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Preface

The book is devoted to the mathematical description of probabilistic condi-
tional independence structures. The topic of conditional independence, which
falls within both the scope of statistics and of artificial intelligence, has been
at the center of my research activity for many years – since the late 1980s. I
have been primarily influenced by researchers working in the area of graphi-
cal models but I gradually realized that the concept of conditional indepen-
dence is not necessarily bound to the idea of graphical description and may
have a broader impact. This observation led me to an attempt to develop a
non-graphical method for describing probabilistic conditional independence
structures which, in my view, overcomes an inherent limitation of graphical
approaches. The method of structural imsets described in this book can be
viewed as an algebraic approach to the description of conditional independence
structures although it remains within the framework of discrete mathematics.

The basic idea of this approach was already presented in the middle of
the 1990s in a series of papers [137]. However, I was not satisfied with the
original presentation of the approach for several reasons. First, the series of
papers only dealt with the discrete case, which is a kind of imperfection from
the point of view of statistics. Second, the main message was dimmed by un-
necessary mathematical peculiarities and important ideas were perhaps not
pinpointed clearly. Third, the motivation was not explained in detail. I also
think that the original series of papers was difficult for researchers in the area
of artificial intelligence to read because “practical” implementation aspects of
the presented approach were suppressed there. Another point is that the pic-
torial representation of considered mathematical objects, to which researchers
interested in graphical models are accustomed, was omitted.

Within the next six years, further mathematical results were achieved
which amended, supplemented and gave more precision to the original idea. I
have also deliberated about suitable terminology and the way to present the
method of structural imsets which would be acceptable to statisticians and
researchers in the area of artificial intelligence, as well as exact from the math-
ematical point of view. I wrote it up in my DrSc thesis [146], which became
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the basis of this monograph. After finishing the thesis, I realized the potential
future practical application of the method to learning graphical models and
decided to emphasize this by writing an additional chapter.

Thus, the aim of this monograph is to present the method of structural im-
sets in its full (present) extent: the motivation; the mathematical foundations,
which I tried to present in a didactic form; indication of the area of applica-
tion; and open problems. The motivation is explained in the first chapter. The
second chapter recalls basic concepts in the area of probabilistic conditional
independence structures. The third chapter is an overview of classic graphical
methods for describing conditional independence structures. The core of the
method of structural imsets is presented in the next four chapters. The eighth
chapter shows application of the method to learning graphical models. Open
problems are gathered in the ninth chapter and necessary elementary math-
ematical notions are provided in the Appendix for the reader’s convenience.
Then the List of Notation follows. As there are many cross-references to el-
ementary units of the text, like Lemmas, Remarks etc., they are listed with
page numbers afterwards. The text is concluded by the References and the
Index.

The book is intended for

• mathematicians who may be attracted by this particular application of
mathematics in the area of artificial intelligence and statistics;

• researchers in statistics and informatics who may become interested in
deeper understanding of the mathematical basis of the theory of (graphi-
cal) models of conditional independence structures;

• advanced PhD students in the fields of mathematics, probability, statistics,
informatics and computer science who may find inspiration in the book
and perhaps make some progress either by solving open problems or by
applying the presented theory in practice.

In particular, I have in mind those PhD students who are thinking about
an academic career. They are advised to read the book starting with the
Appendix and to utilize the lists at the end of the book.

Many people deserve my thanks for help with this piece of work. In particu-
lar, I would like to thank Marie Kolářová for typing the text of the monograph
in LATEX. As concerns expert help I am indebted to my colleagues (and for-
mer co-authors) Fero Matúš and Phil Dawid for their remarks (even for some
critical ones made by Fero), various pieces of advice and pointers to the lit-
erature and discussion which helped me clarify the view on the topic of the
book. I have also profited from cooperation with other colleagues: some results
presented here were achieved with the help of computer programs written by
Pavel Boček, Remco Bouckaert, Tomáš Kočka, Martin Volf and Jǐŕı Vomlel.
Moreover, I am indebted to my colleagues Radim Jiroušek, Otakar Kř́ıž and
Jǐrina Vejnarová for their encouragement in writing my DrSc thesis, which was
quite important for me. The cooperation with all of my colleagues mentioned
above involved joint theoretical research as well. A preliminary version of the
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book was read by my PhD student Petr Šimeček, who gave me several useful
comments and recommendations including an important example. I also made
minor changes in response to comments given by Tomáš Kroupa and Helen
Armstrong, who read some parts of the manuscript. As concerns the technical
help I would like to thank Václav Kelar for making special LATEX fonts for me
and to Jarmila Pánková for helping me to prepare several pages with special
pictures. I am likewise grateful to Cheri Dohnal and Antońın Otáhal for cor-
recting my (errors in) English. I was very pleased by the positive attitude of
Stephanie Harding, who is the Mathematics and Statistics Editor at Springer
London; the cooperation with her was smooth and effective. She found suit-
able reviewers for the book and they gave me further useful comments, which
helped me to improve the quality of the book.

I am also indebted to other colleagues all over the world whose papers,
theses and books inspired me somehow in connection with this monograph. In
particular, I would like to mention my PhD supervisor, Albert Perez. However,
many other colleagues influenced me in addition to those who were already
mentioned above. I will name some of them here: Steen Andersson, Luis de
Campos, Max Chickering, Robert Cowell, David Cox, Morten Frydenberg,
Dan Geiger, Tomáš Havránek, Jan Koster, Ivan Kramosil, Steffen Lauritzen,
Franco Malvestuto, Michel Mouchart, Chris Meek, Azaria Paz, Judea Pearl,
Michael Perlman, Jean-Marie Rolin, Thomas Richardson, Jim Smith, Glenn
Shafer, Prakash Shenoy, David Spiegelhalter, Peter Spirtes, Wolfgang Spohn,
Nanny Wermuth, Joe Whittaker, Raymond Yeung and Zhen Zhang. Of course,
the above list is not exhaustive; I apologize to anyone whose name may have
been omitted.

Let me emphasize that I profited from meeting several colleagues who gave
me inspiration during the seminar, “Conditional Independence Structures”,
which was held from September 27 to October 17, 1999 in the Fields Institute
for Research in Mathematical Sciences, University of Toronto, Canada, and
during several events organized within the framework of the ESF program,
“Highly Structured Stochastic Systems” in the years 1997–2000. In particular,
I wish to thank Helène Massam and Steffen Lauritzen, who gave me a chance
to participate actively in these wonderful events. For example, I remember the
stimulating atmosphere of the HSSS research kitchen “Learning conditional
independence models”, held in Třešt’, Czech Republic, in October 2000.

Finally, this monograph was written in the Department of Decision-Making
Theory of the Institute of Information Theory and Automation (Academy of
Sciences of the Czech Republic) in Prague and was supported by the projects
GA AVČR n. K1019101 and GAČR n. 201/01/1482. It is a result of long-term
research performed in the institute, which has provided a suitable environment
for my work since 1983.

Prague,
March 2004 Milan Studený
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1

Introduction

The central topic of this book is how to describe the structures of probabilis-
tic conditional independence in a way that the corresponding mathematical
model has both relevant interpretation and offers the possibility of computer
implementation.

It is a mathematical monograph which found its motivation in artificial
intelligence and statistics. In fact, these two fields are the main areas where
the concept of conditional independence has been successfully applied. More
specifically, graphical models of conditional independence structure are widely
used in:

• the analysis of contingency tables, an area of discrete statistics dealing
with categorical data;

• multivariate analysis, a branch of statistics investigating mutual relation-
ships among continuous real-valued variables; and

• probabilistic reasoning , an area of artificial intelligence where decision-
making under uncertainty is done on the basis of probabilistic models.

A (non-probabilistic) concept of conditional independence was also introduced
and studied in several other calculi for dealing with knowledge and uncertainty
in artificial intelligence (e.g. relational databases, possibility theory, Spohn’s
kappa-calculus, Dempster-Shafer’s theory of evidence). Thus, the book has
a multidisciplinary flavor. Nevertheless, it certainly falls within the scope of
informatics or theoretical cybernetics, and the main emphasis is put on math-
ematical fundamentals.

The monograph uses concepts from several branches of mathematics, in
particular measure theory, discrete mathematics, information theory and alge-
bra. Occasional links to further areas of mathematics occur throughout the
book, for example to probability theory, mathematical statistics, topology and
mathematical logic.



2 1 Introduction

1.1 Motivational thoughts

The following “methodological” considerations are meant to explain my mo-
tivation. In this section six general questions of interest are formulated which
may arise in connection with any particular method for describing conditional
independence structures. I think these questions should be answered in order
to judge fairly and carefully the quality and suitability of every considered
method.

To be more specific, one can assume a general situation, illustrated by
Figure 1.1. One would like to describe conditional independence structures (in
short, CI structures) induced by probability distributions from a given fixed
class of distributions over a set of variables N . For example, we can consider
the class of discrete measures over N (see p. 11), the class of regular Gaussian
measures over N (see p. 30), the class of conditional Gaussian (CG) measures
over N (see p. 66) or any specific parameterized class of distributions. In
other words, a certain distribution framework is specified (see Section A.9.5).
In probabilistic reasoning, every particular discrete probability measure over
N represents “global” knowledge about a (random) system involving variables
of N . That means it serves as a knowledge representative. Thus, one can take
an even more general point of view and consider a general class of knowl-
edge representatives within an (alternative) uncertainty calculus of artificial
intelligence instead of the class of probability distributions (e.g. a class of
possibilistic distributions over N , a class of relational databases over N etc.).

�
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�

�

�

�

�

�

�

�Objects of discrete
mathematics

Formal independence models

Knowledge representatives
(probability distributions)

Fig. 1.1. Theoretical fundamentals (an informal illustration).

Every knowledge representative of this kind induces a formal independence
model over N (for definition see p. 12). Thus, the class of induced conditional
independence models is defined; in other words, the class of CI structures to
be described is specified (the shaded area in Figure 1.1). One has in mind a
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method for describing CI structures in which objects of discrete mathematics –
for example, graphs, finite lattices and discrete functions – are used to describe
CI structures. Thus, a certain universum of objects of discrete mathematics
is specified. Typical examples are classic graphical models widely used in
multivariate analysis and probabilistic reasoning (for details, see Chapter 3).
It is supposed that every object of this type induces a formal independence
model over N . The intended interpretation is that the object thus “describes”
an induced independence model so that it can possibly describe one of the CI
structures that should be described.

The definition of the induced formal independence model depends on the
type of considered objects. Every particular universum of objects of discrete
mathematics has its respective criterion according to which a formal indepen-
dence model is ascribed to a particular object. For example, various separation
criteria for classic graphical models were obtained as a result of evolution of
miscellaneous Markov properties (see Remark 3.1 in Section 3.1). The evolu-
tion has led to the concept of “global Markov property” which establishes a
graphical criterion to determine the maximal set of conditional independence
statements represented in a given graph. This set is the ascribed formal inde-
pendence model. The above-mentioned implicit assumption of the existence
of the respective criterion is a basic requirement of consistency , that is, the
requirement that every object in the considered universum of objects has un-
ambiguously ascribed a certain formal independence model. Note that some
recently developed graphical approaches (see Section 3.5.3) still need to be
developed up to the concept of a global Markov property so that they will
comply with the basic requirement of consistency. Under the above situation
I can formulate the first three questions of interest which, in my opinion, are
the most important theoretical questions in this general context.

• The faithfulness question is whether every object from the considered uni-
versum of objects of discrete mathematics indeed describes one of the CI
structures.

• The completeness question is whether every CI structure can be described
by one of the considered objects. If this is not the case an advanced sub-
question occurs, namely the task to characterize conveniently those formal
independence models which can be described by the objects from the con-
sidered universum.

• The equivalence question involves the task of characterizing equivalent
objects, that is, objects describing the same CI structure. An advanced
subquestion is whether one can find a suitable representative for every
class of equivalent objects.

The phrase “faithfulness” was inspired by terminology used by Spirtes et al.
[122], where it has similar meaning for graphical objects. Of course, the above
notions depend on the considered class of knowledge representatives so that
one can differentiate between faithfulness in a discrete distribution framework
(= relative to the class of discrete measures) and faithfulness in a Gaussian
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distribution framework. Note that for classic graphical models, the faithfulness
is usually ensured while the completeness is not (see Section 3.6). To avoid
misunderstanding let me explain that some authors in the area of (classic)
graphical models, including myself, also used a traditional term “(strong)
completeness of a separation graphical criterion” [44, 90, 141, 73]. However,
according to the above classification, results of this type are among the results
gathered under the label “faithfulness” (customary reasons for traditional
terminology are explained in Remark 3.2 on p. 45). Thus, I distinguish between
the “completeness of a criterion” on the one hand and the “completeness of a
universum of objects” (for the description of a class of CI structures) on the
other hand.

Now I will formulate three remaining questions of interest which, in my
opinion, are the most important practical questions in this context (for an
informal illustrative picture see Figure 1.2).
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Fig. 1.2. Practical questions (an informal illustration).

• The interpretability question is whether considered objects of discrete
mathematics can be conveyed to humans in an acceptable way. That usu-
ally means whether or not they can be visualized so that they are under-
stood easily and interpreted correctly as CI structures.

• The learning question is how to determine the most suitable CI structure
either on the basis of statistical data (= testing problem) or on the basis
of expert knowledge provided by human experts. An advanced statistical
subquestion is the task to determine even a particular probability distri-
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bution inducing the CI structure, which is equivalent to the problem of
“estimation” of parameters of a statistical model.

• The implementation question is how to manage the corresponding compu-
tational tasks. An advanced subquestion is whether or not the acceptance
of a particular CI structure allows one to do respective subsequent calcu-
lation with probability distributions effectively, namely whether the con-
sidered objects of discrete mathematics give guidance in the calculation.

Classic graphical models are easily accepted by humans; however, their picto-
rial representation may sometimes lead to another interpretation. For exam-
ple, acyclic directed graphs can either be interpreted as CI structures or one
can prefer “causal” or “deterministic” interpretation of their edges [122], which
is different. Concerning computational aspects, an almost ideal framework is
provided by the class of decomposable models which is a special class of graph-
ical models (see Section 3.4.1). This is the basis of a well-known “local compu-
tation method” [66] which is at the core of several working probabilistic expert
systems [49, 26]. Of course, the presented questions of interest are connected
to each other. For example, structure learning from experts certainly depends
on interpretation while (advanced) distribution learning is closely related to
the “parameterization problem” (see p. 210), which also has a strong compu-
tational aspect.

The goal of these motivational thoughts is the idea that the practical ques-
tions are ultimately connected with the theoretical basis. Before inspection of
practical questions one should first solve the related theoretical questions, in
my opinion. Regrettably, some researchers in artificial intelligence (and to a
lesser degree, those in statistics) do not pay enough attention to the theo-
retical grounds and concentrate mainly on practical issues like simplicity of
accepted models, either from the point of view of computation or visualiza-
tion. They usually settle on a certain class of “nice” graphical models (e.g.
Bayesian networks – see p. 46) and do not realize that their later technical
problems are caused by this limitation.

Even worse, limitation to a small class of models may lead to serious
methodological errors. Let me give an example that is my main source of
motivation. Consider a hypothetical situation where one is trying to learn the
CI structure induced by a discrete distribution on the basis of statistical data.
Suppose, moreover, that one is limited to a certain class of graphical models
– say, Bayesian networks. It is known that this class of models is not com-
plete in the discrete distribution framework (see Section 3.6). Therefore one
searches for the “best approximation”. Some of the learning algorithms for
graphical models browse through the class of possible graphs as follows. One
starts with a graph with the maximum number of edges, performs certain
statistical tests for conditional independence statements and represents the
acceptance of these statements by removal of certain edges in the graph. This
is a correct procedure in the case where the underlying probability distribu-
tion indeed induces the CI structure that can be described by a graph within
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the considered universum of graphs. However, in general, this edge removal
represents the acceptance of a new graphical model together with all other
conditional independence statements that are represented in the “new” graph
but which may not be valid with respect to the underlying distribution. Again
I emphasize that this erroneous acceptance of additional conditional indepen-
dence statements is made on the basis of a “correctly recognized” conditional
independence statement!

Thus, this error is indeed forced by the limitation to a certain universum
of graphical models which is not complete. Note that an attitude like this has
already been criticized within the community of researchers in artificial intel-
ligence (see [159] and Remark 8.1). In my opinion, these recurring problems
in solving practical questions of learning are inevitable consequences of the
omission of theoretical grounds, namely the question of completeness. This
may have motivated several recent attempts to introduce wider and wider
classes of graphs which, however, lose easy interpretation and do not achieve
completeness. Therefore, in this book, I propose a non-graphical method for
describing probabilistic CI structures which primarily solves the completeness
problem and has the potential to take care of practical questions.

1.2 Goals of the monograph

The aim of the book is threefold. The first goal is to provide an overview of
traditional methods for describing probabilistic CI structures. These methods
mainly use graphs whose nodes correspond to variables as basic tools for
visualization and interpretation. The overview involves basic results about
conditional independence, including those published in my earlier papers.

The second goal is to present the mathematical basis of an alternative
method for describing probabilistic CI structures. The alternative method of
structural imsets removes certain basic defects of classic methods.

The third goal is an outline of those directions in which the presented
method needs to be developed in order to satisfy the requirements of practical
applicability. It involves the list of open problems and promising directions of
research.

The text of the monograph may perhaps seem longer and more detailed
than necessary from an expert’s perspective. The reason for this is that not
only top experts in the field and mathematicians are the expected audience.
The intention was to write a report which can be read and understood by
advanced PhD students in computer science and statistics. This was the main
stimulus which compelled me to resolve the dilemma of “understandability”
versus “conciseness” in favor of precision and potential understandability.
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1.3 Structure of the book

Chapter 2 is an overview of basic definitions, tools and results concerning the
concept of conditional independence. These notions, including the notion of
an imset , which is a certain integer-valued discrete function, are supposed to
form the theoretical basis for the rest of the book.

Chapter 3 is an overview of graphical methods for describing CI structures.
Both classic approaches (undirected graphs, acyclic directed graphs and chain
graphs) and recent attempts are included. The chapter argues for a conclu-
sion that a non-graphical method achieving the completeness (in the sense
mentioned on p. 3) is needed.

Chapter 4 introduces a method of this type, namely the method of struc-
tural imsets. A class of distributions to which this method is applicable is
specified – it is the class of distributions with finite multiinformation – and
the concept of a structural imset is defined. The main result of the chapter
(Theorem 4.1) says that three possible ways of associating probability distri-
butions and structural imsets are equivalent.

Chapter 5 compares two different, but equivalent, ways of describing CI
structures by means of imsets. An algebraic point of view is emphasized in
that chapter. It is shown there that every probabilistic CI structure induced
by a distribution with finite multiinformation can be described by the method
of structural imsets. Moreover, a duality relationship between those two ways
of describing CI structures (by imsets) is established. A unifying point of view
provided by the theory of formal concept analysis is offered.

Chapter 6 is devoted to an advanced question of equivalence (in the sense
mentioned on p. 3) within the framework of structural imsets. A characteri-
zation of equivalent imsets is given there and a lot of attention is devoted to
implementation tasks. The respective independence implication of structural
imsets is characterized in two different ways. One of them allows one to trans-
form the task of computer implementation of independence implication into a
standard task of integer programming. Moreover, the question of adaptation
of the method of structural imsets to a particular distribution framework is
discussed there (Section 6.5).

Chapter 7 deals with the problem of choosing a suitable representative of
a class of equivalent structural imsets. Two approaches to this problem are
offered. The concept of a baricentral imset seems to be a good solution from a
theoretical point of view in the general context while the concept of a standard
imset for an acyclic directed graph seems to be advantageous in the context
of classic graphical models.

Chapter 8 concerns the question of learning. It is more an analytic review
of methods for learning graphical models than a pure mathematical text.
However, the goal is to show that the method of structural imsets can be
applied in this area too. A solution to the problem of characterizing inclusion
quasi-ordering is offered and the significance of standard imsets in the context
of learning is explicated (Section 8.4).
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Chapter 9 is an overview of open problems to be studied in order to tackle
practical questions (which were mentioned on pp. 4–5).

The Appendix is an overview of concepts and facts which are supposed to
be elementary and can be omitted by an advanced reader. They are added for
several minor reasons: to clarify and unify terminology, to broaden circulation
readership and to make reading comfortable as well.

For the reader’s convenience two lists are included after the Appendix:
the List of Notation and the List of Lemmas, Propositions etc. The text is
concluded by the References and the Index.



2

Basic Concepts

Throughout the book the symbol N will denote a non-empty finite set of vari-
ables. The intended interpretation is that the variables correspond to prim-
itive factors described by random variables. In Chapter 3 variables will be
represented by nodes of a graph. The set N will also serve as the basic set
for non-graphical tools of discrete mathematics introduced in this monograph
(semi-graphoids, imsets etc.).

Convention 1. The following conventions will be used throughout the book.
Given sets A,B ⊆ N the juxtaposition AB will denote their union A∪B. The
following symbols will be reserved for sets of numbers: R will denote real
numbers, Q rational numbers, Z integers, Z+ non-negative integers (including
0), N natural numbers (that is, positive integers excluding 0). The symbol
|A| will be used to denote the number of elements of a finite set A, that is,
its cardinality. The symbol |x| will also denote the absolute value of a real
number x, that is, |x| = max {x,−x}. ♦

2.1 Conditional independence

A basic notion of the monograph is a probability measure over N . This phrase
will be used to describe the situation in which a measurable space (Xi,Xi) is
given for every i ∈ N and a probability measure P is defined on the Cartesian
product of these measurable spaces (

∏
i∈N Xi,

∏
i∈N Xi). In this case I will

use the symbol (XA,XA) as a shorthand for (
∏

i∈A Xi,
∏

i∈A Xi) for every
∅ �= A ⊆ N . The marginal of P for ∅ �= A ⊂ N , denoted by PA, is defined by
the formula

PA(A) = P (A× XN\A) for A ∈ XA .

Moreover, let us accept two natural conventions. First, the marginal of P for
A = N is P itself, that is, PN ≡ P . Second, a fully formal convention is that
the marginal of P for A = ∅ is a probability measure on a (fixed appended)
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measurable space (X∅,X∅) with a trivial σ-algebra X∅ = {∅,X∅}. Observe that
a measurable space of this kind only admits one probability measure P ∅.

To give the definition of conditional independence within this framework
one needs a certain general understanding of the concept of conditional prob-
ability. Given a probability measure P over N and disjoint sets A,C ⊆ N ,
conditional probability on XA given C (more specifically given XC) will be
understood as a function of two arguments PA|C : XA × XC → [0, 1] which
ascribes an XC-measurable function PA|C(A|�) to every A ∈ XA such that

PAC(A × C) =
∫
C

PA|C(A|x) dPC(x) for every C ∈ XC .

Note that no restriction concerning the mappings A 
→ PA|C(A|x), x ∈ XC

(often called the regularity requirement – see Section A.6.4, Remark A.1)
is needed within this general approach. Let me emphasize that PA|C only
depends on the marginal PAC and that it is defined, for a fixed A ∈ XA,
uniquely within the equivalence PC-almost everywhere (PC-a.e.). Observe
that, owing to the convention above, if C = ∅ then the conditional probability
PA|C coincides, in fact, with the marginal for A, that means, one has PA|∅ ≡
PA (because a constant function can be identified with its value).

Remark 2.1. The conventions above are in accordance with the following uni-
fying perspective. Realize that for every ∅ �= A ⊂ N the measurable space
(XA,XA) is isomorphic to the space (XN , X̄A) where X̄A ⊆ XN is the coordi-
nate σ-algebra representing the set A, namely

X̄A = {A× XN\A ; A ∈ XA} = {B ∈ XN ; B = A× XN\A for A ⊆ XA} .

Thus, A ⊆ B ⊆ N is reflected by X̄A ⊆ X̄B and it is natural to require
that the empty set ∅ is represented by the trivial σ-algebra X̄∅ over XN and
N is represented by X̄N = XN . Using this point of view, the marginal PA

corresponds to the restriction of P to X̄A, and PA|C corresponds to the con-
cept of conditional probability with respect to the σ-algebra X̄C . Thus, the
existence and the uniqueness of PA|C mentioned above follows from basic
measure-theoretical facts. For details see the Appendix, Section A.6.4. �

Given a probability measure P over N and pairwise disjoint subsets
A,B,C ⊆ N one says that A is conditionally independent of B given C with
respect to P and writes A ⊥⊥ B |C [P ] if for every A ∈ XA and B ∈ XB

PAB|C(A × B|x) = PA|C(A|x) · PB|C(B|x) for PC-a.e. x ∈ XC . (2.1)

Observe that in case C = ∅ it collapses to a simple equality PAB(A × B) =
PA(A) · PB(B), that is, to a classic independence concept. Note that the
validity of (2.1) does not depend on the choice of versions of conditional
probability given C since these are determined uniquely within equivalence
PC-a.e.
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Remark 2.2. Let me specify the definition for the case of discrete measures
over N , when Xi is a finite non-empty set and Xi = P(Xi) is the class of all
its subsets for every i ∈ N . Then PA|C is determined uniquely exactly on the
set {x ∈ XC ; PC({x}) > 0} by means of the formula

PA|C(A|x) =
PAC(A × {x})
PC({x}) for every A ⊆ XA ,

so that A ⊥⊥ B |C [P ] is defined as follows:

PAB|C(A× B|x) = PA|C(A|x) · PB|C(B|x)

for every A ⊆ XA, B ⊆ XB and x ∈ XC with PC({x}) > 0. Of course, A and
B can be replaced by singletons. Note that the fact that the equality PC-a.e.
coincides with the equality on a certain fixed set is a speciality of the discrete
case. Other common equivalent definitions of conditional independence are
mentioned in Section 2.3. �

However, the concept of conditional independence is not exclusively a prob-
abilistic concept. This concept was introduced in several non-probabilistic
frameworks, namely in various calculi for dealing with uncertainty in artificial
intelligence – for details and overview see [133, 117, 31]. Formal properties
of respective conditional independence concepts may differ in general, but an
important fact is that certain basic properties of conditional independence
appear to be valid in all these frameworks.

2.2 Semi-graphoid properties

Several authors independently drew attention to the above-mentioned basic
formal properties of conditional independence. In modern statistics, they were
first accentuated by Dawid [29], then mentioned by Mouchart and Rolin [93],
and van Putten and van Shuppen [103]. Spohn [124] interpreted them in
the context of philosophical logic. Finally, their significance in (probabilistic
approach to) artificial intelligence was discerned and highlighted by Pearl and
Paz [99]. Their terminology [100] was later widely accepted, so that researchers
in artificial intelligence started to call them the semi-graphoid properties.

2.2.1 Formal independence models

Formally, a conditional independence statement over N is a statement of the
form “A is conditionally independent of B given C” where A,B,C ⊆ N
are pairwise disjoint subsets of N . A statement of this kind should always
be understood with respect to a certain mathematical object o over N , for
example, a probability measure over N . However, several other objects can
occur in place of o; for example, a graph over N (see Chapter 3), a possibility
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distribution over N [18, 149], a relational database over N [112] and a struc-
tural imset over N (see Section 4.4.1). The notation A ⊥⊥ B |C [o] will be
used in those cases, but the symbol [o] can be omitted if it is suitable.

Thus, every conditional independence statement corresponds to a disjoint
triplet over N , that is, a triplet 〈A,B|C〉 of pairwise disjoint subsets of N .
Here, the punctation anticipates the intended role of component sets. The
third component, written after the straight line, is the conditioning set while
the two former components are independent areas, usually interchangeable.
The formal difference is that a triplet of this kind can be interpreted either as
the corresponding independence statement or, alternatively, as its negation,
that is, the corresponding dependence statement. Occasionally, I will use the
symbol A �⊥⊥ B |C [o] to denote the dependence statement which corresponds
to 〈A,B|C〉. The class of all disjoint triplets over N will be denoted by T (N).

Having established the concept of conditional independence within a cer-
tain framework of mathematical objects over N , every object o of this kind
defines a certain set of disjoint triplets over N , namely

Mo = { 〈A,B|C〉 ∈ T (N); A ⊥⊥ B |C [o] }.

Let us call this set of triplets the conditional independence model induced by
o. This phrase is used to indicate that the involved triplets are interpreted
as independence statements, although from a purely mathematical point of
view it is nothing but a subset of T (N). A subset M ⊆ T (N) interpreted
in this way will be called a formal independence model. Thus, the conditional
independence model induced by a probability measure P over N (according
to the definition from Section 2.1) is a special case. On the other hand, any
class M ⊆ T (N) of disjoint triplets over N can be formally interpreted as a
conditional independence model if one defines

A ⊥⊥ B |C [M] ≡ 〈A,B|C〉 ∈ M .

The restriction of a formal independence model M over N to a non-empty
set ∅ �= T ⊆ N will be understood as the set M ∩ T (T ) denoted by MT .
Evidently, the restriction of a (probabilistic) conditional independence model
is again a conditional independence model (induced by the marginal).

Remark 2.3. I should explain my limitation to disjoint triplets over N , since
some authors, e.g. Dawid [33], do not make this restriction at all. For simplicity
of explanation consider a discrete probabilistic framework. Indeed, given a
discrete probability measure P over N , the statement A ⊥⊥ B |C [P ] can
also be defined for non-disjoint triplets A,B,C ⊆ N in a reasonable way [41,
81]. However, then the statement A ⊥⊥ A |C [P ] has specific interpretation,
namely that the variables in A are functionally dependent on the variables in
C (with respect to P ), so that it can be interpreted as a functional dependence
statement. Let us note (cf. § 2 in [81]) that one can easily derive that

A ⊥⊥ B |C [P ] ⇔
{

A \ C ⊥⊥ B \AC | C [P ] and
(A ∩B) \ C ⊥⊥ (A ∩B) \ C | C ∪ (B \A) [P ]

}
.
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Thus, every statement A ⊥⊥ B |C of a general type can be “reconstructed”
from functional dependence statements and from pure conditional indepen-
dence statements described by disjoint triplets. The topic of this monograph
is pure conditional independence structures; therefore I limit myself to pure
conditional independence statements. �

Remark 2.4. To avoid misunderstanding, the reader should be aware that the
noun model may have any of three different meanings in this monograph. First,
it can be used in its general sense in which case it is usually used without an
adjective. Second, it is a part of the phrase “(formal) independence model” in
which case the word independence indicates that one has in mind the concept
introduced in this section. Note that this terminology comes from the area of
artificial intelligence – see Pearl [100]. Third, it can be a part of the phrase
“statistical model” in which case the adjective statistical indicates that one has
in mind the concept mentioned in Section A.9.2, that is, a class of probability
measures. Note that this terminology is often used in statistics – see Remark
A.3 for more detailed explanation.

However, there is a simple reason why two different concepts are named
by the same noun. The reason is that every formal independence model M ⊆
T (N) can be understood as a statistical model M, provided that a distribution
framework Ψ (see Section A.9.5) is fixed. Indeed, one can put

M = {P ∈ Ψ ; A ⊥⊥ B |C [P ] whenever 〈A,B|C〉 ∈ M} .

Every statistical model of this kind will be called the statistical model of CI
structure. Note that this concept generalizes the classic concept of a graphical
model [157, 70]. Indeed, the reader can learn in Chapter 3 that a graph G
having N as the set of nodes usually induces the class MG of Markovian
measures over N , that is, a statistical model. This graphical statistical model
is, however, defined by means of the formal independence model MG. Note
that the class MG is often introduced in another way – see Section 8.2.1 for
equivalent definitions in case of acyclic directed graphs in terms of recursive
factorization and in terms of parameterization. �

2.2.2 Semi-graphoids

By a disjoint semi-graphoid over N is understood any set M ⊆ T (N) of
disjoint triplets over N (interpreted as independence statements) such that
the following conditions hold for every collection of pairwise disjoint sets
A,B,C,D ⊆ N :

1. triviality A ⊥⊥ ∅ |C [M],
2. symmetry A ⊥⊥ B |C [M] implies B ⊥⊥ A |C [M],
3. decomposition A ⊥⊥ BD |C [M] implies A ⊥⊥ D |C [M],
4. weak union A ⊥⊥ BD |C [M] implies A ⊥⊥ B |DC [M],
5. contraction A ⊥⊥ B |DC [M] and A ⊥⊥ D |C [M]

implies A ⊥⊥ BD |C [M].
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Note that the terminology above was proposed by Pearl [100], who formu-
lated the formal properties above in the form of inference rules, gave them
special names and interpretation, and called them the semi-graphoid axioms.
Of course, the restriction of a semi-graphoid over N to T (T ) for non-empty
T ⊆ N is a semi-graphoid over T . The following fact is important.

Lemma 2.1. Every conditional independence model MP induced by a prob-
ability measure P over N is a disjoint semi-graphoid over N .

Proof. This can be derived easily from Corollary A.2 proved in the Appendix
(see p. 235). Indeed, having a probability measure P over N defined on a
measurable space (XN ,XN ) one can identify every subset A ⊆ N with a
coordinate σ-algebra X̄A ⊆ XN as described in Remark 2.1. Then, for a disjoint
triplet 〈A,B|C〉 over N , the statement A ⊥⊥ B |C [P ] is equivalent to the
requirement X̄A ⊥⊥ X̄B | X̄C [P ] introduced in Section A.7. Having in mind
that X̄AB = X̄A ∨ X̄B for A,B ⊆ N the rest follows from Corollary A.2. ��

Note that the above mentioned fact is not a special feature of a proba-
bilistic framework. Conditional independence models occurring within other
uncertainty calculi (in artificial intelligence) mentioned at the end of Section
2.1 are also (disjoint) semi-graphoids. Even various graphs over N induce
semi-graphoids, as explained in Chapter 3.

Remark 2.5. The limitation to disjoint triplets in the definition of a semi-
graphoid is not substantial. One can introduce an abstract semi-graphoid on a
join semi-lattice (S,∨) as a ternary relation � ⊥⊥ � | � over elements A,B,C,D
of S satisfying

• A ⊥⊥ B |C whenever B ∨ C = C,
• A ⊥⊥ B |C iff B ⊥⊥ A |C,
• A ⊥⊥ B ∨D |C iff [A ⊥⊥ B |D ∨ C and A ⊥⊥ D |C ].

Taking S = P(N) one obtains the definition of a non-disjoint semi-graphoid
over N . A more complicated example is the semi-lattice of all σ-algebras
A ⊆ X in a measurable space (X,X ) and the relation ⊥⊥ of conditional inde-
pendence for σ-algebras with respect to a probability measure on (X,X ) (see
Corollary A.2). Note that the above concept of an abstract semi-graphoid is
essentially equivalent to the concept of a separoid introduced by Dawid [33],
which is a mathematical structure unifying a variety of notions of “condi-
tional independence” arising in probability, statistics, artificial intelligence,
and other fields.

Let me conclude this remark by a note which indicates the obstacles that
authors in mathematics meet if they want to establish new terminology. Pearl
and Paz [99] decided to use the word “graphoid” to name a new concept they
introduced (see p. 29 for this concept). However, it appeared that this word
had already been “occupied”: it was used to name one of equivalent definitions
of a matroid [155]. One of the motives which led Dawid [33] to use the word
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“separoid” to name his general concept was to avoid a terminological clash.
However, it appeared that this word had also been used independently by
Strausz [128] to name a certain abstract binary relation between sets whose
aim is to generalize geometric separation of sets in Rn by hyperplanes. An
interesting observation is that, by coincidence, there is a weak connection
between two concepts of a separoid. For example, an undirected graph G and
the relation of separation for sets of nodes in G, which is defined as in Section
3.1 but non-disjoint sets are allowed, can give an example of both separoids.
The difference is that Dawid’s separoid is a ternary relation A ⊥⊥ B |C [G]
while a binary relation A ⊥⊥ B | ∅ [G] can serve as an example of Strausz’s
separoid. �

2.2.3 Elementary independence statements

To store a semi-graphoid over N in the memory of a computer it is not nec-
essary to allocate all |T (N)| = 4|N | bits. A more economic way of their rep-
resentation is possible. For example, one can omit trivial statements which
correspond to triplets 〈A,B|C〉 over N with A = ∅ or B = ∅. Let us denote
the class of trivial disjoint triplets over N by Tø(N).

However, independence statements of principal importance are elementary
statements , which correspond to elementary triplets, that is, disjoint triplets
〈A,B|C〉 over N where both A and B are singletons (cf. [3, 79]). A simpli-
fying convention will be used in this case: braces in singleton notation will
be omitted so that 〈a, b|K〉 or a ⊥⊥ b |K will be written only. The class of
elementary triplets over N will be denoted by Tε(N).

Lemma 2.2. Suppose that M is a disjoint semi-graphoid over N . Then, for
every disjoint triplet 〈A,B|C〉 over N , one has A ⊥⊥ B |C [M] iff the following
condition holds

∀ a ∈ A ∀ b ∈ B ∀C ⊆ K ⊆ ABC \ {a, b} a ⊥⊥ b |K [M]. (2.2)

In particular, every semi-graphoid is determined by its “trace” within the
class of elementary triplets, that is, by the intersection with Tε(N). Moreover,
if M1,M2 are semi-graphoids over N then M1 ∩ Tε(N) ⊆ M2 ∩ Tε(N) is
equivalent to M1 ⊆ M2.

Proof. (see also [79]) The necessity of the condition (2.2) is easily derivable
using the decomposition and the weak union properties combined with the
symmetry property.

For converse implication suppose (2.2) and that 〈A,B|C〉 is not a trivial
triplet overN (otherwise it is evident). Use induction on |AB|; the case |AB| =
2 is evident. Supposing |AB| > 2 either A or B is not a singleton. Owing to the
symmetry property one can consider without the loss of generality |B| ≥ 2,
choose b ∈ B and put B′ = B \ {b}. By the induction assumption, (2.2)
implies both A ⊥⊥ b |B′C [M] and A ⊥⊥ B′ |C [M]. Hence, by application of
the contraction property A ⊥⊥ B |C [M] is derived. ��
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Sometimes, an elementary statement mode of representing a semi-graphoid,
that is, by the list of contained elementary triplets, is more suitable. The
characterization of those collections of elementary triplets which represent
semi-graphoids is given in Proposition 1 of Matúš [79].

Remark 2.6. Another reduction of memory demands for semi-graphoid repre-
sentation follows from the symmetry property. Instead of keeping a pair of
mutually symmetric statements a ⊥⊥ b |K and b ⊥⊥ a |K one can choose only
one of them according to a suitable criterion. In particular, to represent a
semi-graphoid over N with |N | = n it suffices to have only n · (n − 1) · 2n−3

bits. Note that the idea above is also reflected in Section 4.2.1 where just one
elementary imset corresponds to a “symmetric” pair of elementary statements.

However, further reduction of the class of considered statements is not
possible. The reason is as follows: every elementary triplet 〈a, b|K〉 over N
generates a semi-graphoid over N consisting of 〈a, b|K〉, its symmetric image
〈b, a|K〉 and trivial triplets over N (cf. Lemmas 4.6 and 4.5). In fact, these
are minimal non-trivial semi-graphoids over N and one has to distinguish
them from other semi-graphoids over N . These observations influenced the
terminology: the adjective “elementary” is used to indicate the respective
disjoint triplets and independence statements. �

2.2.4 Problem of axiomatic characterization

Pearl and Paz [99, 100] formulated a conjecture that semi-graphoids coin-
cide with conditional independence models induced by discrete probability
measures. However, this conjecture was refuted in Studený [130] by finding
a further formal property of these models, which is not derivable from semi-
graphoid properties, namely

[A ⊥⊥ B |CD and C ⊥⊥ D |A and C ⊥⊥ D |B and A ⊥⊥ B | ∅ ] ⇔
⇔ [C ⊥⊥ D |AB and A ⊥⊥ B |C and A ⊥⊥ B |D and C ⊥⊥ D | ∅ ].

Another formal property of this sort was later derived in An et al. [3]. Con-
sequently, a natural question occurred. Can conditional independence models
arising in a discrete probabilistic setting be characterized in terms of a finite
number of formal properties of this type? This question is known as the prob-
lem of axiomatic characterization because a result of this kind would have
been a substantial step towards a syntactic description of these models in the
sense of mathematical logic. Indeed, as explained in § 5 of Studený [132], then
it would have been possible to construct a deductive system that is an analog
of the notion of a “formal axiomatic theory” from Mendelson [92]. The consid-
ered formal properties then would have played the role of syntactic inference
rules of an axiomatic theory of this sort. Unfortunately, the answer to the
question above is also negative. It was shown in Studený [132] (for a more
didactic proof see [144]) that, for every n ∈ N, there exists a formal property
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of (discrete) probabilistic conditional independence models which applies to
a set of variables N with |N | = n but which cannot be revealed on a set of
smaller cardinality. Note that a basic tool for derivation of these properties
was the multiinformation function introduced in Section 2.3.4.

On the other hand, having fixedN , a finite number of possible probabilistic
conditional independence models over N suggests that they can be character-
ized in terms of a finite number of formal properties of semi-graphoid type.
Thus, a related task is, for a small cardinality of N , to characterize them in
that way. It is no problem to verify that they coincide with semi-graphoids
in the case |N | = 3 (see Figure 5.6 for illustration). Discrete probabilistic
conditional independence models over N with |N | = 4 were characterized in
a series of papers by Matúš [84, 85, 87]; for an overview see Studený and
Boček [136] where the respective formal properties of these models are explic-
itly formulated – one has 18300 different models of this kind and these can be
characterized by more than 28 formal properties.

Remark 2.7. On the other hand, several results on relative completeness of
semi-graphoid properties were achieved. In Geiger et al. [45] and indepen-
dently in Matúš [82] models of “unconditional” stochastic independence (that
is, submodels consisting of unconditioned independence statements of the form
A ⊥⊥ B | ∅ ) were characterized by means of properties derivable from the semi-
graphoid properties. An analogous result for the class of saturated or fixed-
context conditional independence statements – that is, statements A ⊥⊥ B |C
with ABC = N – was achieved independently by Geiger and Pearl [46] and
by Malvestuto [77]. The result from Studený [138] can be interpreted as a
specific relative-completeness result, saying that the semi-graphoid generated
by a pair of conditional independence statements is always a conditional inde-
pendence model induced by a discrete probability measure. Note that the
problem of axiomatic characterization of CI models mentioned above differs
from the problem of axiomatization (in the sense of mathematical logic) of a
single CI structure over an infinite set of variables N , which was treated in
Kramosil [62]. �

2.3 Classes of probability measures

There is no uniformly accepted conception of the notion of a probability dis-
tribution in the literature. In probability theory, authors usually understand
by a distribution of a (n-dimensional real) random vector an induced prob-
ability measure on the respective sample space (Rn endowed with the Borel
σ-algebra), that is, a set function on the sample (measurable) space. On the
other hand, authors in artificial intelligence usually identify a distribution of
a (finitely valued) random vector with a pointwise function on the respective
(finite) sample space, ascribing probability to every configuration of values (=
to every element of the sample space

∏
i∈N Xi, where Xi are finite sets). In
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statistics, either the meaning wavers between these two basic approaches, or
authors even avoid the dilemma by describing specific distributions directly
by their parameters (e.g., elements of the covariance matrix of a Gaussian
distribution). Therefore, no exact meaning is assigned to the phrase “proba-
bility distribution” in this book; it is used only in its general sense, mainly in
vague motivational parts. Moreover, terminological distinction is made bet-
ween those two above-mentioned approaches. The concept of a probability
measure over N from Section 2.1 more likely reflects the first approach, which
is more general. To relate this to the second approach one has to make an addi-
tional assumption on a probability measure P so that it can also be described
by a pointwise function, called the density of P . Note that many authors
simply make an assumption of this type implicitly without mentioning it.
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All probability measures over N

Marginally continuous measures

Measures with finite multiinformation

Positive measures

Discrete measures

Regular
Gaussian measures

Fig. 2.1. A comparison of basic classes of probability measures over N .

In this section, basic facts about these special probability measures are
recalled and several important subclasses of the class of measures having den-
sity, called “marginally continuous measures”, are introduced. One of them,
the class of measures with finite multiinformation, is strongly related to the
method of structural imsets described in later chapters. The information-
theoretical methods are applicable to measures belonging to this class which,
fortunately, involves typical measures used in practice. Inclusion relationships
among introduced classes of measures are depicted in Figure 2.1.
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2.3.1 Marginally continuous measures

A probability measure P over N is marginally continuous if it is absolutely
continuous with respect to the product of its one-dimensional marginals, that
is, P �

∏
i∈N P {i}. The following lemma contains an apparently weaker

equivalent definition.

Lemma 2.3. A probability measure P on (XN ,XN ) is marginally continuous
iff there exists a collection of σ-finite measures µi on (Xi,Xi), i ∈ N such that
P �

∏
i∈N µi.

Proof. (see also § 1.2.2 in [37]) It was shown in [130], Proposition 1, that in
the case |N | = 2 one has P �

∏
i∈N P

{i} iff there are probability measures λi

on (Xi,Xi) with P �
∏

i∈N λi. One can easily show that for every non-zero
σ-finite measure µi on (Xi,Xi) a probability measure λi on (Xi,Xi) with µi �
λi � µi exists. Hence, the condition above is equivalent to the requirement
for the existence of σ-finite measures µi with P �

∏
i∈N µi. Finally, one can

use the induction on |N | to get the desired conclusion. ��

Thus, the marginal continuity of P is equivalent to the existence of a
dominating measure µ for P , that is, the product µ =

∏
i∈N µi of some σ-finite

measures µi on (Xi,Xi), i ∈ N such that P � µ. In particular, every discrete
measure over N is marginally continuous since the counting measure on XN

can serve as its dominating measure. Note that nearly all multidimensional
measures used in practice are marginally continuous (see Sections 2.3.5, 2.3.6
and 4.1.3 for other examples). However, there are probability measures over
N which are not marginally continuous; in particular, some singular Gaussian
measures – see Example 2.3 on p. 35.

Having fixed a dominating measure µ for a marginally continuous measure
P over N by a density of P with respect to µ will be understood (every version
of) the Radon-Nikodym derivative of P with respect to µ.

Remark 2.8. Let us note without explaining details (see Remark 1 in [130])
that the assumption that a probability measure P over N is marginally con-
tinuous also implies that, for every disjoint A,C ⊆ N , there exists a regu-
lar version of conditional probability PA|C on XA given XC in the sense of
Loéve [74]. The regularity of conditional probability is usually derived as a
consequence of special topological assumptions on (Xi,Xi), i ∈ N (see the
Appendix, Remark A.1). Thus, the marginal continuity is a non-topological
assumption implying the regularity of conditional probabilities. The concept
of marginal continuity is closely related to the concept of a dominated experi-
ment in Bayesian statistics – see § 1.2.2 and § 1.2.3 in the book by Florens et
al. [37]. �

The next step is an equivalent definition of conditional independence for
marginally continuous measures in terms of densities. To formulate it in an
elegant way, let us accept the following (notational) conventions.


