Production Rendering

[an Stephenson (Ed.)

Production Rendering

Design and Implementation

@ Springer

Ian Stephenson, DPhil
National Centre for Computer Animation, Bournemouth, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

ISBN 1-85233-821-0 Springer-Verlag London Berlin Heidelberg
Springer Science+Business Media
springeronline.com

© Springer London Limited 2005
Printed in the United States of America

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typeset by Gray Publishing, Tunbridge Wells, UK
Printed and bound in the United States of America
34/3830-543210 Printed on acid-free paper SPIN 10951729

We dedicate this book to:

Amanda Rochfort,
Cheryl M. LaMont,
The Elendt Family,
David Moore,
The Iverson Family
The Pantaleoni Family and
Michelle Bickers

Introduction

Developing a production 3D rendering system is an intimidating task. The skills
required are both broad and deep, requiring the mastery of practically every
aspect of computer graphics from curves and surfaces through to compositing
and image file formats. However, it doesn’t stop there; the developer needs to be
familiar with many aspects of computer science and engineering typically not
considered to be graphics related: compiler development, processor architecture,
signal processing, virtual machines, and perhaps most importantly of all, the
software engineering skills to bring together such a diverse range of techniques
into a coherent and manageable body of code.

While many books have been written about rendering, they are typically lim-
ited to either the basics of ray tracing or they specialize on a certain aspect of ren-
dering research. When I began developing a renderer of my own, I rapidly found
that these texts told me very little about real rendering, as it is used in film and
video production. Rather than ray tracing spheres and polygons with Phong
shading I needed to know how to parse RIB files, and execute compiled shaders,
on a range of complex surfaces. I learned about shading engines by examining
the compiled shaders from other rendering systems.

As my own rendering system (Angel) developed I found that my experiences
were not unique, and I was lucky enough to meet others who were delighted to
share their own ideas on dicing strategies, grid sizes, optimization techniques
and other minutiae that enable a renderer to tackle the complex scenes found in
production. Rendering systems rarely seem to be developed by large teams, but
rather by enthusiastic individuals, who are always happy to share and learn from
each other. Many renderers which started out as experimental projects, much
like mine, have grown into commercial products used across the world.

A few years later when I was invited to contribute a chapter to the Handbook
of Computer Animation (Vince, 2002) I realized this was an opportunity to share
my experience of developing Angel, and present a more realistic introduction to
how a production renderer works. While successful, one chapter could only pro-
vide an overview of such a huge subject and there was clearly scope for a more
in-depth treatment.

Having established that there was a need for this book, rather than attempt to
write it myself, I decided to invite the experts I had met to each contribute a
chapter on a subject of their choice. I was very pleased when every one of them
said yes, and with only a little rearrangement and coercion the rendering
pipeline was carved up between us, to produce a comprehensive and in-depth
study of how a production render is designed and implemented.

vii

viii Introduction

Chapter 1 is an extended and updated version of my original chapter that
appeared in the Handbook of Computer Animation. The intention is that this pro-
vides a roadmap for the later chapters, introducing the concepts and ideas which
will be expanded upon later. Though the chapters are presented in a logical
sequence they can be read in any order, using the first chapter as a guide.

Chapter 2 is written by Rick LaMont, and deals with the overall structure of
the rendering system, showing how the scene is created and represented within
the renderer, and how the objects in the scene can be passed through to the var-
ious rendering stages. Rick is CTO of Dot C Software, and the lead developer of
the RenderDotC renderer.

Chapter 3 deals more specifically with the geometry types typically found in
a production render, explaining how surfaces can be evaluated and manipulated.
It was written as a team effort by myself, Paul, Scott and Rick.

Having prepared the geometry, it must then be shaded by a procedural shading
engine. In Chapter 4 Mark Elendt explains how this can be implemented. Mark
was the very first employee of Side Effects Software Inc, developers of the Houdini
animation system, where he holds the position of Senior Mathematician. In addi-
tion to his contributions to Houdini itself (for which he has received a Technical
Achievement Award from the Academy of Motion Picture Arts and Sciences) he is
the chief architect of Side Effects’ Mantra rendering system, and designer of its
VEX shading language.

Matthew Bentham is a programmer at ART VPS, where he develops the
shader compiler for their RenderDrive and PURE range of hardware rendering
products. In Chapter 5 Matthew describes how a compiler can be written to con-
vert a high level language such as RenderMan SL into a format suitable for use by
the shading engine.

While historically most systems capable of handling scenes of the complexity
required by commercial production used scanline techniques for efficiency,
more recently ray tracing and global illumination have been integrated, to create
hybrid renderers. Ray tracing and global illumination are the subjects of
Chapters 6 and 7 respectively. In Chapter 6 Scott Iverson considers the problems
of adding ray tracing support to a render without sacrificing the performance
and flexibility that users expect in a production system. Scott is the founder
of SiTex Graphics where he has developed the AIR rendering system, and sup-
porting tools.

Jacopo Pantaleoni, developer of Lightflow Rendering Tools, is the author of
Chapter 7, which discusses the problem of global illumination. Jacopo studied
mathematics at the University of Padova, has worked at NVIDIA as an intern in
the OpenGL group, and is currently working as a Lighting Technical Director for
Valiant Productions in London.

Once the surfaces have been shaded they must be assembled into a final
image, as described by Paul Gregory in Chapter 8. Paul was the original architect
of the Agsis rendering system and, following its release as an open source proj-
ect, leads its development team.

Chapter 9, which concludes the book, is a collection of thoughts, information
and useful fragments of code contributed by myself, Rick, Scott, Mark and
Paul. Though not necessarily fitting neatly within the structure of the book as a

Introduction ix

whole, we hope you find the contents of this final chapter valuable or at least
interesting.

Constructing a high quality renderer requires such a diverse set of skills that
this book could never have been written by one person. Each of us has learnt
something by reading the others’ chapters, and I would like to thank each of the
authors for their outstanding contributions.

Ian Stephenson
National Centre for Computer Animation
Bournemouth University

Contents

INtroductioncvveni it i i i e e vii
ContribUtors . ..oviee it i i i e i i e e eaas Xv
Chapter T ASystem OVEIrVIEWcvvvuiiinirinnrenneenneennesnnnsenns 1
lan Stephenson
1.1 Introduction. 1
L 111 2
1.3 SceneGraph........oooiiiiii 5
T4 ObJCES o 5
1.5 Transforms and Coordinate Systems.......................... 9
1.6 Shading ... 9
1.7 RayTracing......covvuuiiiin e 16
1.8 Global lllumination...........cccovviiiiiiiiiiiiiiiias 19
1.9 Hiding. ..o 25
110 Resampling ... 26
1.11 Exposure,Imaging and Quantization 27
192 CoNClUSIONS . vvve 29
Chapter2 ARendering Architecturecovvviiiiiiiiiiieinnnnnnn. 31
Rick LaMont
21 Introduction.ooiiiii e 31
2.2 The Hierarchical Graphics State....................coviit 31
2.3 Micropolygon Architectures.ccovvvvviiiiiiennn.... 40
24 ReyesPipeline.........cooviniiiiiiiii e 4
D T o 1111 11) 7 S 46
26 GHAS .. oeeeeie ettt e 48
2.7 ShaderEvaluator..............cooiiiiiiiiii 49
2.8 Micropolygons.ooviii e 50
29 Hiders.....oooviiiiiiii e 53
210 Frameworks........oooviiiii 57
211 CONCUSION .« oottt 62
Chapter3 GeOMEtIYcovueiiuirenneenneernerenerenneenneennesenes 63
301 Introduction.ooeeie e 63
3.2 Parametrics ...ttt 63

Xii

Chapter 4

Chapter 5

Chapter 6

Chapter7

Contents
33 POlYgONS. ..o 87
34 Subdivision ... 920
3.5 Pointsand CUrVeS ... e 95
3.6 Blobbies........ooiii 100
Shadingcoviviiniii i e 105
Mark Elendt
47 Introduction.oovieiit i 105
4.2 Architecture of the Virtual Machineo. 110
43 SIMDPrOCesSiNgoevverenniiiiiee e 13
44 Implementation ...l 120
4.5 Shader Specialization...............coooeiiii 131
46 TheTricky Bitsoovveeeeeer e 133
Compiling ..cvneriiii i e e e 137
Matthew Bentham
51 Introduction. ... 137
52 DataStructureso 138
53 OVeIVIEW .ot 138
54 Parsinguuiiiii 139
55 Simplification 141
5.6 CodeGenerationccuuuuiiiiiiiiiiiiiieeeennnnnnn. 145
57 Optimizationccovviierii 145
5.8 OtherConsiderationsccccvvviiiiiiiiiieennnnnnn. 147
Lo T 149
Scott Iverson
6.1 Introduction. ..o 149
6.2 RayTracingBasics..........covvivriiiiiiiiiinee e 150
6.3 Acceleration StrUCEUIESuvvvriiiiiiiiiieeeeeeeannn, 151
6.4 Ray—Primitive Intersection ... 160
6.5 Shadingooiiiiiii 170
6.6 Optimizations and Extensions.....................cooeea. 172
6.7 Hybrid Renderers versus Pure Ray Tracers 176
Global llluminationooiiiiiiiiiiiiiiiiiiiiine 179
Jacopo Pantaleoni
7.7 Introduction. ... 179
7.2 LightTransportTheorycccovvviiiiiiiiiiineeeennnnn. 180
7.3 MonteCarloSamplingccovviiiiiii 185
7.4 Programmable Shading.............cooovviiiiia, 188
7.5 Gathering.......oovviiiiiii e 189
7.6 lrradiance Gachingccoviiiiiiii 195
7.7 Photon Mapping.......couuuuiiiiiiieeeeeeeenns 204
7.8 VolumeRenderingccoviiiiiiiiiiiii 219

7.9 Additional NOteS . ..ot 224

Contents xiii
Chapter8 Image Constructionccovvvinirinirenneenierennenns 231
Paul Gregory
8.1 Introduction.........ooviiiii e 231
82 Samplingcooviiiiii 232
8.3 Filtering SampledData..............ccooiiiiiii 242
8.4 Finalizingthelmage.............cooiiiiiiiiii s 246
8.5 ASample Implementation................oooeiiiiii 248
Chapter9 RenderingGemSccuvviiiirierinnrenneennernnnsenns 259
9.1 Introduction.ovviii e 259
9.2 UsefulMatricesoovniiiiiiii e 259
9.3 Orientation and Handedness.ccocvvveivenen.... 260
9.4 Geometric OpticS. ..ooeeeee et 262
0.5 NOISE. .« ettt 264
9.6 Fast Power,Log2 and Exp2 Functions......................... 270
9.7 QOIOUr .. 273
9.8 BucketOrdering...........cooiiiiiiiiii 277
9.9 Network Rendering............ccovviiiiiiiiiiieiennennnn. 280
9.10 Debugging........ooviiiiiii 281
9.11 A Closed-form Solution for the Intersection of a Ray and
BilinearPatch.............oooiiii 285
Bibliographyc.oiirii it i i i i e 293
INAEX .o s 299

Contributors

Matthew Bentham
ART VPS Ltd, Cambridge, UK
matthew_bentham@®yahoo.com

Mark Elendt
Side Effects Software Inc., Toronto, Ontario, Canada
mark@sidefx.com

Paul Gregory
Agsis Team, Basingstoke, UK
pgregory@agsis.com

Scott Iverson
SiTex Graphics, Inc., Denton, Texas, USA
si@sitexgraphics.com

Rick LaMont
Dot C Software, Inc., Kailua, Hawaii, USA
lamont@dotcsw.com

Jacopo Pantaleoni
Valiant Productions, London, UK
jp@lightflowtech.com

Dr Ian Stephenson

Bournemouth University, Poole, UK
istephen@bournemouth.ac.uk

Xv

A System Overview

1.1 Introduction

Computer animation takes place in a virtual 3D world. However, it is normally
visualized through a 2D screen made up of pixels. The rendering process is the
computer animator’s camera, which records the virtual world in a format that
can be broadcast. Programmers have been developing renderers for many years
and a range of techniques have been established. However, these approaches with
their respective strengths and weakness have traditionally been considered mutu-
ally exclusive — a rendering system based on ray tracing would handle shiny
reflective surfaces efficiently, but users would simply have to accept that it could not
handle displacement or diffuse surfaces as well as some other architectures could.

While computer graphics researchers have the luxury of being able to work
with only certain kinds of scenes, and can explore the limitations and strengths of
different approaches to rendering, there is increasing demand placed upon ren-
dering software from the commercial sector. In particular, feature film produc-
tion requires software that can deliver a wide range of images in a timely manner.
Driven by this, modern production rendering systems generally make use of a
hybrid approach, incorporating a range of techniques to produce software that is
both efficient and flexible.

Many of the requirements of commercial production rendering are embodied
in the RenderMan standard (Pixar, 2000). While not all rendering software used in
production is based upon this standard, it defines a feature set which is typical of
a high-end commercial renderer. It is presupposed that most surfaces will be
curved rather than polygonal, ensuring that they appear smooth, even when viewed
at the high resolution of film. RenderMan also includes procedural shading,
which gives users almost total control over the appearance of surfaces. In order
to support these features efficiently in limited memory most implementations of
the standard sacrificed ray tracing and global illumination support. However,
almost all have recently been converted to a hybrid architecture, effectively consist-
ing of several renderers in one package, each solving one part of the rendering
problem.

To support such a broad feature set requires a large number of modules each
interacting in a carefully controlled manner with its neighbours. This chapter
takes a systems approach to rendering by considering the implementation of a
simple production style renderer based on the RenderMan standard. An overview

1

2 Production Rendering

of each module is developed, and the flow of data through the system is considered.
Following chapters will each embellish upon one area of this roadmap, considering
its implementation in greater detail.

1.2 Input

Any rendering system must begin with the parsing of a scene description. The
RenderMan standard defines both a C API and a RIB (RenderMan interface
bytestream) file format, either of which allows a scene to be fed into the renderer.
Any renderer that can support these forms of input may be used interchangeably.
A modelling package simply generates a RIB, which allows an animator to select
any compliant renderer, based on the requirements of the project. It also allows
us to develop a renderer, which may be used for “real” work without concern as
to how the scene is to be produced.

A complete description of both the C and RIB APIs can be found in the
RenderMan Specification (Pixar, 2000).

1.2.1 RIBs

Although the C APT and the RIB interface are functionally almost identical, the
RIB interface is simpler, as it avoids the lexical complexities of C. In practice, a
renderer would be written to implement the C API internally. A RIB parsing
layer can read in RIB files and translate them into C API calls.

A simple lexical analyzer (written using lex) can identify keywords, strings and
numbers in a RIB file. For each keyword a unique function is called, which uses lex
to extract the parameters to that command. These parameters are then repackaged
and a call to the appropriate C API function is made. Because there is a direct
correspondence between RIB and the C API, the RIB parser needs to know very
little about the semantics of the commands it is processing.

The most complex aspect of the C API and the RIB parsing library, is that
RenderMan commands can take a variable number of parameters. While in a
RIB file these are simply a list of key/value pairs, passing these into a C function
is slightly more complex. RenderMan documentation (Upstill, 1990; Apodaca
and Gritz, 1999; Stephenson, 2002) typically demonstrates the handling of these
parameter lists through the use of varargs functions, where the key/value list is
terminated by a NULL. For example, the Surface command:

Surface “plastic” “Ks” [0.6] “Kd” [0.2]

would be implemented in C as:

RtFloat spec[1] = {0.6}
RtFloat diffl[1l] = {0.2}
RiSurface(“plastic”, “Ks”, spec,“Kd”, diff, RI_NULL);

>
0

Chapter 1 - A System Overview 3

This form is severely limited, however, as the number of parameters passed to
the function must be known at compile time. If the parameters have been parsed
from a RIB file at run time then this is not possible.

A second form of the C API must therefore be used in preference. For each
function of the form RiXxxx which can take a parameter list, there is a second
version RiXxxxV. In this form, two arrays are passed, one containing the list of
tokens, and the second a list of pointers to the values:

RtFloat spec[1] = {0.6}

RtFloat diff[1] = { }

RtToken keys[] = {“Ks”, “Kd”};
RtPointer vals[2];

vals[0] = (RtPointer)spec;

vals[1] = (RtPointer)diff;
RiSurfaceV(“plastic”, 2, keys, vals);

.6
.2

s
s

While superficially more complex when used to demonstrate the RenderMan
API, in real applications (such as a RIB parser) the RiXxxxV form is far simpler
to use, and allows the number of parameters in a parameter list to be changed at
run time. A renderer which is to be linked with a RIB parser need only imple-
ment the RiXxxxV form. A trivial library can convert RIxxx calls to the RiXxxxV
form if required.

1.2.2 Scene Initialization

A RIB file consists of basically two parts: the set-up phase, which commences at
the beginning of the file and the world description, which contains the actual
scene to be rendered, enclosed in Wor1dBegin and WorldEnd commands. Prior
to the world description, the set-up phase is essentially describing the virtual
camera that will be used, both in terms of its position and its operation.

The nature of the camera is defined by setting a number of options. These are
parameters which apply to the whole scene, and include the Projection type,
Output Resolution, and other standard options along with a mechanism
(the Option command) to allow renderer-specific extensions. BMRT (Gritz
and Hahn, 1996), for example, uses such an extension to control the use of
radiosity.

Any transformations prior to Wor1dBegin are taken to define the position of
world space relative to the camera.

1.2.3 GState

One of the main tasks of the front end to a renderer is to manage the graphics
state (GState). This consists of the current transformation matrix (CTM), and the
current attributes.

Transformations are applied in RenderMan such that each transformation
applies to all objects, which follow. For example,

4 Production Rendering

Sphere 1 -1 1 360
Scale 0.5 0.5 0.5
Sphere 1 -1 1 360
Translate 1 0 0

Sphere 1 -1 1 360

creates a sphere of unit radius at the origin; a sphere of radius 0.5 at the origin;
and a sphere of radius 0.5 at (0.5, 0, 0). To achieve this, each transformation is
converted to a matrix form and multiplied by the CTM which it replaces
(newCTM = oldCTM X M).

In order to facilitate hierarchical modelling the current transformation can
be stored and restored later using TransformBegin and TransformEnd. For
example, a character’s nose can be positioned relative to its head, which in turn is
positioned relative to the body:

ffdraw character
TransformBegin
ffposition head
TransformBegin
ffposition nose
Jidraw nose
TransformEnd
Jicontinue drawing head
TransformEnd
ffcontinue drawing body

This is easily implemented as a stack of matrices. All operations are performed
on the top element of the stack. TransformBegin duplicates the top while
TransformEnd removes it.

Attributes are more general than transforms, of which they are a superset. Other
attributes include all properties of the object such as its current surface colour and
surface shader. These are managed in a similar way using AttributeBegin and
AttributeEnd. As is the case for options, a renderer may add its own specific
attributes using the Attribute command (for example, a wire frame renderer
might use this to control the number of wires drawn for a particular primitive).
Similarly to transformations, attributes apply to all objects that follow unless they
are overwritten with a new value or popped from the attribute stack. In most cases
the renderer need take no action other than to record the attribute at the point it is
actually encountered.

1.2.4 Geometry Commands

While most of the input stages of the renderer are simply concerned with track-
ing the graphics state, the renderer is required to do something upon encounter-
ing a command which actually specifies some geometry. Upon encountering
such a command, the parameters of the object, along with the current attributes
(including the current transformation matrix) will be passed to the next stage of
the render.

Chapter 1 - A System Overview 5

1.3 Scene Graph

The RenderMan API is defined in such a way that at the point where the com-
mand is issued to draw an object, all of the necessary information about that
object has already been provided. Using only the scene’s options, the current
attributes and the object’s explicit parameters, the object can be rendered. There
is therefore no need to store all of the objects in memory prior to rendering, and
this stage may be bypassed completely. As each object is created it can be passed
directly to the following stages.

However, if global illumination techniques are being used then accurate shad-
ing of the object may be dependent upon all other objects within the scene,
including those not created yet. In which case the object must be stored until all
objects have been created. Upon the execution of the Wor1dEnd command the
renderer can loop over all objects in the scene, and render them with full knowl-
edge of the other objects in the scene.

Even when global illumination is not being used it can still be constructive to
render the objects in an order other than that defined in the RIB file. In particu-
lar, large objects at the front of the scene may obscure those behind. Objects
which are obscured completely need not be rendered — this is known as occlu-
sion culling. The simplest form of scene graph is therefore a linked list of objects
sorted by Z-depth. By passing the objects to the following stages, ordered from
front to back we maximize the chance of spotting that an object is fully occluded
by something which has already been drawn.

When ray tracing is used a more complex data structure is required, which
allows objects that potentially intersect with a ray to be rapidly identified. A
more detailed examination of the data structures and classes used to represent
the objects within a scene, along with the flow of object representations through
the rendering pipeline can be found in Chapter 2.

1.4 Objects

Though we have created a data structure which represents the objects in the
scene, each individual object is potentially very different. In order to pass the
objects through the latter stages of the pipeline we need to convert them to a
common format.

The shading engine shades a patch in a single pass, rather than shading each
point in turn. While certain simple shaders can be evaluated a point at a time,
more complex operations require information about the surface, rather than just
the point. For this reason the preferred format is a 2D array of points forming a
mesh of micropolygons. Provided that each facet of the mesh is smaller than one
pixel in the output image, the resulting surface should be a sufficiently accurate
approximation to the true surface. This process is known as “dicing”

The required resolution of the mesh to be shaded can be estimated by calcu-
lating the bounding box for the patch, and projecting it into screen space.
Alternatively, a low-resolution mesh can be generated, and the micropolygons
in this mesh can be measured in screen space. By performing the operation at

6 Production Rendering

render time, when all information about the camera and object are known, and
optimum resolution can be chosen. It also allows the geometry to be stored in a
compact high-level format for as long as possible, reducing memory requirements.

By contrast, static tessellation schemes that convert surfaces to polygonal rep-
resentations during the modelling stage require fine tuning by the user to esti-
mate the tessellation rate required for a particular set of shots. This can easily
result in geometry that is too coarse, leading to artefacts, or too dense, which can
dramatically increase render times. If an object changes dramatically in size
during a shot, due to its movement relative to the camera, there may be no static
tessellation which is appropriate, whereas dynamic dicing is automatically recal-
culated at each frame.

The RenderMan attribute ShadingRate allows the user to scale the resolution
of the shaded mesh. A finer mesh gives a better approximation to the underlying
surface, particularly when displacement is used, at the expense of render time,
while a coarser mesh can dramatically speed up test renders.

It is fairly typical that the size of the mesh required to represent a complete
object with sufficient accuracy would be very large, and hence would require
more memory than is available. In this case the object is simply divided in two —
a process known as “splitting”. These split patches can then be reconsidered for
dicing (and possibly re-split). This also increases the chance that the sub-patch
may be off screen or fully occluded by geometry that has already been drawn,
allowing the new patch to be more aggressively culled.

For certain objects it may also be found that certain parts of the mesh require
very fine dicing while others require coarse dicing (for example, a ground plane
extending from the foreground off into the distance). Making the micropolygons
too big leads to a lack of detail in the image, while choosing micropolygons that
are too small leads to wasted effort and potential aliasing problems. This may
also be used as a criterion for splitting the patch, so that each section can be diced
at an appropriate level of detail.

1.4.1 Quadrics

RenderMan supports a number of standard quadrics, and other simple mathe-
matical objects such as a sphere, torus, cone, disk, hyperboloid and paraboloid.
All of these can be represented simply by a function, which takes u and v surface
coordinates and returns a point P in object space. These surfaces can therefore be
transformed to a mesh of squares at arbitrary resolution (Figure 1.1).

Given a suitable function to evaluate P, a mesh can be created simply:

Point PLuwidth][vwidth]
float du = 1.0/(uwidth-1);
float dv = 1.0/(vwidth-1);
for(u = 0;uuwidth;u++)
for(v = 0;v<vwidth;v+t+)
PLullv] = PFunk(surfaceParams, u*du, v*dv);

Details on implementing appropriate P functions for quadrics and other
surfaces can be found in Chapter 3.

Chapter 1 - A System Overview 7

%ﬁ F 1 4] %
. & | £
RN { Pl
AL AR]
' JEE] e
\‘(;r:‘ 2.) r‘.vﬂ [d k) L/
- sl o
= N
R & L
{ NG Nk o,
| (‘ Pl
] = is
El fv
8
P i N
L gD o p
Q
8 ﬁﬂ

Figure 1.1 Asphere as a mesh.

1.4.2 Patches

Patches within RenderMan may be bilinear, bicubic (with arbitrary basis func-
tions) or rational (NURBS). Patches may be specified individually or as part of
meshes, and PatchMesh may be periodic or non-periodic. Regardless of these
complexities, patches are parametric and hence can be handled identically to
quadrics.

In the case of bicubic patches, it may be convenient to convert all patches to a
standard basis, for example Bezier, to avoid unnecessary storage of the basis
matrices, to optimize the evaluation of the surface, and to make use of the convex
hull property of certain basis types.

1.4.3 Polygons

Although polygons and polygon meshes are generally regarded as being trivial to
render, they are in fact one of the hardest groups of primitives within the original
RenderMan standard for a renderer to handle. They do not convert well to the
micropolygon representation, in part because they lack globally consistent surface
coordinates. While many texts deal with Phong shading large triangles, we need
to reduce polygons to quads or triangles, which can be passed to the shading stage
as patches.

Polygons come in three forms: convex, concave and concave with holes. A
convex polygon can be trivially converted to quads (one of which may be degen-
erate, i.e. a triangle), which may then be shaded. Holes may be removed from a
polygon by splitting along a line from the outside edge to a point on the hole.

8 Production Rendering

—

L1 YL N

Concave with hole Concave Convex

Figure 1.2 Splitting polygons.

Concave polygons may be converted into two or more convex polygons by
repeatedly splitting them between two points, such that the new edge is inside
the original shape and does not intersect any existing edges. These two processes
are shown in Figure 1.2.

1.4.4 Subdivision Surfaces

Being non-parametric, subdivision surfaces inherit some of the problems of
polygons, in that they lack well-defined surface coordinates. Repeated subdiv-
ision produces a polygonal mesh, which could be used to approximate the sur-
face, but this would be difficult to shade well, and greatly increases memory
requirements.

Fortunately, in the case of Catmull-Clark surfaces (Catmull, 1974), following
subdivision all faces become quadrilaterals, most of which are simply B-spline
surfaces, and hence locally parametric. Those patches near extraordinary ver-
tices (whose valence is other than 4, and hence are not B-splines) can still be
evaluated parametrically, as shown in Stam (1998). We can therefore subdivide
the original control hull a small number of times, and then treat each of the
resulting faces as parametric patches for passing to the shading engine.

1.4.5 Points and Curves

Lightweight primitives are intended to be minimally shaded, either consisting
of a single shading sample or a strip of samples (in the case of a curve). We can
therefore pack these together into a pseudo-patch for shading. While this will
mean that shading calculations based on derivatives are unreliable, such operations
have little meaning for these primitives, as they have no width.

1.4.6 Blobby Objects

Pixar’s RenderMan (PRMan) 3.9 introduced implicit surfaces (Bloomenthal et al.,
1997) in the form of the Blobby command (Pixar, 2000). While a number of
techniques exist for polygonalizing isosurfaces (Duff, 1992; Watt and Watt, 1992;
Heckbert, 1994), simple polygonalization is a poor technique when procedural
shading is being used. Standard techniques such as Marching Cubes produce a
large number of small irregular polygons rather than the regular mesh, which
the shading engine prefers, but this is a penalty that must currently be accepted,
in exchange for the flexibility of implicit surfaces.

Chapter 1 - A System Overview 9

Figure 1.3 Transforming surface normals.

1.5 Transforms and Coordinate Systems

Objects are defined in their own object space. All points, vectors and normals
must therefore be converted into a common world space for shading.

The calculations of shading and texturing can be performed in any coord-
inate system, other than those such as Screen which follow the perspective trans-
form representing the camera lens. When coordinate systems are not explicitly
specified within the shader code the renderer references a default space known as
current space. This space is renderer dependent, but is usually equivalent to cam-
era space. Certain calculations such as ray-object intersection are more easily
performed in object space, while world space is in principle the most appealing
space in which to perform lighting calculations. In practice, camera space is most
commonly used, as it allows all the linear transforms to be performed prior to
shading. The first task of the back-end of our renderer is therefore to transform
all the micropolygons of our surface into camera space, if this has not already
been done.

So far we have considered only points. However, we must distinguish between
vectors used to represent points, free vectors and vectors that represent surface
normals. These correspond to the shading language (SL) types point, vector and
normal, and must be handled differently when transformed both by SL code and
by the rendering pipeline. Points respond as expected to scaling, rotation, shear
and translations. However, as vectors represent simply an offset to an arbitrary
point they are invariant under translation. When a translation matrix is applied
to a vector it is unchanged while a point is moved.

The case for normals is somewhat more complex. Consider the 2D case of a
sine wave along the x-axis (Figure 1.3). If the graph is scaled in the x-direction
(becoming flatter) then the normals become smaller in x (more vertical).
Mathematically for a transform M, normals must be scaled by the inverse of the
transpose of M. In practice this is often equivalent to M, so the error may go
unnoticed for some time — particularly as we rarely care about the magnitude of
the normal, merely its direction.

1.6 Shading

Having converted the geometry of the input object into a simple common form —
a grid of points we can now consider texturing and lighting each point. Though
strictly speaking the term “shading” refers to the calculation of the light interaction

10 Production Rendering

P ——> Displacement

N ———> shader
|
P
> Surface
I shader
Ci h
3 Atmosphere :
shader » Ci

Figure 1.4 The shading process.

with a surface, it is generically applied within production to refer to all opera-
tions performed upon the grid.

1.6.1 The Shading Process

RenderMan supports a number of shader types. However, the most important
for the shading of surfaces are Displacement, Surface and Atmosphere. The rela-
tionship between these is shown in Figure 1.4. Displacement may modify the
position and normals of points in the mesh, while Surface calculates the colour
of the points, taking into account the observer (viewing along a vector I) and the
lights in the scene.! Atmosphere modifies this colour to simulate the effect of the
space between the surface and the observer.

Each of these are written as a function, which are run one after the other.
Communication between the shaders is limited to the sharing of global vari-
ables. Following shading we will have final versions of Pand Ci (the position and
colour of each micropolygon) ready for drawing.

1.6.2 Shading Language

RenderMan shaders are written using SL — a high-level programming language
designed for describing surfaces. Though much like C, extended data types,

!In practice certain renderers (particularly PRMan) allow displacement to be applied in
surface shaders, though this can give rise to artefacts, and is non-portable.

Chapter 1 - A System Overview 1

Nf = faceforward (normalize(N),l); pushv |
pushv N
normalize
faceforward
popv Nf

V = —normalize(l); pushv |
normalize
negv
popv \Y

Oi = Os; pushc Os
popc Oi

Ci = Oi * (Cs * (Ka*ambient() + Kd*diffuse(Nf)) + pushf roughness

specularcolor * Ks*specular(Nf,V,roughness)); pushvV
pushv Nf
specular
pushf Ks
pushc specularcolor
mulcf
mulcc
pushv Nf
diffuse
pushf Kd
mulfc
ambient
pushf Ka
mulfc
addcc
pushc Cs
mulcc
addcc
pushc Oi
mulcc
popc Ci

Figure 1.5 Compiling the plastic shade.

operator overloading and special rendering functions allow shaders to be written
far more succinctly than in more general programming languages. Conversely, this
narrow focus does place some limits to the operations that can be implemented.

SL is renderer independent, so a well-written shader can be used in any com-
patible renderer. However, it must first be compiled. This translates the shader from
the high-level language used by the programmer into a form which can be used
directly by a particular renderer. The code for the standard plastic shader in both
source and a typical target format are shown in Figure 1.5. The implementation
of a compiler to convert between these formats is considered in detail in Chapter 5.

A shader describes shading calculations in terms of a single point, and these
are duplicated across the surface, and hence all features must be described
implicitly rather than explicitly. For example, to draw a disk we must consider
whether each point is inside the disk and colour it appropriately rather than
drawing the disk onto the surface. Rather than shading each point to comple-
tion, each operation in the code is executed for the whole surface before moving
to the next operation.

12 Production Rendering

This approach of defining a set of operations, and then performing these
operations in parallel across a large data set is known as SIMD computing
(single-instruction multiple data; Flyn, 1972). In addition to fitting well within
the shading paradigm (where a surface must be coloured), it can be implemented
very efficiently, is ideal for hardware acceleration (Olano, 2000; Stephenson,
2003) and allows operations such as the calculation of surface normals to be
implemented far more easily than could be done if each point were shaded in turn.

1.6.3 The Shading Engine

The basic data structure on which the shader engine operates is a 2D array of
points, each point being logically connected to its neighbours to form a regular
patch. By this stage all geometry has been converted into this format. For each point
we need to store shading variables such as P (position) and N (surface normal).
Hence, we have an array of memory addresses associated with each point (or in
SIMD terminology, node) in which these variables can be stored.

The SIMD Virtual Machine

Shaders are typically compiled to a virtual machine code, which is interpreted at
run time. This simplifies the compilation process and allows compiled shaders to
be used across a range of available hardware (in a render-farm, for example).

While this approach may appear to be slow (as it is in the case of the Java vir-
tual machine (VM) or the BCPL INTCODE system (Richards and Whitby-Stevens,
1979) this is in fact not the case when the technique is used for procedural shading.
Any overhead in the interpretation of code is incurred due to the instruction
decode — an instruction is read in, and the interpreter must decide how it should
be executed. If it takes nine CPU cycles to work out that the instruction is an add
operation, and then one cycle to perform the add, such a system would indeed be
extremely slow. However, in the case of shading, having decoded the add instruc-
tion we must apply it to (say) a 100 X 100 grid of micropolygons, taking approx-
imately 10,000 cycles. The instruction overhead has dropped from 90% of CPU
time to 0.01%.

In addition, many shading operations can be added to the instruction set. So,
for example, a noise function would typically be supported as a single instruction.
This will take a significant time to execute (noise accounts for up to 50% of the
CPU time used by many typical shaders), again reducing the significance of the
instruction decode. The plastic shader in Figure 1.5 makes use of faceforward, nor-
malize, ambient, specular and diffuse instructions all of which are highly specialized
operations not typically part of a regular machine’s instruction set. Their pres-
ence in the virtual machine greatly simplifies and optimizes the interpreted code.

The code of our shading engine is therefore simply a loop, which reads an
instruction from the shader (often simply a text file), identifies the instruction
and then performs that operation on all of the points on the surface. In its most
basic form:

Chapter 1 - A System Overview 13

while(fscanf(opstream, “%s”, operation))
{

if(strcmp(operation, *“add”) == 0)

{
fscanf(opstream, “%s”, sourcelName);

660/ 2

fscanf(opstream, “%s”, sourceZName);
fscanf(opstream, “%s”, destName);
sl = lookup(sourcelName);
s2 = lookup(sourceZ2Name) ;
dest = Tookup(destName);
for(i = 0;i<nodeCount;i++)
{
machineli]ldest] = machine[i][sl] +
machineli]1[s2];
}
}

Derivatives

Within the shading language a number of operations (known as derivative or
area functions) depend not just on the point being shaded but on the way vari-
ables change across the surface. The most obvious of these is calculatenormal,
which finds the normal of a new displaced surface. Though at first sight chal-
lenging to implement, once a SIMD approach is adopted, providing a numerical
approximation to the new surface normal becomes trivial:

if(strcmp(operation, “calculatenormal”) == 0)
{
for(i = 0;i<maxnodes;i++)
{
dPdu = (machine[i+1]1[pAddr] - machinel[i]l[pAddr])
/(machine[i+1]1LuAddr] - machinel[i][uAddr]);
dPdv = (machine[i+uwidth][pAddr] - machine[i][pAddrl)
/(machine[i+uwidth][vAddr] - machine[i][vAddrl);
machineli][nAddr] = crossProduct(dPdu, dPdv);
}
}

Note that this code is slightly simplified as it fails to take into account the
edges of the grid. Great care must be taken throughout the renderer to ensure
that grid edges are handled correctly.

14 Production Rendering
Table 1 Conditional execution
SL VM code Nodel Node?
if (s>0.5) | gt s 0.5 true false
JmplfFalse 1 sleep on 1
{do this} active sleep
else Jjmp 2 sleep on 2 | sleep
label 1 sleep wakeup
{do that} | sleep active
done label 2 wakeup active
Branches and Loops

So far we have applied each SIMD instruction to every node of the virtual
machine. In order to implement the shading language we need to implement
conditionals (if~then—else) and loops (for, while and illuminance).

When a conditional statement is encountered in a SIMD context it is gener-
ally not a branch, in that both paths of the code must be executed, each path
being applied to a different set of nodes. This is managed by an array of flags
indicating which nodes are currently active. When an if statement is encoun-
tered, all nodes which fail the test are turned off, and the code in the body of the
conditional is executed. Every instruction is conditional, in that it is only executed
upon nodes which are enabled, as in Table 1.

At the end of the conditional we need to wake up the sleeping nodes. This can
be achieved by marking the nodes with the value of a label to which they have
“branched”. When a label instruction is encountered, any nodes sleeping on that
label are woken. Note that no branch has actually taken place — the interpreter
simply keeps reading instructions. In the case of an else clause, all active nodes
are suspended, and a label wakes up all nodes, which should execute the else.
Finally, at the end of the conditional all the nodes are woken by a further label.

In addition to conditional forward branching, we simply need unconditional
backward branches to be able to implement all SL looping constructs. For example,
a while loop can be coded as:

label 1
evaluate condition
JumpIfFalse 2
body of Toop
Jmp 1
label 2

Backward branches are implemented by changing the program counter,
which indicates which instruction the interpreter will process next — we actually
do need to branch. Though backward branches are unconditional within the

Chapter 1 - A System Overview 15

assembly language the shading engine only needs to execute the branch if there is
an active node which requires it. If no nodes are active then the loop is complete,
and the interpreter can be allowed to progress naturally to the next instruction.

Lighting

So far we have ignored the subject of lighting. The reason for this is that in the case
of local illumination, lighting is simply a shading calculation — lights encountered
in the RIB stream are simply recorded and passed to the shading engine. Within
the virtual machine we have incorporated instructions such as diffuse and specu-
lar, which take their parameters of position, normal, roughness and observer
from the stack, and loop over all lights within the scene calculating the lighting
using standard lighting equations (Hall, 1989; Cook and Torrance, 1982).

If the RenderMan diffuse and specular functions were coded directly in SL they
would be:

colour Cdiff = 0;
colour Cspec = 0;

illuminance(P, Nf, PI/2)
{
Cdiff+ = Cl*normalize(L).Nf;
Cspect = Cl*pow(normalize(V+normalize(L)).Nf,
1/roughness);

}

While such an implementation is informative, it is significantly less efficient
than the built-in implementations.

If non-standard light shaders are applied these must also be evaluated using
the shading VM. This can either use a separate instance of the machine, or the
shading calculations may be performed on the same array as the nodes, which
actually require the data. In either case the results of these calculations should
be cached, as the result of the light shader will be used by both the diffuse and
specular calculations.

Texture Maps

Though procedural control of surfaces is an essential feature of a high-end ren-
derer, it is often necessary to use painted textures to add specific detail or provide
artistic control over procedural components. However, when multiple high-
resolution maps per shader are applied to hundreds of objects, the memory
requirements can become significant.

To avoid loading large maps for objects which are small on screen, texture files
are generally mip-mapped. The image is repeatedly halved in both width and
height to generate multiple representations of the high-resolution texture which
are a fraction of the original size. For many of the objects in the scene, only the
low-resolution versions are required in memory, and the full-sized images may

16 Production Rendering

be left on disk. As the low-resolution images are generated prior to rendering,
they also save CPU time, as filtering is performed only once per texture, rather
than at each access.

When objects are viewed closely, at levels of detail where the most detailed
textures are required, it is unlikely that the whole texture will be visible on screen
in a single frame. Each representation of the image within the mip-map is broken
into tiles, and only those tiles which are on screen need be loaded into memory.

Because shading takes place on grids, there is strong locality of reference — a
texture which is accessed by one point will be required for the entire grid, at a
similar level of detail. Tiles are loaded into memory, as they are required, and
held for use across the grid, and on neighbouring grids using similar shaders.
Tiles which have not been accessed for some time are discarded to make room for
new tiles. By effective caching, tiling and mip-mapping, textures can be squeezed
into a fraction of the memory otherwise required.

Uniform versus Varying Data

Not all calculations need be repeated for every point. Many values are uniform
across the shaded surface, and hence SL provides a mechanism for identifying
this, allowing repeated calculations to be avoided.

The most obvious strategy for implementing such an optimization would be
to add qualifiers to each instruction specifying whether it operates in uniform or
varying data. The compiler then tracks this information through the parse tree and
generates code that uses the new instructions. At run time operations such as
addUU need only perform a single addition. Instructions such as addUV may also
be optimized compared with addVV.

A more interesting approach is to monitor the type of expressions at run
time. A push operation can record whether the value at the top of the stack value
is now uniform or varying. An add operation can check the types of data on
which it is being asked to operate and optimize accordingly. This and other
advanced shading techniques are the subject of Chapter 4.

1.7 Ray Tracing

Historically, ray tracing has been considered as a complete solution to the ren-
dering problem. However, such systems are far slower than micropolygon style
renders, and hence have seen limited application in production environments.
Users were forced to choose between the performance of a scanline system, and
the ability to easily handle complex shadows, reflections and refractions afforded
by ray tracers. Typically, production deadlines, high-resolution requirements
and the complexity of scenes forced ray tracing to the sidelines.

More recently this choice has been negated. Ray-tracing systems have added
micropolygon-based subsystems to handle the rays from the camera, while
micropolygon renderers have added ray-tracing engines to handle reflections
from objects. Within this model ray tracing is simply a shading operation — at its
most simple we need to add a trace() function to the shading language which

Chapter 1 - A System Overview 17

returns the colour of the scene in a particular direction, providing ray-tracing
flexibility “on demand” If the user chooses not to call this-function they achieve
the full performance of the scanline renderer, and can introduce ray-traced
lighting on a per primitive basis, as time and image quality demands.

A second function, transmission(), calculates whether there is an object
blocking a ray between two points. In this case we are not interested in the colour
of the object, but simply its opacity. We are also not interested in the first inter-
section, but the combination of all objects along the ray. This function can be
built into light shaders to create ray-traced shadows.

1.7.1 Ray-Object Intersection

In order to calculate the colour which the trace function should return we need
to find the first object which would be intersected by a ray from the point being
shaded, in the specified direction. Most basically we need a function for each
type of object which tests if the ray hits an instance of that object, and returns the
u,v coordinates of the intersection. For certain simple objects, such as spheres,
this can be done easily. However, for more complex objects, such as NURBS,
this calculation becomes less tractable. This approach also makes displacement
difficult, as this can deform the surface in arbitrary and unpredictable ways.
For this reason many renderers do not support displacement of secondary
surfaces.

An alternative to calculating intersections directly is to tessellate the object
into a polygonal approximation. While this makes finding the intersection point
simple it creates the problem of storing large amounts of tessellated geometry. In
addition, it can be difficult to select an appropriate level of detail that is fine
enough for all rays without being too dense. A solution to this is to dynamically
tessellate objects on demand, when they potentially intersect a ray. These tessel-
lations are stored in a cache, and can be reused for similar rays. Multiple versions of
the same object may even exist, if different levels of detail are required. Tessellations
which have not been used recently can be discarded to free up memory.

Clearly, we would like to avoid performing ray—object intersection tests (either
analytical or numerical) wherever possible, and the first stage in achieving this
would be to test the ray against a bounding box for the object. This test can
be performed, and if the ray either misses the bounding box, or intersects it at a
distance further than the closest intersection found so far, it can be discarded.

Rather than exhaustively testing each object we can group objects together,
potentially allowing several objects to be discarded with a single bounding box
test. The objects in Figure 1.6 have been divided into three groups, based on the
central dividing line — those objects on the left, those on the right, and those
which cross the boundary and spill into both halves.

To intersect a ray with these objects we first intersect the ray with each of the
three bounding boxes. If an intersection is found in the nearest group then we
may not need to consider the latter boxes. In the case of Figure 1.6, only objects
in the right and middle boxes would need to be considered. Once the intersec-
tion is found with the inverted triangle, we know that all objects in the left
bounding box must be further away, and can therefore be ignored. By extending
this approach recursively large scenes can be efficiently searched.

18 Production Rendering

<>
VO

: D

-

<>
L O

0/
7

Figure 1.6 Grouping objects.

1.7.2 Shading Ray-traced Objects

Having established that a ray intersects an object at a particular point, we need to
calculate the colour of the object at that point. In principle this can be achieved
trivially by simply passing that point back into the standard shading engine.
However, there are a number of issues which need to be considered.

First, the shading engine must be designed to be re-entrant. It is being called
recursively, and hence care must be taken when accessing global data structures.
In particular, accessing attributes must access the attributes of the object currently
been shaded, and not the attributes of the object which launched the ray.

A more significant issue is that the shading engine is designed to shade grids
rather than individual points. To handle derivatives correctly we must construct
a small grid of four points to support the point we are actually interested in

Chapter 1 - A System Overview 19

shading. In addition to the intersection point u, v the points u + du, v, u, v + dv
and u + du, v + dvwill also be shaded.

When shading primary objects the grids used can be relatively large, which
allows the overheads of interpretation to be shared by many micropolygons.
When shading secondary objects the grid size is fixed at four points, which can
dramatically reduce the efficiency. Operations performed once per grid can
become significant, and must be carefully optimized if good performance is to
be achieved.

Attention must also be paid to avoiding recursive explosion of traced rays.
Though we are shading four points we are only interested in the result from one.
If each of these were to launch secondary rays, either by explicitly tracing, or by
evaluating lighting which creates shadow rays then 16 further points would
be shaded. As three of the four points are only required for the calculation of
derivatives, they can be culled once the final area calculation within the shader
has been performed (indicated by a hint from the compiler). This can dramati-
cally improve performance. Similarly, when calculating shadow rays the shader
can be terminated as soon as the opacity of the surface has been derived, usually
avoiding performing lighting calculations, which may again spawn further
shadow rays.

Chapter 6 provides more information on the problems of implementing a
ray-tracing sub-system within a hybrid production renderer.

1.8 Global lllumination

Ray tracing allows for basic shadows and reflections in shiny surfaces. While this
can dramatically improve the appearance of artificially constructed scenes, in the
real world most surfaces do not behave as perfect reflectors. In Figure 1.7a (Plate
1.1) a simple scene is lit by only direct illumination. The same scene is aug-
mented using ray tracing in Figure 1.7b (Plate 1.2), enabling the boxes to inter-
reflect. The boxes also cast ray-traced shadows onto the floor and walls, greatly
increasing the realism of the scene.

However, while Figure 1.7b appears a vast improvement on Figure 1.7a, it is
clearly lacking in verisimilitude when compared to Figure 1.7c (Plate 1.3), which
is rendered using global illumination. Most obviously the ceiling in Figure 1.7b

Figure 1.7 Ray tracing and global illumination.

