cooperation across national borders. Therefore, it is particularly rewarding to see research partnerships grow between scientists from countries previously characterized by a lack of communication and mutual understanding. With a strong research base, talented investigators in the United States and abroad, and the availability of powerful new research tools, NIAID will continue to support scientists in the forefront of basic and applied infectious and immune-mediated disease research.

Vassil St. Georgiev
Bethesda, MD
We would like to express our appreciation to Ms. Caroline Manganiello and the staff of technical writers for their help in the preparation of this volume.
Contents

Preface .. vii
Vassil St. Georgiev

Acknowledgments ... ix

Contributors ... xv

PART I INTRODUCTION

National Institute of Allergy and Infectious Diseases (NIAID): An Overview ... 3
Karl A. Western

PART II MICROBIOLOGY AND INFECTIOUS DISEASES

Section 1 Emerging and Re-Emerging Infections

1 Biotools for Determining the Genetics of Susceptibility to Infectious Diseases and Expediting Research Translation into Effective Countermeasures .. 13
 Malak Kotb, Robert W. Williams, Nourtan Fathey, Mohamed Nooh, Sarah Rowe, Rita Kansal, and Ramy Aziz

2 Spore Surface Components and Protective Immunity to *Bacillus anthracis* ... 19
 Patricia Sylvestre, Ian Justin Glomski, Evelyne Couture-Tosi, Pierre Louis Goossens, and Michèle Mock

3 New Candidate Anthrax Pathogenic Factors .. 25
 Serguei G. Popov

4 *Ehrlichiae* and *Ehrlichioses*: Pathogenesis and Vector Biology ... 37
 H. L. Stevenson, N. Ismail, and D. H. Walker

5 Multiple Locus Variable Number Tandem Repeat (VNTR) Analysis (MLVA) of *Brucella* spp. Identifies Species-Specific Markers and Insights into Phylogenetic Relationships .. 47
 Lynn Y. Huynh, Matthew N. Van Ert, Ted Hadfield, William S. Probert, Bryan H. Bellaire, Michael Dobson, Robert J. Burgess, Robbin S. Weyant, Tanja Popovic, Shaylan Zanecki, David M. Wagner, and Paul Keim

6 Expression of the MtrC-MtrD-MtrE Efflux Pump in *Neisseria gonorrhoeae* and Bacterial Survival in the Presence of Antimicrobials ... 55
Section 2 Tuberculosis

7 What can Mycobacteriophages Tell Us About *Mycobacterium tuberculosis*? ... 67
 Graham F. Hatfull

8 Clinical *Mycobacterium tuberculosis* Strains Differ in their Intracellular Growth in Human Macrophages 77
 Sue A. Theus, M. Donald Cave, and Kathleen D. Eisenach

9 Mechanisms of Latent Tuberculosis: Dormancy and Resuscitation of Mycobacterium tuberculosis 83
 Galina Mukamolova, Elena Salina, and Arseny Kaprelyants

10 Separating Latent and Acute Disease in the Diagnosis of Tuberculosis ... 91
 T. Mark Doherty

11 Mutant Selection Window Hypothesis: A Framework for Anti-mutant Dosing of Antimicrobial Agents 101
 Karl Drlica and Xilin Zhao

Section 3 Avian Influenza

12 The NIAID Influenza Genome Sequencing Project ... 109
 Lone Simonsen, Gayle Bernabe, Karen Lacourciere, Robert J. Taylor, and Maria Y. Giovanni

13 Lessons from the 1918 Spanish Flu Epidemic in Iceland ... 115
 Magnus Gottfredsson

14 Control of Notifiable Avian Influenza Infections in Poultry ... 123
 Ilaria Capua and Stefano Marangon

15 Understanding the Complex Pathobiology of High Pathogenicity Avian Influenza Viruses in Birds 131
 David E. Swayne

Section 4 Prophylactics and Therapeutics for Infectious Diseases

16 Development of Prophylactics and Therapeutics Against the Smallpox and Monkeypox Biothreat Agents 145
 Mark Buller, Lauren Handley, and Scott Parker

17 The Hierarchic Informational Technology for QSAR Investigations: Molecular Design of Antiviral Compounds 163

18 Antivirals for Influenza: Novel Agents and Approaches ... 179
 William A Fischer, II and Frederick Hayden

19 Anti-Infectious Actions of the Proteolysis Inhibitor ε-Aminocaproic Acid (ε-ACA) 193
 V. P. Lozitsky

20 A New Highly Potent Antienteroviral Compound ... 199
 Lubomira Nikolaeva-Glomb, Stefan Philipov, and Angel S. Galabov

Section 5 Russian Perspectives in Emerging and Re-Emerging and Infections Research

21 Reduction and Possible Mechanisms of Evolution of the Bacterial Genomes ... 205
 George B. Smirnov

22 Interaction of *Yersinia pestis* Virulence Factors with IL-1R/TLR Recognition System 215
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>IS481-Induced Variability of Bordetella pertussis</td>
<td>Ludmila N. Sinyashina, Alisa Yu. Medkova, Evgeniy G. Semin, Alexander V. Chestkov, Yuriy D. Tsygankov, and Gennadiy I. Karataev</td>
</tr>
<tr>
<td>24</td>
<td>Microarray Immunophosphorescence Technology for the Detection of Infectious Pathogens</td>
<td>Nikolay S. Osin and Vera G. Pomelova</td>
</tr>
<tr>
<td>25</td>
<td>Development of Immunodiagnostic Kits and Vaccines for Bacterial Infections</td>
<td>Valentina A. Feodorova and Onega V. Ulianova</td>
</tr>
</tbody>
</table>

Section 6 Perspectives in Emerging and Re-Emerging Infections—Research in Central Asia and Caucasus

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Research in Emerging and Re-Emerging Diseases in Central Asia and the Caucasus:</td>
<td>Katherine T. Herz</td>
</tr>
<tr>
<td></td>
<td>Contributions by the the National Institute of Allergy and Infectious Diseases and the National Institutes of Health</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Disease Surveillance in Georgia: Benefits of International Cooperation</td>
<td>Lela Bakaniidze, Paata Imnadze, Shota Tsanava, and Nikoloz Tsertsvadze</td>
</tr>
<tr>
<td>28</td>
<td>Epidemiology (Including Molecular Epidemiology) of HIV, Hepatitis B and C in Georgia:</td>
<td>Tengiz Tsertsvadze</td>
</tr>
<tr>
<td></td>
<td>Experience From U.S.–Georgian Collaboration</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>The National Tuberculosis Program in the Country of Georgia: An Overview</td>
<td>Archil Salakia, Verico Mirtshkulava, Shalva Gamtsemidze, Marina Janjgava,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rusudan Aspindzelashvili, and Ucha Nanava</td>
</tr>
</tbody>
</table>

PART III HUMAN IMMUNODEFICIENCY VIRUS AND AIDS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Virus Receptor Wars: Entry Molecules Used for and Against Viruses Associated with AIDS</td>
<td>Edward A. Berger</td>
</tr>
<tr>
<td>31</td>
<td>HIV Latency and Reactivation: The Early Years</td>
<td>Guido Poli</td>
</tr>
<tr>
<td>32</td>
<td>HIV-1 Sequence Diversity as a Window Into HIV-1 Biology</td>
<td>Milloni Patel, Gretja Schnell, and Ronald Swanstrom</td>
</tr>
<tr>
<td>33</td>
<td>Human Monoclonal Antibodies Against HIV and Emerging Viruses</td>
<td>Dimitar S. Dimitrov</td>
</tr>
<tr>
<td>34</td>
<td>Biological Basis and Clinical Significance of HIV Resistance to Antiviral Drugs</td>
<td>Mark A. Wainberg and Susan Schader</td>
</tr>
<tr>
<td>35</td>
<td>NIAID HIV/AIDS Prevention Research</td>
<td>David N. Burns and Roberta Black</td>
</tr>
<tr>
<td>36</td>
<td>Epidemiological Surveillance of HIV and AIDS in Lithuania</td>
<td>Saulius Caplinskas</td>
</tr>
</tbody>
</table>

PART IV IMMUNOLOGY AND VACCINES

Section 1 Immunomodulation

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>TACI, Isotype Switching, CVID, and IgAD</td>
<td>Emanuela Castigli and Raif S. Geha</td>
</tr>
<tr>
<td>38</td>
<td>A Tapestry of Immunotherapeutic Fusion Proteins: From Signal Conversion to Auto-stimulation</td>
<td>Mark L. Tykocinski, Jui-Han Huang, Matthew C. Weber, and Michal Dranitzki-Elhalel</td>
</tr>
</tbody>
</table>
A Role for Complement System in Mobilization and Homing of Hematopoietic Stem/Progenitor Cells

M. Z. Ratajczak, R. Reca, M. Wysoczynski, M. Kucia, and J. Ratajczak

Post-translational Processing of Human Interferon-γ Produced in Escherichia coli and Approaches for Its Prevention

Maya Boyanova, Roumyana Mironova, Toshimitsu Niwa, and Ivan G. Ivanov

Section 2 Autoimmunity

B-cell dysfunctions in Autoimmune Diseases

Moncef Zouali

A Model System for Studying Mechanisms of B-cell Transformation in Systemic Autoimmunity

Wendy F. Davidson, Partha Mukhopadhyay, Mark S. Williams, Zohreh Naghashfar, Jeff X. Zhou, and Herbert C. Morse, III

Breath and Restoration of B-Cell Tolerance in Human Systemic Lupus Erythematosus (SLE)

Iñaki Sanz, R. John Looney, and J. H. Anolik

Section 3 Infection and Immunity

Dendritic Cells: Biological and Pathological Aspects

Immunomic and Bioinformatics Analysis of Host Immunity in the Vaccinia Virus and Influenza A Systems

Magdalini Moutaftsi, Björn Peters, Valerie Pasquetto, Carla Oseroff, John Sidney, Huynh Hoa-Bui, Howard Grey, and Alessandro Sette

Immunoreactions to Hantaviruses

Alemka Markotic´ and Connie Schmaljohn

Innate Immunity to Mouse Cytomegalovirus

Djurdjica Cekinovic´, Irena Slavuljica, Tihana Lenac, Astrid Krmpotic´, Bojan Polić, and Stipan Jonjic´

Section 4 Vaccines

Research and Development of Chimeric Flavivirus Vaccines

Simon Delagrave and Farshad Guirakhoo

Correlates of Immunity Elicited by Live Yersinia pestis Vaccine

Vivian L. Braciale, Michael Nash, Namita Sinha, Irina V. Zudina, and Vladimir L. Motin

PART V BUILDING A SUSTAINABLE PERSONAL RESEARCH PORTFOLIO

Strategies for a Competitive Research Career

Hortencia Hornbeak and Peter R. Jackson

Selecting the Appropriate Funding Mechanism

Priti Mehrotra, Hortencia Hornbeak, Peter R. Jackson, and Eugene Baizman

Preparing and Submitting a Competitive Grant Application

Peter R. Jackson and Hortencia Hornbeak

Identifying Research Resources and Funding Opportunities

Eugene Baizman, Hortencia Hornbeak, Peter R. Jackson, and Priti Mehrotra

Index
Contributors

Vyacheslav M. Abramov • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubchany, Russia

J. H. Anolik • Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

A. G. Artemenko • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine

Rusudan Aspindzelashvili • National Center for Tuberculosis and Lung Diseases / National Tuberculosis Program (NCTBLD/NTP), Tbilisi, Republic of Georgia

Ramy Aziz • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis, TN, USA

Eugene Baizman • Scientific Review Program, Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Lela Bakanidze • National Center for Disease Control and Medical Statistics of Georgia, Tbilisi, Republic of Georgia

Jacqueline T. Balthazar • Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA

Jacques Banchereau • Baylor Institute for Immunology Research, Dallas, TX, USA

Bryan H. Bellaire • Louisiana State University Health Science Center, Shreveport, LA, USA

Edward A. Berger • Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Gayle Bernabe • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Gayle Bernabe • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Robert Black • Prevention Sciences Branch, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Maya Boyanova • Department of Gene Regulations, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Vivian L. Braciale • Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA

Robert R. Brubaker • Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA

Mark Buller • Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO, USA

Robert J. Burgess • Armed Forces Institute of Pathology, Washington, DC, USA

David N. Burns • Prevention Sciences Branch, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Saulius Caplinskas • Lithuanian AIDS Center, Mykolas Romeris University, Vilnius, Lithuania

Ilaria Capua • OIE/FAO Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy

Emanuela Castiglione • Division of Immunology, Children’s Hospital, Boston, MA, USA

M. Donald Cave • Neurobiology and Developmental Science, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA

Djurdjica Cekinovic • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

Alexander V. Chestkov • State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia

Evelyne Couture-Tosi • Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France

Wendy F. Davidson • Marlene and Stewart Greenebaum Cancer Center and Department of Microbiology and Immunology, and the Center for Vascular and Inflammatory Diseases, BioPark Building 1, University of Maryland, Baltimore, MD, USA

Simon Delagrange • Acambis Inc., Cambridge, MA, USA

Tiziana Di Pucchio • Baylor Institute for Immunology Research, Dallas, TX, USA

Dimitar S. Dimitrov • Protein Interactions Group, Center for Cancer Research Nanobiology Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA

Michael Dobson • Armed Forces Institute of Pathology, Washington, DC, USA

T. Mark Doherty • Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark

Michal Dranitzki-Elhalel • Hadassah Medical Center, Ein Kerem, Israel

Karl Drlica • Public Health Research Institute, Newark, NJ, USA

Kathleen D. Eisenach • Departments of Pathology, Microbiology and Immunology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA

Valentin I. Evstigneev • Department of Biochemistry, Immunity, and Biodefense, Institute of Immunological Engineering, Lyubchany, Russia

Nourtan Fathey • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis, TN, USA
Contributors

Valentina A. Feodorova • Scientific and Research Department, Saratov State University, Saratov, Russia

William A. Fischer, II • Johns Hopkins Hospital, Baltimore, MD; Global Influenza Program, World Health Organization, Geneva, Switzerland; and University of Virginia, Charlottesville, VA, USA

Jason P. Folster • Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA

Angel S. Galabov • Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Shalva Gamsemlidze • National Center for Tuberculosis and Lung Diseases/National Tuberculosis Program (NCTBLD/NTP), Tbilisi, Republic of Georgia

Raif S. Geha • Division of Immunology, Children’s Hospital, Boston, MA, USA

Vassil St. Georgiev • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Maria Y. Giovannoni • Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Magnús Gøttfredsson • Department of Medicine, Landspítali University Hospital and University of Iceland School of Medicine, Reykjavík, Iceland

Ian Justin Glomski • Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France

Pierre Louis Goossens • Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France

Howard Grey • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

Farshad Guirakhoo • Senior Director, External Research & Development, Global Research and R&D, Sanofi Pasteur Campus Inc., Cambridge, MA, USA

Ted Hadfield • Armed Forces Institute of Pathology, Washington, DC, USA

Lauren Handley • Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO, USA

Carson Harrod • Baylor Institute for Immunology Research, Dallas, TX, USA

Graham F. Hatfull • Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA

Frederick Hayden • Johns Hopkins Hospital, Baltimore, MD; Global Influenza Program, World Health Organization, Geneva, Switzerland and University of Virginia, Charlottesville, VA, USA

Katherine T. Herz • Office of Global Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA

Huynh Hoa-bui • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

Hortencia Hornbeak • Scientific Review Program, Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

A. I. Hromov • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine

Jui-Han Huang • Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA

Lynn Y. Huynh • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

Paata Imnadze • National Center for Disease Control and Medical Statistics of Georgia, Tbilisi, Republic of Georgia

Ivan G. Ivanov • Department of Gene Regulations, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Peter R. Jackson • Scientific Review Program, Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Marina Janjigava • National Center for Tuberculosis and Lung Diseases/National Tuberculosis Program (NCTBLD/NTP), Tbilisi, Republic of Georgia

Ann E. Jerse • Veterans Affairs Medical Center, Decatur; and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA

Paul J. T. Johnson • Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA

Stipan Jonic • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

Nazia Kamal • Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA

Rita Kansal • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Science Center and the VA Medical Center, Memphis, TN

Arseny Kaprelyants • Balh Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia

Gennady I. Karataev • Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, Russia

Nicola N. Karkischenko • Scientific Center of Biomedical Technologies RAMS, Russia

Paul Keim • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

Valentin S. Khlubnikov • Department of Biochemistry, Immunity and Biodefense, Institute of Immunological Engineering, Lyubchany, Russia

Eynav Klechevsky • Baylor Institute for Immunology Research, Dallas, TX, USA, Technion–Israel Institute of Technology, Technion City, Haifa, Israel

Igor V. Kosarev • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubchany, Russia

Malak Kotb • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Science Center and the VA Medical Center, Memphis, TN, USA

Astrid Krempotic • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

M. Kucia • Stem Cell Biology Program, University of Louisville, Louisville, KY, USA

Nataly L. Kulikova • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubchany, Russia

V. E. Kuz’min • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine

Karen Lacourciere • Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

Thana Lenac • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

A. V. Liahovskij • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine
Contributors

R. JOHN LOONEY • Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

V. P. LOZITSKY • Ukrainian I.I. Mechnikov Research Anti-Plague Institute, Odessa, Ukraine

STEFANO MARANGON • OIE/FAO Reference Laboratory for Newcastle Disease and Avian Influenza, Istituto Zooprofilattico Sperimentale delle Venezie, Legnano, Padova, Italy

ALEMKA MARKOTIĆ • University Hospital of Infectious Diseases, Zagreb, Croatia

JOHN J. McGOWAN • National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

ALISA YU. MEDKOVA • Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, Russia

PRIȚI MEHROTRA • Scientific Review Program, Division of Extramural Activities, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA

ROUMYANA MIRONOVA • Department of Gene Regulations, Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria

VERIKO MIRTSKHULAVA • National Center for Tuberculosis and Lung Diseases/National Tuberculosis Program (NCTBLD/NTP), Tbilisi, Republic of Georgia and Emory University, Atlanta, GA, USA

MICHELE MOCK • Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France

HERBERT C. MORSE, III • Laboratory of Immunopathology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA

VLADIMIR L. MOTIN • Departments of Pathology/Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA

MAGDALINI MOUTAFTSI • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

GALINA MUKAMOLOVA • Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia

PARTHA MUKHOPADHYAY • Marlene and Stewart Greenebaum Cancer Center and Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD, USA

E. N. MURATOV • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine

UCHA NANAVA • National Center for Tuberculosis and Lung Diseases/National Tuberculosis Program (NCTBLD/NTP), Tbilisi, Republic of Georgia

MICHAEL NASH • Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA

TOSHIMITSU NIWA • Department of Clinical Preventive Medicine, Nagoya University School of Medicine, Nagoya, Japan

LUBOMIRA NIKOLAEVA-GLOMB • Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

MOHAMED NOOHa • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis, TN, USA

ZOHER NAGHASHHAR • Laboratory of Immunopathology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA

L. N. OGNICHENKO • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine

CARLA OSEROFF • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

NIKOLAY S. OSIN • Department of Biological Microanalysis, State Research Center, R&D Institute of Biological Engineering, Moscow, Russia

A. KAROLINA PALUCKA • Baylor Institute for Immunology Research, Dallas, TX, USA

SCOTT PARKER • Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO, USA

VIRGINIA PASCUAL • Baylor Institute for Immunology Research, Dallas, TX, USA

VALERIE PASQUETTO • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

MILLONI PATEL • Department of Microbiology and Immunology, UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

BIOERN PETERS • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA

STEFAN PHILIPOV • Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria

GUIDO POLI • AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Milano, Italy

BOJAN POLIĆ • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia

P. G. POLISCHUK • A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, Odessa, Ukraine

VERA G. POMELOVA • Laboratory of Molecular Diagnostics, Department of Biological Microanalysis, State Research Center, R&D Institute of Biological Engineering, Moscow, Russia

SERGEUI G. POPOV • National Center for Biodefense and Infectious Disease, George Mason University, Manassas, VA, USA

TANJA POPOVIC • United States Centers for Disease Control and Prevention, Atlanta, GA, USA

WILLIAM S. PROBERT • California State Department of Health Services, Microbial Diseases Laboratory, CA, USA

J. RATAIĆZAK • Stem Cell Biology Program, University of Louisville, Louisville, KY, USA

M. Z. RATAIĆZAK • Stem Cell Biology Program, University of Louisville, Louisville, KY, USA

SARAH ROWE • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis, TN, USA

ARCHIL SALAKAIA • National Center for Tuberculosis and Lung Diseases/National Tuberculosis Program (NCTBLD/NTP), Tbilisi, Republic of Georgia

ELENA SALINA • Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia

ISAKI SANZ • Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA

SUSAN SCHADER • McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada

CONNIE SCHMALJOHN • U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA

GRETA SCHINELL • Department of Microbiology and Immunology, UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Nikoloz Tsertsvadze • Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, Russia
ALESSANDRO SETTE • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
JOHN SIDNEY • Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
LONE SIMONSEN • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
NAMITA SINGH • Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
LUDMILA N. SINYASHINA • Gamaleya Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, Russia
IRENA SLAVULJICA • Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
GEORGE B. SMIRNOV • The Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
WILLIAM M. SHAFER • Department of Microbiology and Immunology and Laboratories of Microbial Pathogenesis, Emory University School of Medicine, Atlanta, GA, USA
H. L. STEVENSON • Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
RONALD SWANSTROM • Department of Microbiology and Immunology, UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
DAVID E. SWAYNE • Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA
PATRICIA SYLVESTRÉ • Unité Toxines et Pathogénie Bactériennes, Institut Pasteur, Paris, France
ROBERT J. TAYLOR • Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
SUE A. THEUS • Department of Pathology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
SHOTA TSANAVA • National Center for Disease Control and Medical Statistics of Georgia, Tbilisi, Republic of Georgia
NIKOLOZ TSERTSVADZE • National Center for Disease Control and Medical Statistics of Georgia, Tbilisi, Republic of Georgia
TENGIZ TSERTSVADZE • Infectious Diseases, AIDS, and Clinical Immunology Research Center, Tbilisi, Republic of Georgia
YURIY D. TSYGANKOV • State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
MARK TYKOCINSKI • Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
HIDEKI UENO • Baylor Institute for Immunology Research, Dallas, TX, USA
ONGA V. ULIANOVA • Scientific and Research Department, Saratov State University, Saratov, Russia
VLADIMIR N. UVERSKY • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubuchany, Russia
MATTHEW N. VAN ERT • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
ANATOLY M. VASILEV • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubuchany, Russia
RAISA N. VASILENKO • Department of Biochemistry of Immunity and Biodefense, Institute of Immunological Engineering, Lyubuchany, Russia
DAVID M. WAGNER • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
MARK A. WAINEBERG • McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
MATTHEW C. WEBER • Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
D. H. WALKER • Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
DOUGLAS E. WARNER • Veterans Affairs Medical Center, Decatur; and Department of Microbiology and Immunology, USA
KARL A. WESTERN • Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
ROBBIN S. WEYANT • United States Centers for Disease Control and Prevention, Atlanta, GA, USA
MARK S. WILLIAMS • Department of Microbiology and Immunology, University of Maryland School of Medicine, and Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD, USA
ROBERT W. WILLIAMS • The MidSouth Center for Biodefense and Security at the University of Tennessee Health Sciences Center and the VA Medical Center, Memphis TN, USA
M. WYSCZYNKI • Stem Cell Biology Program, University of Louisville, Louisville, KY, USA
M. SHAYLAN ZANECKI • Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
XILIN ZHAO • Public Health Research Institute, Newark, NJ, USA
JEFF X. ZHOU • Laboratory of Immunopathology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
MONCEF ZOULI • Inserm, Paris, University of Paris, France
IRINA V. ZUDINA • Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
Part I
Introduction
The National Institute of Allergy and Infectious Diseases (NIAID) of the U.S. National Institutes of Health (NIH) is within the U.S. Department of Health and Human Services (DHHS; Figure 1). The NIH is the DHHS agency responsible for biomedical research and research training. In the U.S. federal system, health is considered primarily a local and state responsibility, with the federal government providing support and assistance as required. Biomedical research, however, is viewed as a federal responsibility. For that reason, the NIH size and budget have resulted in its becoming the largest of the DHHS agencies.

The NIH consists of 27 institutes and centers, 24 of which carry out and fund biomedical research and three that support the NIH biomedical research endeavor (Figure 2). Each institute consists of two major components: the extramural and the intramural. Intramural programs consist of NIH scientists working in NIH government laboratories. Intramural research constitutes of about 10 to 20% of each institute’s research effort and budget. Intramural researchers select scientists to come to their laboratories for research training and conduct international research using the funding available to their laboratory. The extramural program of each institute is approximately 80 to 90% of its total funding and operates through both unsolicited and solicited research applications for grants, collaborative agreements, and contracts. Applications are submitted to the NIH Center for Scientific Review, which assigns each application to the appropriate initial review group for scientific peer review and to an institute according to the scientific content of the application and the research mission of the institute. NIH is unique among national biomedical research agencies in that nearly one-half of the intramural scientists are not U.S. citizens and that foreign scientists are eligible to apply directly or as a partner in extramural awards.

NIAID is similar in its organization to other NIH institutes in that it has three intramural divisions and five extramural divisions (Figure 3). The Division of Intramural Research heavily emphasizes basic biomedical research, while the Vaccine Research Center’s mission includes the discovery and early development of vaccine products. The Division of Clinical Research was established in 2006 to set up domestic and international sites to carry out human subject studies on new or improved diagnostic tests, drugs, vaccines and other prevention products. The Division of Microbiology and Infectious Diseases is responsible for all infectious and parasitic diseases except for the human acquired immunodeficiency syndrome (AIDS). The Division of AIDS is responsible for AIDS and related conditions. The Division of Allergy, Immunology, and Transplantation is concerned with the human immune system. The Division of Extramural Activities provides support to the other three extramural divisions through NIAID-organized initial review groups, grant and contract management, and award databases.

The NIAID mission is to understand, treat, and ultimately prevent infectious, immunological, and allergic diseases that affect or threaten U.S. populations and hundreds of millions of people worldwide. The major areas of NIAID investigation currently are (in alphabetical order): AIDS; acute respiratory infections, including influenza; antimicrobial drug resistance, asthma and allergic diseases; civilian biodefense; emerging infectious diseases; enteric infections; genetics, transplantation, and immune tolerance; immune disorders; malaria and other tropical diseases; sexually transmitted diseases; tuberculosis, and vaccine development and evaluation.

The evolution of the NIAID budget is summarized in Figure 4. Prior to the recognition of AIDS, NIAID was the seventh largest NIH Institute. As a result of its research responsibilities in infectious diseases and immunology, funding for AIDS and AIDS-related research rose to become one-half of the NIAID budget. Subsequent to the anthrax attacks in 2001, NIAID was given lead responsibility for the U.S. Civilian Biodefense Research Initiative. At the present time, NIAID is the second...
largest institute after the National Cancer Institute. NIAID research funding is approximately one-third AIDS, one-third civilian biodefense, and one-third non-AIDS/non-biodefense. Following a Congressional mandate to double the NIH budget in the 1990s, the NIH budget has been flat for the past several years, resulting in overall inflation-adjusted negative growth. During this period, NIAID funding for international research has maintained a slow and steady growth (Figure 5) so that international research now accounts for 10% of the total NIAID budget. This remarkable sustainability is due to the globalization of health problems, the relevance of health conditions globally to domestic U.S. health problems, humanitarian objectives, and the economic development, political stability, and increasing investment in international health on the part of key international partners such as Brazil, China, and India. This sustained interest and growth in international research is not seen across NIH. One major factor that fuels NIAID’s global research activities is that our mission in infectious diseases necessitates that we partner with countries that have heavier burdens of disease and/or different risk factors in the development of clinical sites and the evaluation of new or improved diagnostic tests, treatment modalities, or prevention products.

NIAID operates under five guiding principles in Global Health Research. First, every effort is made to target collaborative research efforts to the needs of the partner country or region. Second, it strives to develop collaborative relationships that begin with collaboration in basic research and discovery so that intellectual property can be shared and proceed through product development, the design of human subject studies, and the conduct of rigorous clinical trials that generate data resulting in approval of the product by regulatory agencies. Third, to achieve multidisciplinary research collaboration, research capacity must be built and sustained in the host country. Fourth, NIAID strives to stimulate scientific collaboration and global multi-sector partnerships. Finally, NIAID international collaboration must develop training, communication, and outreach programs.

NIAID uses six approaches to support its international research. The first is through the NIAID intramural research divisions for pre- and postdoctoral research training. This research training frequently results in sustained collaboration once the visiting scientists have returned to their home countries. Intramural collaboration is limited by the resources available in each laboratory but has the advantages of being...
decentralized and scientifically driven, and it provides the opportunity to establish long-term collaboration with the NIAID laboratory and other researchers who have trained there. Because about 50% of NIH intramural scientists are from outside the United States and only 10% of intramural scientists become tenured, the intramural research training experience provides an opportunity to become part of a global network linking trainees and their home institutions with NIAID-tenured scientists, U.S. scientists who take academic or private sector appointments or join other U.S. agencies, and foreign scientists who return home to continue their research careers.

Foreign investigators are encouraged to partner with U.S. extramural investigators in the submission of investigator-initiated research applications or in response to solicited program announcements (PAs) and requests for applications (RFAs). This is how NIAID supports the bulk of its international research. If the collaboration is between U.S. scientists and scientists in another industrialized country, there may be no NIAID funding involved. On the other hand, if the collaborating overseas scientist is from a middle- or lower-income country and/or does not have his or her own funding, NIAID will provide the U.S. investigator with research funds to support the overseas component.

NIH is unique among national domestic research agencies in that foreign investigators are eligible to apply directly for investigator-initiated research awards. Foreign scientists and institutions are also eligible to apply for most solicited grant and collaborative agreement solicitations. There are no international set-aside funds, and foreign investigators must compete against experienced U.S. investigators. All unsolicited foreign applications with a competitive score must also be approved by the National Allergic and Infectious Diseases Council before funding. Because of the intense competition and grantsmanship required, NIAID does not encourage foreign investigators to apply directly unless their ideas are...
truly novel and the investigator has considerable experience preparing NIAID grant applications. NIH is obligated to follow U.S. contracting laws, so that foreign institutions can be funded in response to requests for proposals only if there is a prior determination that there is no viable U.S. source, or the foreign application is clearly superior to responses from U.S. institutions.

NIAID also participates in a number of bilateral programs with foreign governments and institutions. These agreements may be developed at the Presidential, State Department, DHHS, or NIH levels in science and technology, health, or biomedical research. In the majority of cases, these agreements have no NIAID funding associated with them and collaborative activities must be undertaken with resources currently at hand in intramural laboratories or using extramural funding mechanisms.

NIH intramural scientists are encouraged to collaborate with counterparts at other U.S. government agencies such as the Centers for Disease Control and Prevention, the Food and Drug Administration, and the U.S. Army or Navy. U.S. Government scientists, however, may not compete for NIH extramural research funds. When there is mutual interest, however, NIH may negotiate interagency agreements with these and other agencies such as the State Department or the U.S. Agency for International Development that serve as contractual mechanisms to transfer funds and resources between the participating agencies.

Finally, NIAID collaborates with multilateral agencies such as the World Health Organization (WHO), the Pan American Health Organization, and the Joint United Nations Program on HIV/AIDS through consultation, serving on advisory boards, and participation in technical meetings. NIAID has provided targeted funding to the WHO/World Bank/UNDP Special Program for Research and Training in Tropical Disease Research. NIAID also has a Congressional mandate to provide funding to the Global Fund to Combat AIDS, Tuberculosis, and Malaria.

Figure 3. (See Color Plates).
Figure 5. (See Color Plates).

Figure 6. (See Color Plates).
The NIAID strategy to respond globally to new or emerging infectious diseases and scientific opportunity has been first to encourage the intramural research community to turn their talent and attention to the new or underserved research area. The second step is to encourage extramural investigators working in relevant research areas to submit supplemental research proposals. The third step is to alert the more general scientific community about NIAID’s research priorities and interests in the area through notices, PAs, and RFAs in the NIH Guide for Grants and Contracts. Foreign investigators are ordinarily eligible to partner with U.S. applicants and, if they prefer, apply directly for NIAID funding. The result of these solicitations is to increase the research, the research training base, and eventually the pool of investigators in the targeted area. NIAID fulfills the need for directed activities in support of research in the targeted area through contracts to build the infrastructure and to provide research reagents and repositories.

After a critical mass of individual extramural awards has been reached, NIAID usually puts out an RFA to establish multidisciplinary centers of excellence in the field. These centers of excellence provide further opportunities for research training of U.S. and foreign scientists. The centers of excellence are usually encouraged to engage in international research and/or carry out research training through the center award and/or independent research and research training awards. Examples of NIAID centers of excellence programs include the Sexually Transmitted Disease Research Centers, the Tropical Disease Research Units, the Centers for AIDS Research, the Tuberculosis Research Unit, the Regional Centers for Emerging Infectious Diseases, and the recently announced Centers for Influenza Research and Surveillance.

Once the domestic centers of excellence are established, the next phase is the establishment of special programs to link the domestic network to international partners. RFAs are published to solicit applications for collaboration with one or more foreign partners. This is the time when the NIH Fogarty International Center solicits applications from U.S. institutions for international research training in the targeted area. Examples of linkage programs include the International Collaboration in Infectious Disease Research Program, the HIV Vaccine Trials Network, HIV Prevention Trials Network, the NIAID International Centers of Excellence, and the International Emerging Infectious Disease Research and Training Program.

The third phase is reached when the linkage programs are mature and international partners have developed the capacity to carry out and account for their own research. NIAID develops solicitations open to foreign institutions to apply directly to NIAID in the targeted area. Examples of mechanisms to support foreign researchers include the Tropical Medicine Research Centers, the Multilateral Initiative on Malaria, the Comprehensive International Program for Research on AIDS, and the International Research in Infectious Diseases Program.

Part II
Microbiology and Infectious Diseases
Section 1
Emerging and Re-Emerging Infections
1.1 Introduction

Infectious diseases, like most human diseases, are affected by complex polymorphic and nonpolymorphic interactive traits that influence host–pathogen interactions and modulate disease phenotype. It is well established that host genetic variability strongly affects susceptibility to infectious diseases and can significantly potentiate the severity of their clinical manifestations. The same individual could be highly susceptible to a particular infection yet completely resistant to another—ultimately these complex genetic variations ensure that some of us will be selected to survive catastrophic biological threats and help protect our species from extinction. As a result of global environmental, social and political changes, we are facing real danger that could result from major natural, deliberate, or accidental biological threats. The best means of protection against these impending threats is to be better prepared. To do so, we need to gain a deeper understanding of how our genotypes modulate our susceptibility and reaction to specific infectious agents, because this information helps us to better understand disease mechanism.

Our research has been focused on linking specific genotypes to susceptibility phenotypes and delineating pathways and molecular events that modulate host resistance or susceptibility to specific infectious pathogens. Inasmuch as it is quite difficult to conduct certain infectious disease studies in humans, there has been a critical need for small animal models for infectious diseases. Appreciating the limitations of the existing models, we have developed several novel and complementary mouse models that can be used to gain a better understanding of complex disease mechanisms and reveal the interactive network(s) that lead to eradication of the infection or to serious pathology caused by our overzealous response to it.

1.1.1 A Genetically Diverse, Genomically Well Defined Reference Mouse Panel Afford an Ideal Model for a Systems Biology Approach to Infectious Diseases

Traditionally, most experimental models of infectious diseases have involved inbred rodents, including the most common 10 strains of inbred mice (i.e., A/J, BALB/c, CBA, C3H/He, C57BL/6J, DBA/2, NZB, and AKR). Whereas these models have been invaluable to scientists, their downfall is their limited genetic variability, where certain phenotypes may be suppressed or grossly exaggerated. A good analogy would be like conducting a clinical trial using the same eight people every time and expecting to generalize the results to the rest of the human population. Clearly, this is neither optimal nor representative of the variation seen in humans. For this reason, several groups have been generating panels of genetically diverse mice to study the genetics of susceptibility to various diseases. Of these, the RI mice are ideal for many reasons (1, 2).

The RI strains are generated by crossing two inbred strains followed by ≥20 consecutive generations mating among siblings (1–4) (Figure 1.1). These RI mouse strains are a powerful tool for identifying QTL and interactive gene networks...
modulating infectious disease phenotypes. The panel we have in Memphis is the advanced RI (ARI) mice derived from the parental C57BL/6J and DBA/2 strains, which are known to differ considerably in their susceptibility to a number of infectious agents. These ARI BXD strains contain roughly twice as many recombinations as standard RI strains. The BXD ARI strains can therefore be used to map QTLs with twice the positional precision as can be achieved with the original BXDs. Figure 1.1 illustrates the schema used for generating those strains.

We currently have 80 BXD strains that are being extensively phenotyped and genotyped. Each BXD strain is genetically distinct from other strains, but all members of a given BXD strain are inbred (i.e., genetically identical). Thus, studies can be repeated on the same strain (individual) at different times, for as many times, and with a large number of biological replicas, thereby providing strong statistical power for the data. Another important feature of our BXD strains is that both parental strains have been sequenced and this greatly facilitates the identification of genes within mapped QTLs.

Prior to using the ARI mice for mapping and reverse genetics studies, we spend considerable time optimizing and standardizing the infection model. Once this has been accomplished, we basically infect mice from the ARI panel with the same dose of pathogen and measure different phenotypes (e.g., survival, weight loss, pathogen load in blood and dissemination to peripheral organs, etc.). The ARI mice are then ranked relative to each other for a given phenotype. These relative phenotype values are then analyzed in the context of the mouse genotype using WebQTL tools available on www.gennetwork.com, which provides the QTL mapping for phenotypes of interest. The bioinformatics tools allow us to inspect the single nucleotide polymorphism density within the mapped loci and to examine the genes within the loci in order to narrow down the number of candidate genes that should be further interrogated. The tools also allow us to identify interactive loci, through which we can discover interactive pathways modulating the measured phenotype.

Data generated using the ARI reference population reveal polygenic and pleiotropic networks modulating disease
phenotype and thereby providing a disease roadmap that helps focus hypotheses and expedite the process of forward systems discovery and research translation. The studies described in this chapter illustrate the utility of these mice in infectious disease studies.

1.1.2 Studies on the Genetics of Susceptibility to Invasive Group A Streptococcal (GAS) Sepsis Illustrate the Utility of RI Mice in Infectious Disease Research

Severe forms of invasive GAS infections associated with high morbidity and mortality were prevalent during the 1918 flu pandemic, then virtually disappeared from 1920 to the 1980s, when suddenly severe invasive disease reemerged in many parts of the world, causing panic and leading the media to dub it “the flesh-eating disease” (6–10). The bacteria are considered an ideal model for studying the effect of host genetics on the infection outcome, because the same bacteria can cause a wide spectrum of diseases in different individuals. These diseases range from mild sore throat to deadly diseases, such as streptococcal toxic shock (STSS), necrotizing fasciitis (NF), rheumatic fever and rheumatic heart disease (RHD), glomerulonephritis, and neurological disorders. We and others have identified specific immunogenetic polymorphisms that predispose to particular forms of GAS diseases and determine the level of risk for the severe forms of these illnesses, including RHD, NF and STSS (11–13).

Our STSS susceptibility studies have been ongoing since 1992 in collaboration with Dr. Donald E. Low and the Ontario Streptococcal Study Group. GAS are the richest known bacteria in superantigens (SAgs), with more than 13 identified SAgs to date (SpeA-C, SpeF-M, SSA, and SmeZ 1-24), with different GAS strains having different SAgs repertoires. SAgs trigger excessive activation of T cells and MHC II-expressing cells, and cause massive release of inflammatory cytokines (e.g., TNF-β and IFN-γ). Responses of different individual to the same SAgs can also vary quite drastically (11–13). Besides the SAgs, GAS possess many surface and secreted proteins that interact with the immune system (immune cells and complement proteins), e.g., M protein, C5a peptidase, SIC, and many streptodornases, which are involved in degrading neutrophil extracellular traps (14).

In the first phase of our studies, we focused on genetic elements that may potentiate the host response to GAS SAgs. We identified specific HLA-II alleles and haplotypes that confer very strong resistance to STSS, and others that predispose to it. We validated our association studies, biologically, through both in vitro studies with human PBMC (different HLA types) and in HLA-tg mice carrying alleles of interest. The role of HLA-II variation in STSS susceptibility is logical because the GAS SAgs, which are piovital mediators of STSS, utilize the HLA-II molecules as receptors through which they interact with TCRVβ elements and elicit potent inflammatory responses leading to STSS in genetically predisposed high responders (Figures 1.2 and 1.3).

Thus, we hypothesize that other host genetic elements might also modulate susceptibility to severe GAS sepsis and STSS, notably in earlier stages of infection controlled by the innate immune response of the host, and we are interested in finding pathways and networks rather than individual genes that are modulated by immune cells in response to GAS.

To discover additional genetic variations and pathways that modulate the outcome of GAS sepsis, we turned to the ARI BXD mice described earlier. The data included in the following paragraph underscore the utility of these mice in the discovery process.

Our initial studies showed that DBA/2J mice are more susceptible to severe GAS sepsis than C57BL/6J. Initially, we used approximately 300 mice from 20 BXD strains to optimize the infection dose and identify confounding non- genetic factors that need to be adjusted or included as significant covariates in the final analysis. An optimal dose of 1–3 × 10^7 CFU/100 µL per mouse of a virulent MIT1 GAS clinical isolate and BXD strains ages 40 to 120 days were used in this intravenous model of GAS sepsis. As shown in Figure 1.4, several BXD strains showed phenotypes outside the ranges of the parental strains, with several significantly more susceptible or resistant than their ancestors. In nine ensuing experiments, about 360 mice from 34 strains (32 BXDs and two ancestors) were infected intravenously with the optimal dose of the bacteria and survival was monitored every eight hours for seven days. Mice were weighed every 12 hours and weight loss was calculated. Bacterial load in blood (CFU/mL) was determined for all mice at 24 hours, and a bacteremia index was determined and corrected for covariates. All mice developed bacteremia, but with considerable differences in severity and survival rates (Figure 1.4).
Survival was recorded in day/day fraction post infection, and for each experiment the data was normalized to calculate a relative survival index (RSI). RSI for each strain and for each experiment were corrected for variables (mainly age) to generate a corrected index, cRSI. Using the Data Desk statistical program, we conducted multiple regression analyses for individual as well as for all nine combined experiments. Age was confirmed as a significant determinant of survival and bacterial spread, but the strongest factor influencing survival, as expected, was the genetic background of BXD strains \((p \leq 0.0001) \).

These studies allowed us to map a strong QTL-modulating sepsis severity to a locus on chromosome 2. We are currently fine-tuning the mapping using additional BXD strains and interrogating genes of interest within the mapped QTL. We believe it will be quite informative to acquire systems information on GAS in the BXD strains \(\textit{in vitro} \) and \(\textit{in vivo} \). We plan to compare the data to human \(\textit{in vitro} \) responses and patient’s acute and convalescent plasma. This will provide a comprehensive mouse to human \(\textit{in vitro} \) and \(\textit{in vivo} \) correlation using a very well characterized set of samples.

References

