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Preface

History

The studies of random geometrical objects go back to the famous Buffon needle
problem. Similar to the ideas of Geometric Probabilities that can be traced back to
the first results in probability theory, the concept of a random set was mentioned
for the first time together with the mathematical foundations of Probability Theory.
A.N. Kolmogorov [321, p. 46] wrote in 1933:

Let G be a measurable region of the plane whose shape depends on chance;
in other words, let us assign to every elementary event ξ of a field of prob-
ability a definite measurable plane region G. We shall denote by J the area
of the region G and by P(x, y) the probability that the point (x, y) belongs
to the region G. Then

E(J ) =
∫∫

P(x, y)dxdy .

One can notice that this is the formulation of Robbins’ theorem and P(x, y) is the
coverage function of the random set G.

The further progress in the theory of random sets relied on the developments in
the following areas:

• studies of random elements in abstract spaces, for example groups and algebras,
see Grenander [210];

• the general theory of stochastic processes, see Dellacherie [131];
• advances in image analysis and microscopy that required a satisfactory mathe-

matical theory of distributions for binary images (or random sets), see Serra [532].

The mathematical theory of random sets can be traced back to the book by Math-
eron [381]. G. Matheron formulated the exact definition of a random closed set and
developed the relevant techniques that enriched the convex geometry and laid out the
foundations of mathematical morphology. Broadly speaking, the convex geometry
contribution concerned properties of functionals of random sets, while the morpho-
logical part concentrated on operations with the sets themselves.
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The relationship between random sets and convex geometry later on has been
thoroughly explored within the stochastic geometry literature, see, e.g. Weil and
Wieacker [607]. Within the stochastic geometry, random sets represent one type of
objects along with point processes, random tessellations, etc., see Stoyan, Kendall
and Mecke [544]. The main techniques stem from convex and integral geometry, see
Schneider [520] and Schneider and Weil[523].

The mathematical morphology part of G. Matheron’s book gave rise to numerous
applications in image processing (Dougherty [146]) and abstract studies of opera-
tions with sets, often in the framework of the lattice theory (Heijmans [228]).

Since 1975 when G. Matheron’s book [381] was published, the theory of ran-
dom sets has enjoyed substantial developments. D.G. Kendall’s seminal paper [295]
already contained the first steps into many directions such as lattices, weak con-
vergence, spectral representation, infinite divisibility. Many of these concepts have
been elaborated later on in connection to the relevant ideas in pure mathematics. This
made many of the concepts and notation used in [295] obsolete, so that we will follow
the modern terminology that fits better into the system developed by G. Matheron;
most of his notation was taken as the basis for the current text.

The modern directions in random sets theory concern

• relationships to the theories of semigroups and continuous lattices;
• properties of capacities;
• limit theorems for Minkowski sums and relevant techniques from probabilities in

Banach spaces;
• limit theorems for unions of random sets, which are related to the theory of ex-

treme values;
• stochastic optimisation ideas in relation to random sets that appear as epigraphs

of random functions;
• studies of properties of level sets and excursions of stochastic processes.

These directions constitute the main core of this book which aims to cast the random
sets theory in the conventional probabilistic framework that involves distributional
properties, limit theorems and the relevant analytical tools.

Central topics of the book

The whole story told in this book concentrates on several important concepts in the
theory of random sets.

The first concept is the capacity functional that determines the distribution of a
random closed set in a locally compact Hausdorff separable space. It is related to
positive definite functions on semigroups and lattices. Unlike probability measures,
the capacity functional is non-additive. The studies of non-additive measures are
abundant, especially, in view of applications to game theory, where the non-additive
measure determines the gain attained by a coalition of players. The capacity func-
tional can be used to characterise the weak convergence of random sets and some
properties of their distributions. In particular, this concerns unions of random closed
sets, where the regular variation property of the capacity functional is of primary
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importance. It is possible to consider random capacities that unify the concepts of a
random closed set and a random upper semicontinuous function. However, the ca-
pacity functional does not help to deal with a number of other issues, for instance to
define the expectation of a random closed set.

Here the leading role is taken over by the concept of a selection, which is a
(single-valued) random element that almost surely belongs to a random set. In this
framework it is convenient to view a random closed set as a multifunction (or set-
valued function) on a probability space and use the well-developed machinery of
set-valued analysis. It is possible to find a countable family of selections that com-
pletely fills the random closed set and is called its Castaing representation. By taking
expectations of integrable selections, one defines the selection expectation of a ran-
dom closed set. However, the families of all selections are very rich even for simple
random sets.

Fortunately, it is possible to overcome this difficulty by using the concept of the
support function. The selection expectation of a random set defined of a non-atomic
probability space is always convex and can be alternatively defined by taking the
expectation of the support function. The Minkowski sum of random sets is defined
as the set of sums of all their points or all their selections and can be equivalently
formalised using the arithmetic sum of the support functions. Therefore, limit theo-
rems for Minkowski sums of random sets can be derived from the existing results in
Banach spaces, since the family of support functions can be embedded into a Banach
space. The support function concept establishes numerous links to convex geometry
ideas. It also makes it possible to study set-valued processes, e.g. set-valued martin-
gales and set-valued shot-noise.

Important examples of random closed sets appear as epigraphs of random lower
semicontinuous functions. Viewing the epigraphs as random closed sets makes it
possible to obtain results for lower semicontinuous functions under the weakest pos-
sible conditions. In particular, this concerns the convergence of minimum values and
minimisers, which is the subject of stochastic optimisation theory.

It is possible to consider the family of closed sets as both a semigroup and a
lattice. Therefore, random closed sets are simply a special case of general lattice- or
semigroup-valued random elements. The concept of probability measure on a lattice
is indispensable in the modern theory of random sets.

It is convenient to work with random closed sets, which is the typical setting in
this book, although in some places we mention random open sets and random Borel
sets.

Plan

Since the concept of a set is central for mathematics, the book is highly interdisci-
plinary and aims to unite a number of mathematical theories and concepts: capac-
ities, convex geometry, set-valued analysis, topology, harmonic analysis on semi-
groups, continuous lattices, non-additive measures and upper/lower probabilities,
limit theorems in Banach spaces, general theory of stochastic processes, extreme
values, stochastic optimisation, point processes and random measures.



X Preface

The book starts with a definition of random closed sets. The space E which ran-
dom sets belong to, is very often assumed to be locally compact Hausdorff with a
countable base. The Euclidean space Rd is a generic example (apart from rare mo-
ments when E is a line). Often we switch to the more general case of E being a
Polish space or Banach space (if a linear structure is essential). Then the Choquet
theorem concerning the existence of random sets distributions is proved and rela-
tionships with set-valued analysis (or multifunctions) and lattices are explained. The
rest of Chapter 1 relies on the concept of the capacity functional. First it highlights
relationships between capacity functionals and properties of random sets, then de-
velops some analytic theory, convergence concepts, applications to point processes
and random capacities and finally explains various interpretations for capacities that
stem from game theory, imprecise probabilities and robust statistics.

Chapter 2 concerns expectation concepts for random closed sets. The main part
is devoted to the selection (or Aumann) expectation that is based on the idea of the
selection. Chapter 3 continues this topic by dealing with Minkowski sums of random
sets. The dual representation of the selection expectation – as a set of expectations of
all selections and as the expectation of the support function – makes it possible to re-
fer to limit theorems in Banach spaces in order to prove the corresponding results for
random closed sets. The generality of presentation varies in order to explain which
properties of the carrier space E are essential for particular results.

The scheme of unions for random sets is closely related to extremes of random
variables and further generalisations for pointwise extremes of stochastic processes.
Chapter 4 describes the main results for the union scheme and explains the back-
ground ideas that mostly stem from the studies of lattice-valued random elements.

Chapter 5 is devoted to links between random sets and stochastic processes. On
the one hand, this concerns set-valued processes that develop in time, in particular,
set-valued martingales. On the other hand, the subject matter concerns random sets
interpretations of conventional stochastic processes, where random sets appear as
graphs, level sets or epigraphs (hypographs).

The Appendices summarise the necessary mathematical background that is nor-
mally scattered between various texts. There is an extensive bibliography and a de-
tailed subject index.

Several areas that are related to random sets are only mentioned in brief. For
instance, these areas include the theory of set-indexed processes, where random sets
appear as stopping times (or stopping sets), excursions of random fields and potential
theory for Markov processes that provides further examples of capacities related to
hitting times and paths of stochastic processes.

It is planned that a companion volume to this book will concern models of ran-
dom sets (germ-grain models, random fractals, growth processes, etc), convex ge-
ometry techniques, statistical inference for stationary and compact random sets and
related modelling issues in image analysis.
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Conventions

The numbering follows a two-digit pattern, where the first digit is the section num-
ber of the current chapter. When referring to results from other chapters, we add
the chapter number using the three digit numbering scheme. When referring to the
Appendices, the first digit is a letter that designates the particular appendix. The
statements in theorems and propositions are mostly numbered by Roman numbers,
while the conditions usually follow Arabic numeration.

1.1

1.5

1.9 1.8

1.4

1.6

1.2

2.1

2.2

2.3

3.1
3.2

3.3

5.1

5.2 5.3

1.7 1.3
4.1

4.2
4.3

4.4

4.5

4.6
A rough dependence guide between the sections.

Although the main concepts in this book are used throughout the whole presenta-
tion, it is anticipated that a reader will be able to read the book from the middle. The
concepts are often restated and notation is set to be as consistent as possible taking
into account various conventions within a number of mathematical areas that build
up this book.

The problems scattered through the text are essentially open, meaning that their
solutions are currently not known to the author.

The supporting information (e.g. bibliographies) for this book is available through
Springer WEB site or from

http://www.cx.unibe.ch/∼ilya/rsbook/index.html
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1

Random Closed Sets and Capacity Functionals

1 The Choquet theorem

1.1 Set-valued random elements

As the name suggests, a random set is an object with values being sets, so that the
corresponding record space is the space of subsets of a given carrier space. At this
stage, a mere definition of a general random element like a random set presents little
difficulty as soon as a σ -algebra on the record space is specified. The principal new
feature is that random sets may have something inside (different to random variables
and random vectors) and the development of this idea is crucial in the studies of
random sets. Because the family of all sets is too large, it is usual to consider random
closed sets defined as random elements in the space of closed subsets of a certain
topological space E. The family of closed subsets of E is denoted by F , while K and
G denote respectively the family of all compact and open subsets of E. It is often
assumed that E is a locally compact Hausdorff second countable topological space
(LCHS space). The Euclidean space Rd is a generic example of such space E.

Let us fix a complete probability space (Ω,F,P) which will be used throughout
to define random elements. It is natural to call an F -valued random element a random
closed set. However, one should be more specific about measurability issues, which
acquire considerably more importance when studying random elements in complex
spaces. In other words, when defining a random element it is necessary to specify
which information is available in terms of the observable events from the σ -algebra F
in Ω . It is essential to ensure that the measurability requirement is restrictive enough
to ensure that all functionals of interest become random variables. At the same time,
the measurability condition must not be too strict in order to include as many random
elements as possible. The following definition describes a rather flexible and useful
concept of a random closed set.

Definition 1.1 (Definition of a random closed set). A map X : Ω �→ F is called a
random closed set if, for every compact set K in E ,

{ω : X ∩ K �= ∅} ∈ F . (1.1)
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Condition (1.1) simply means that observing X one can always say if X hits or
misses any given compact set K . In more abstract language, (1.1) says that the map
X : Ω �→ F is measurable as a map between the underlying probability space and
the space F equipped with the σ -algebra B(F) generated by {F ∈ F : F ∩K �= ∅}
for K running through the family K of compact subsets of E. Note that B(F) is
called the Effros σ -algebra, which is discussed in greater detail in Section 2.1 for the
case of a general Polish space E. As in Appendix B, we write

FK = {F ∈ F : F ∩ K �= ∅} .
The σ -algebra generated by FK for all K from K clearly contains

FK = {F ∈ F : F ∩ K = ∅} .
Furthermore, for every G from the family G of open sets,

FG = {F ∈ F : F ∩ G �= ∅} =
⋂

n

FKn ,

where {Kn, n ≥ 1} is a sequence of compact sets such that Kn ↑ G (here the local
compactness of E is essential). Therefore, FG ∈ B(F) for all G ∈ G. It should be
noted that the Fell topology on F (discussed in Appendix B) is generated by open
sets FG for G ∈ G and FK for K ∈ K. Therefore, the σ -algebra generated by FK

for K ∈ K coincides with the Borel σ -algebra generated by the Fell topology on F .
It is possible to reformulate Definition 1.1 as follows.

Definition 1.1′. A map X : Ω �→ F is called a random closed set if X is measurable
with respect to the Borel σ -algebra on F with respect to the Fell topology, i.e.

X−1(X ) = {ω : X (ω) ∈ X } ∈ F

for each X ∈ B(F).

Then (1.1) can be formulated as

X−1(FK ) = {ω : X (ω) ∈ FK } ∈ F . (1.2)

As in Appendix D, we often write X−(K ) instead of X−1(FK ). It is easy to see that
(1.2) implies the measurability of a number of further events, e.g. {X ∩ G �= ∅} for
every G ∈ G, {X ∩ F �= ∅} and {X ⊂ F} for every F ∈ F .

Since σ -algebra B(F) is the Borel σ -algebra with respect to a topology on F ,
this often leads to the conclusion that f (X) is a random closed set if X is a random
closed set and the map f : F �→ F is continuous or semicontinuous (and therefore
measurable).

Example 1.2 (Simple examples of random closed sets).
(i) If ξ is a random element in E (measurable with respect to the Borel σ -algebra

on E), then the singleton X = {ξ} is a random closed set.
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(ii) If ξ is a random variable, then X = (−∞, ξ ] is a random closed set on the
line E = R1. Indeed, {X ∩ K �= ∅} = {ξ ≥ inf K } is a measurable event for every
K ⊂ E. Along the same line, X = (−∞, ξ1] × · · · × (−∞, ξd ] is a random closed
subset of Rd if (ξ1, . . . , ξn) is a d-dimensional random vector.
(iii) If ξ1, ξ2, ξ3 are three random vectors in Rd , then the triangle with vertices ξ1, ξ2
and ξ3 is a random closed set. If ξ is a random vector in Rd and η is a non-negative
random variable, then random ball Bη(ξ) of radius η centred at ξ is a random closed
set. While it is possible to deduce this directly from Definition 1.1, it is easier to refer
to general results established later on in Theorem 2.25.
(iv) Let ζx , x ∈ E, be a real-valued stochastic process on E with continuous sample
paths. Then its level set X = {x : ζx = t} is a random closed set for every t ∈ R.
Indeed, {X ∩ K = ∅} = {infx∈K ζx > t} ∪ {supx∈K ζx < t} is measurable. Similarly,
{x : ζx ≤ t} and {x : ζx ≥ t} are random closed sets.

X = {ξ}
X = (−∞, ξ ]

ξ1

ξ2

ξ3

X = Bη(ξ)

X = {x : ζx ≥ t}
t

x

ζx

ξ

X

ξ
η

Figure 1.1. Simple examples of random closed sets.

Example 1.3 (Random variables associated with random closed sets).
(i) It is easy to see that the norm ‖X‖ = sup{‖x‖ : x ∈ X} for a random closed

set X in E = Rd is a random variable (with possibly infinite values). The event
{‖X‖ > t} means that X hits an open set G being the complement to the closed ball
of radius t centred at the origin.
(ii) For every x ∈ E the indicator 1X (x) (equal to 1 if x ∈ X and to zero otherwise)
is a random variable.
(iii) If µ is a locally finite Borel measure on E, then µ(X) is a random variable.
This follows directly from Fubini’s theorem since µ(X) = ∫ 1X (x)µ(dx), see Sec-
tion 4.4.
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If two random closed sets X and Y share the same distribution, then we write

X
d∼ Y . This means that P {X ∈ X } = P {Y ∈ X } for every measurable family of

closed sets X ∈ B(F).

1.2 Capacity functionals

Definition

The distribution of a random closed set X is determined by P(X ) = P {X ∈ X }
for all X ∈ B(F). The particular choice of X = FK and P {X ∈ FK } =
P {X ∩ K �= ∅} is useful since the families FK , K ∈ K, generate the Borel σ -algebra
B(F).

Definition 1.4 (Capacity functional). A functional TX : K �→ [0, 1] given by

TX (K ) = P {X ∩ K �= ∅} , K ∈ K , (1.3)

is said to be the capacity functional of X . We write T (K ) instead of TX (K ) where
no ambiguity occurs.

Example 1.5 (Capacity functionals of simple random sets).
(i) If X = {ξ} is a random singleton, then TX (K ) = P {ξ ∈ K }, so that the capacity

functional is the probability distribution of ξ .
(ii) Let X = {ξ1, ξ2} be the set formed by two independent identically distributed
random elements in E. Then TX (K ) = 1− (1− P {ξ1 ∈ K })2. For instance if ξ1 and
ξ2 are the numbers shown by two dice, then TX ({6}) is the probability that at least
one dice shows six.
(iii) Let X = (−∞, ξ ] be a random closed set in R, where ξ is a random variable.
Then TX (K ) = P {ξ > inf K } for all K ∈ K.
(iv) If X = {x ∈ E : ζx ≥ t} for a real-valued sample continuous stochastic process
ζx , x ∈ E, then TX (K ) = P

{
supx∈K ζx ≥ t

}
.

It follows immediately from the definition of T = TX that

T (∅) = 0 , (1.4)

and
0 ≤ T (K ) ≤ 1 , K ∈ K . (1.5)

Since FKn ↓ FK as Kn ↓ K , the continuity property of the probability measure P
implies that T is upper semicontinuous (see Proposition D.7), i.e.

T (Kn) ↓ T (K ) as Kn ↓ K in K . (1.6)

Properties (1.4) and (1.6) mean that T is a (topological) precapacity that can be
extended to the family of all subsets of E as described in Appendix E.

It is easy to see that the capacity functional T is monotone, i.e.

T (K1) ≤ T (K2) if K1 ⊂ K2 .
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Moreover, T satisfies a stronger monotonicity property described below. With every
functional T defined on a family of (compact) sets we can associate the following
successive differences:

�K1 T (K ) = T (K )− T (K ∪ K1) , (1.7)

�Kn · · ·�K1 T (K ) = �Kn−1 · · ·�K1 T (K )

−�Kn−1 · · ·�K1 T (K ∪ Kn) , n ≥ 2 . (1.8)

If T from (1.3) is a capacity functional of X , then

�K1 T (K ) = P {X ∩ K �= ∅} − P {X ∩ (K ∪ K1) �= ∅}
= −P {X ∩ K1 �= ∅, X ∩ K = ∅} .

K1
K

K3
X

K2

Figure 1.2. Set X from FK
K1,K2,K3

.

Applying this argument consecutively yields an important relationship between
the higher-order successive differences and the distribution of X

−�Kn · · ·�K1 T (K ) = P {X ∩ K = ∅, X ∩ Ki �= ∅, i = 1, . . . , n}
= P

{
X ∈ FK

K1,...,Kn

}
, (1.9)

where

FK
K1,...,Kn

= {F ∈ F : F ∩ K = ∅, F ∩ K1 �= ∅, . . . , F ∩ Kn �= ∅} ,
see Figure 1.2. In particular, (1.9) implies

�Kn · · ·�K1 T (K ) ≤ 0 (1.10)

for all n ≥ 1 and K , K1, . . . , Kn ∈ K.
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Example 1.6 (Higher-order differences).
(i) Let X = {ξ} be a random singleton with distribution P. Then

−�Kn · · ·�K1 T (K ) = P
{
ξ ∈ (K1 ∩ · · · ∩ Kn ∩ K c)

}
.

(ii) Let X = (−∞, ξ1] × (−∞, ξ2] be a random closed set in the plane R2. Then
−�{x}T ({y, z}) for x = (a, c), y = (b, c), z = (a, d) is the probability that ξ lies in
the rectangle [a, b)× [c, d), see Figure 1.3.
(iii) Let X = {x : ζx ≥ 0} for a continuous random function ζ . Then

−�Kn · · ·�K1 T (K ) = P

{
sup
x∈K

ζx < 0, sup
x∈Ki

ζx ≥ 0, i = 1, . . . , n

}
.

z
d

c

a b

yx

X

ξ

Figure 1.3. Random closed set from Example 1.6(ii).

The properties of the capacity functional T resemble those of the distribution
function. The upper semicontinuity property (1.6) is similar to the right-continuity,
and (1.10) generalises the monotonicity concept. However, in contrast to measures,
functional T is not additive, but only subadditive, i.e.

T (K1 ∪ K2) ≤ T (K1)+ T (K2) (1.11)

for all compact sets K1 and K2.

Example 1.7 (Non-additive capacity functional). If X = Br (ξ) is the ball of radius
r centred at a random point ξ in Rd , then TX (K ) = P {ξ ∈ K r }, which is not a
measure, since the r -envelopes K r

1 and K r
2 are not necessarily disjoint for disjoint

K1 and K2.

Complete alternation and monotonicity

Because of the importance of properties (1.6) and (1.10) it is natural to consider
general functionals on K that satisfy these properties without immediate reference
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to distributions of random closed sets. A real-valued functional ϕ on K which satis-
fies (1.4), (1.5), (1.6) and (1.10) is said to be a capacity functional. In other words, a
capacity functional is a functional on K which takes values in [0, 1], equals 0 on the
empty set and is upper semicontinuous and completely alternating on K. The latter
concept is addressed in the following definition.

Definition 1.8 (Completely alternating and completely ∪-monotone functionals).
Let D be a family of sets which is closed under finite unions (so that M1 ∪ M2 ∈ D
if M1, M2 ∈ D). A real-valued functional ϕ defined on D is said to be
(i) completely alternating or completely ∪-alternating (notation ϕ ∈ A(D) or ϕ ∈

A∪(D)) if

�Kn · · ·�K1ϕ(K ) ≤ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D . (1.12)

If (1.12) holds for all n ≤ m, then ϕ is said to be alternating of degree m (or
m-alternating).

(ii) completely ∪-monotone (notation ϕ ∈ M∪(D)) if

�Kn · · ·�K1ϕ(K ) ≥ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D .

As (1.10) shows, the capacity functional T is completely alternating. Defini-
tion 1.8 is usually applied to the case when D = K. It complies with Definition G.5
applied to the semigroup D with the union being the semigroup operation. Another
natural semigroup operation is the intersection of sets, which leads to other (however
closely related) concepts of alternating and monotone functionals. Similar to the def-
inition of �Kn · · ·�K1ϕ(K ), we introduce the following successive differences

∇K1ϕ(K ) = ϕ(K )− ϕ(K ∩ K1) , (1.13)

∇Kn · · · ∇K1ϕ(K ) = ∇Kn−1 · · · ∇K1ϕ(K )

−∇Kn−1 · · · ∇K1ϕ(K ∩ Kn) , n ≥ 2 . (1.14)

The following definition is a direct counterpart of Definition 1.8.

Definition 1.9 (Completely∩-alternating and completely monotone functionals).
Let D be a family of sets which is closed under finite intersections. A real-valued
functional ϕ defined on D is said to be
(i) completely ∩-alternating (notation ϕ ∈ A∩(D)) if

∇Kn · · · ∇K1ϕ(K ) ≤ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D ;
(ii) completely monotone or completely ∩-monotone (notation ϕ ∈ M(D) or ϕ ∈

M∩(D)) if

∇Kn · · · ∇K1ϕ(K ) ≥ 0 , n ≥ 1 , K , K1, . . . , Kn ∈ D .

When saying that ϕ is completely alternating we always mean that ϕ is com-
pletely ∪-alternating, while ϕ being completely monotone means that ϕ is com-
pletely ∩-monotone. For every functional ϕ on D with values in [0, 1], its dual func-
tional
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ϕ̃(K ) = 1− ϕ(K c) , K c ∈ D , (1.15)

is defined on the family D′ = {K c : K ∈ D} of complements to the sets from D.

Proposition 1.10. Let ϕ : D �→ [0, 1]. Then
(i) ϕ ∈ A∪(D) if and only if, for any fixed L ∈ D,

−�Lϕ(K ) = ϕ(K ∪ L)− ϕ(K ) ∈ M∪(D) ;
(ii) ϕ ∈ A∩(D) if and only if, for any fixed L ∈ D,

−∇Lϕ(K ) = ϕ(K ∩ L)− ϕ(K ) ∈ M∩(D) .

(iii) Let ϕ : D �→ [0, 1]. Then ϕ ∈ A∪(D) (respectively ϕ ∈ A∩(D)) if and only
functional ϕ̃(K ) ∈ M∩(D′) (respectively ϕ̃(K ) ∈ M∪(D′)) for the dual func-
tional ϕ̃ on D′ = {K c : K ∈ D}.

Proof. (i) It suffices to note that

�Kn . . .�K1(−�Lϕ(K )) = −�L�Kn . . .�K1ϕ(K )

with a similar relationship valid for the successive differences based on intersections.
Statement (ii) is proved similarly. The proof of (iii) is a matter of verification that

�Kn · · ·�K1 ϕ̃(K ) = −∇K c
n
· · · ∇K c

1
ϕ(K c) . ��

Alternation and monotonicity of capacity functionals

Every measure µ is a completely alternating functional, since

−�Kn · · ·�K1µ(K ) = µ((K1 ∪ · · · ∪ Kn) \ K ) ≥ 0 .

In particular, �K1µ(K ) = −µ(K1) if K and K1 are disjoint.
Note that ϕ is increasing if and only if

�K1ϕ(K ) = ϕ(K )− ϕ(K ∪ K1)

is non-positive. Furthermore, for n = 2,

�K2�K1ϕ(K ) = ϕ(K )− ϕ(K ∪ K1)− ϕ(K ∪ K2)+ ϕ(K ∪ K1 ∪ K2) .

Therefore, (1.12) for n = 2 is equivalent to

ϕ(K )+ ϕ(K ∪ K1 ∪ K2) ≤ ϕ(K ∪ K1)+ ϕ(K ∪ K2) . (1.16)

In particular, if K = ∅ and ϕ(∅) = 0, then

ϕ(K1 ∪ K2) ≤ ϕ(K1)+ ϕ(K2) , (1.17)
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meaning that ϕ is subadditive. Clearly, if ϕ = µ is a measure, then (1.17) turns
into an equality for disjoint K1 and K2. For an increasing ϕ, inequality (1.16) is
equivalent to

ϕ(K1 ∩ K2)+ ϕ(K1 ∪ K2) ≤ ϕ(K1)+ ϕ(K2) (1.18)

for all K1 and K2. A functional ϕ satisfying (1.18) is called concave or strongly
subadditive. Functionals satisfying the reverse inequality in (1.18) are called con-
vex or strongly superadditive. If only �K1ϕ(K ) and �K2�K1ϕ(K ) are non-positive,
then ϕ is called 2-alternating. Therefore, ϕ is 2-alternating if it is both concave and
monotone.

According to Definition E.8, a function ϕ : P �→ [−∞,+∞] on the family P
of all subsets of E is called a capacity (or K-capacity) if it satisfies the following
conditions:
(i) M ⊂ M ′ implies ϕ(M) ≤ ϕ(M ′);

(ii) Mn ↑ M implies ϕ(Mn) ↑ ϕ(M);
(iii) Kn ↓ K for compact sets Kn, K implies ϕ(Kn) ↓ ϕ(K ).

Definition 1.8 singles out those capacities which are completely alternating or
completely monotone. Since the family K forms a semigroup with union being the
semigroup operation and the neutral element being the empty set, it is possible to
use the results of Appendix G within this context. It follows from Theorem G.6 that
each completely alternating capacity is negative definite on K. Theorem G.8 states
that ϕ ∈ A∪(K) (respectively ϕ ∈ A∩(K)) if and only if e−tϕ ∈ M∪(K) (respectively
e−tϕ ∈ M∩(K)) for all t > 0. Let us formulate one particularly important corollary
of this fact.

Proposition 1.11. If ϕ is a completely alternating non-negative capacity with pos-
sibly infinite values, then T (K ) = 1 − e−ϕ(K ) is a completely alternating capacity
with values in [0, 1].

Proposition 1.11 is often used to construct a capacity functional from a com-
pletely alternating upper semicontinuous capacity that may take values greater than
1. The random closed set with the capacity functional T from Proposition 1.11 is
infinite divisible for unions, see Chapter 4.

Extension of capacity functional

As explained in Appendix E, a capacity ϕ defined on K can be naturally extended
onto the family P of all subsets of E keeping alternation or the monotonicity prop-
erties enjoyed by ϕ. In its application to capacity functionals of random closed sets,
put

T ∗(G) = sup{T (K ) : K ∈ K, K ⊂ G} , G ∈ G , (1.19)

and
T ∗(M) = inf{T ∗(G) : G ∈ G, G ⊃ M} , M ∈ P . (1.20)
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Theorem 1.12 (Consistency of extension).
(i) T ∗(K ) = T (K ) for each K ∈ K.

(ii) For each Borel set B ,

T ∗(B) = sup{T (K ) : K ∈ K, K ⊂ B} .
Proof. The first statement follows from the upper semicontinuity of T . Note that
T ∗(K ) is a limit of T ∗(Gn) for a sequence of open sets Gn ↓ K . By choosing Kn ∈
K such that K ⊂ Kn ⊂ Gn we deduce that T (Kn) ↓ T ∗(K ), while at the same time
T (Kn) ↓ T (K ) since T is upper semicontinuous. The second statement is a corollary
from the more intricate Choquet capacitability theorem, see Theorem E.9. ��

Since the extension T ∗ coincides with T on K, in the following we use the same
notation T to denote the extension, i.e. T (G) or T (B) denotes the values of the
extended T on arbitrary open set G and Borel set B . Theorem 1.12 and the continuity
property of probability measures imply T (B) = P {X ∩ B �= ∅} for all Borel B .

The Choquet theorem

Since the σ -algebra B(F) is rich, it is difficult to explicitly assign a measure to
its elements. Nonetheless, since the σ -algebra B(F) is generated by the families
FK , K ∈ K, it is quite natural to expect that a capacity functional on K determines
uniquely the distribution of a random closed set. The following fundamental theorem
singles out upper semicontinuous completely alternating capacities on K as those
which correspond to distributions of random closed sets. The uniqueness part easily
follows from the fact that σ -algebra B(F) is generated by FK for K ∈ K. It is
the existence part that is more complicated. The proof of the Choquet theorem is
presented in Section 1.3.

Theorem 1.13 (Choquet theorem). Let E be a LCHS space. A functional T : K �→
[0, 1] such that T (∅) = 0 is the capacity functional of a (necessarily unique) random
closed set in E if and only if T is upper semicontinuous and completely alternating.

The following results follow from the uniqueness part of the Choquet theorem.

Proposition 1.14. Let E be a LCHS space.
(i) The capacity functional TX of a random closed set X is a probability measure if

and only if X is a random singleton.
(ii) TX is a sub-probability measure (i.e. a measure with the total mass not exceed-

ing 1) if and only if X with probability 1 consists of at most a single point, i.e.
P {card(X) > 1} = 0.

(iii) A random closed set X is deterministic if and only if TX (K ) takes only values
0 or 1 for each K ∈ K.

Proposition 1.14(iii) (and the uniqueness part of the Choquet theorem) does not
hold in an arbitrary (e.g. not locally compact) space E. For instance, if E = R with
the discrete metric, then compact sets are necessarily finite, so that TX (K ) = 0 for
each K ∈ K if X = {ξ} is a random singleton with a non-atomic distribution.
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Maxitive capacity functionals

A functional T is said to be maxitive if

T (K1 ∪ K2) = max(T (K1), T (K2)) (1.21)

for all compact sets K1 and K2. Maxitive functionals arise naturally in the theory
of extremal processes, see Norberg [430, 431]. Every sup-measure (defined in Ap-
pendix E) is maxitive, while the converse is false since the definition of sup-measures
involves taking a supremum over an arbitrary family of sets on the right-hand side
of (1.21). If T is maxitive on K, then (1.21) also holds for the extension of T onto
the family of open sets and all subsets of E.

Example 1.15 (Maxitive capacity). Define a maxitive capacity T by

T (K ) = sup{ f (x) : x ∈ K } , (1.22)

where f : E �→ [0, 1] is an upper semicontinuous function. Then T = f ∨ is the
sup-integral of f as defined in Appendix E. This capacity functional T describes the
distribution of the random closed set X = {x ∈ E : f (x) ≥ α}, where α is a random
variable uniformly distributed on [0, 1].

The following proposition shows that Example 1.15 actually describes all maxi-
tive capacities that correspond to distributions of random closed sets. In a sense, the
upper semicontinuity assumption makes it possible to move from finite maximum
in (1.21) to a general supremum over all singletons.

Proposition 1.16 (Maxitive upper semicontinuous capacities). If T is a maxitive
upper semicontinuous functional with values in [0, 1], then T is given by (1.22) for
an upper semicontinuous function f : E �→ [0, 1].
Proof. Since T is upper semicontinuous, f (x) = T ({x}) is an upper semicontinuous
function and T (Kn) ↓ T ({x}) if Kn ↓ {x}. This implies that for each x ∈ E and any
ε > 0 there exists a neighbourhood Gε(x) of x such that T (Gε(x)) < f (x) + ε.
Every K ∈ K is covered by Gε(x), x ∈ K , so that K has a finite subcover of
Gε(x1), . . . , Gε(xn). Then (1.21) implies

T (K ) ≤ max(T (Gε(x1)), . . . , T (Gε(xn))) ≤ max( f (x1), . . . , f (xn))+ ε ,

whence (1.22) immediately holds. ��
Proposition 1.16 means that together with the upper semicontinuity assumption,

(1.21) implies that T is a sup measure. If (1.21) holds for all K1 and K2 from a family
of sets D closed under finite unions, then T is called maxitive on D.

Theorem 1.17 (Complete alternation of a maxitive capacity). Every functional ϕ
maxitive on a family D closed under finite unions is completely alternating on D.
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Proof. Consider arbitrary K , K1, K2, . . . ∈ D. Let us prove by induction that

�Kn · · ·�K1ϕ(K ) = ϕ(K )− ϕ(K ∪ K1) (1.23)

given that ϕ(K1) = min(ϕ(Ki ), i = 1, . . . , n). This fact is evident for n = 1. As-
sume that ϕ(K1) = min(ϕ(Ki ), i = 1, . . . , n+ 1). Using the induction assumption,
it is easy to see that

�Kn+1 · · ·�K1ϕ(K ) = �Kn · · ·�K1ϕ(K )−�Kn · · ·�K1ϕ(K ∪ Kn+1)

= [ϕ(K )− ϕ(K ∪ K1)] − [ϕ(K ∪ Kn+1)− ϕ(K ∪ Kn+1 ∪ K1)] .
By the maxitivity assumption and the choice of K1,

ϕ(K ∪ Kn+1)− ϕ(K ∪ Kn+1 ∪ K1)

= max(ϕ(K ), ϕ(Kn+1))−max(ϕ(K ), ϕ(Kn+1), ϕ(K1)) = 0 .

Now the monotonicity of ϕ implies that the left-hand side of (1.23) is non-positive,
i.e. ϕ is completely alternating. ��

For example, the Hausdorff dimension is a maxitive functional on sets in Rd , and
so is completely alternating. However, it is not upper semicontinuous, whence there
is no random closed set whose capacity functional is the Hausdorff dimension.

Independence and conditional distributions

Definition 1.18 (Independent random sets). Random closed sets X1, . . . , Xn are
said to be independent if

P {X1 ∈ X1, . . . , Xn ∈ Xn} = P {X1 ∈ X1} · · ·P {Xn ∈ Xn}
for all X1, . . . ,Xn ∈ B(F).

The Choquet theorem can be used to characterise independent random closed
sets in a LCHS space.

Proposition 1.19. Random closed sets X1, . . . , Xn are independent if and only if

P {X1 ∩ K1 �= ∅, . . . , Xn ∩ Kn �= ∅} =
n∏

i=1

TXi (Ki )

for all K1, . . . , Kn ∈ K.

Conditional distributions of random sets can be derived in the same way as con-
ditional distributions of random elements in an abstract measurable space. However,
this is not the case for conditional expectation, as the latter refers to a linear structure
on the space of sets, see Chapter 2.

If H is a sub-σ -algebra of F, then the conditional probabilities TX (K |H) =
P {X ∩ K �= ∅|H} are defined in the usual way. As noticed in Section 1.4, it suffices
to define the capacity functional on a countable family A of compact sets, which sim-
plifies the measurability issues. The family TX (K |H), K ∈ A, is a random capacity
functional that defines the conditional distribution X given H.
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1.3 Proofs of the Choquet theorem

Measure-theoretic proof

The proof given by Matheron [381] is based on the routine application of the
measure-theoretic arguments related to extension of measures from algebras to σ -
algebras. In fact, the idea goes back to the fundamental paper by Choquet [98] and
his theorem on characterisation of positive definite functionals on cones. Here we
discuss only sufficiency, since the necessity is evident from the explanations pro-
vided in Section 1.2.

Let us start with several auxiliary lemmas. The first two are entirely non-
topological and their proofs do not refer to any topological assumption on the carrier
space E.

Lemma 1.20. Let V be a family of subsets of E which contains ∅ and is closed
under finite unions. Let V be the family which is closed under finite intersections
and generated by FV and FV for V ∈ V . Then V is an algebra and each non-empty
Y ∈ V can be represented as

Y = FV
V1,...,Vn

(1.24)

for some n ≥ 0 and V , V1, . . . , Vn ∈ V with Vi �⊂ V ∪ Vj for i �= j (then (1.24)
is said to be a reduced representation of Y). If Y = FV ′

V ′1,...,V ′k
is another reduced

representation of Y , then V = V ′, n = k, and for each i ∈ {1, . . . , n} there exists
ji ∈ {1, . . . , n} such that V ∪ Vi = V ∪ V ′ji .

Proof. The family V is closed under finite intersections and ∅ = F∅ ∈ V. If Y ∈ V,
then the complement to Y ,

F \ Y = FV ∪ FV∪V1 ∪ FV∪V2
V1

∪ · · · ∪ FV∪Vn
V1,...,Vn−1

,

is a finite union of sets from V. Hence V is an algebra.
If Y satisfies (1.24) with Vi ⊂ V ∪ Vj for some i �= j , then the set Vj can

be eliminated without changing Y . Therefore, a reduced representation of Y exists.
Consider two reduced representations of a non-empty Y . Without loss of generality
assume that there exists a point x ∈ V ′ \ V . Since Y �= ∅, there exist k points (some
of them may be identical) x1, . . . , xk such that x j ∈ V ′j \ V ′, 1 ≤ j ≤ k and

{x1, . . . , xk} ∈ FV ′
V ′1,...,V ′k

= Y = FV
V1,...,Vn

.

Since x /∈ V , we have {x, x1, . . . , xk} ∈ FV
V1,...,Vn

. At the same time, x ∈ V ′, whence

{x, x1, . . . , xk} /∈ FV ′
V ′1,...,V ′k

. The obtained contradiction shows that V = V ′.
Choose y ∈ Vn \ V and yi ∈ Vi \ (V ∪ Vn), i = 1, . . . , n − 1. Since

{y1, . . . , yn−1} /∈ Y and {y, y1, . . . , yn−1} ∈ Y , there exists jn ∈ {1, . . . , k} such
that y ∈ V ′jn and yi /∈ V ′jn for i = 1, . . . , n − 1. For any other point y ′ ∈ Vn \ V we
similarly conclude that y ′ ∈ V ′jn , whence Vn \ V ⊂ V ′jn and
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Vn ⊂ V ∪ V ′jn .

Using identical arguments in the other direction we obtain V ′jn \ V ⊂ Vin . If in �= n,
this leads to Vn ⊂ Vin ∪ V and so contradicts the assumption that Y has a reduced
representation. Thus, in = n and Vn \V = Vjn \V . The proof is finished by repeating
these arguments for every other set Vi , i = 1, . . . , n − 1. ��

Lemma 1.21. In the notation of Lemma 1.20, let T be a completely alternating func-
tional on V such that T (∅) = 0, 0 ≤ T ≤ 1. Then there exists a unique additive map
P : V �→ [0, 1] such that P(∅) = 0 and P(FV ) = T (V ) for all V ∈ V . This map is
given by

P(Y) = −�Vn · · ·�V1 T (V ) , (1.25)

where Y = FV
V1,...,Vn

is any representation of Y ∈ V.

Proof. By the additivity property, we get

P(FV
V1,...,Vn

) = P(FV
V1,...,Vn−1

)− P(FV∪Vn
V1,...,Vn−1

) , (1.26)

which immediately shows that the only additive extension of P(FV ) = T (V ) is given
by (1.25). It is easy to show that the right-hand side of (1.25) retains its value if any
representation of Y is replaced by its reduced representation. Furthermore,

�Vn · · ·�V1 T (V ) = �Vn∪V · · ·�V1∪V T (V ) ,

which, together with Lemma 1.20, show that P(Y) is identical for any reduced rep-
resentation of Y . The function P is non-negative since T is completely alternating
and P(∅) = P(F∅) = T (∅) = 0. Furthermore, (1.26) implies

P(FV
V1,...,Vn

) ≤ P(FV
V1,...,Vn−1

) ≤ · · · ≤ P(FV ) = 1− T (V ) ≤ 1 .

It remains to show that P is additive. Let Y and Y ′ be two disjoint non-empty ele-
ments of V with the reduced representations

Y = FV
V1,...,Vn

, Y ′ = FV ′
V ′1,...,V ′k

,

such that Y ∪ Y ′ ∈ V. Since

Y ∩ Y ′ = FV∪V ′
V1,...,Vn,V ′1,...,V ′k

= ∅ ,

without loss of generality assume that Vn ⊂ V ∪ V ′. Since Y ∪ Y ′ ∈ V, this union
itself has a reduced representation

Y ∪ Y ′ = FV ′′
V ′′1 ,...,V ′′m

.

If V = E, then Y = {∅} if all subscripts in the representation of Y are empty, or
Y = ∅ otherwise, so that the additivity is trivial. Assume that there exists x /∈ V
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and xi ∈ Vi \ V , i = 1, . . . , n. Then F = {x, x1, . . . , xn} ∈ Y . Since F ∈ Y ∪ Y ′,
we have F ∩ V ′′ = ∅, i.e. x /∈ V ′′. Therefore, V ′′ ⊂ V . Similar arguments lead to
V ′′ ⊂ V ′, whence

V ′′ ⊂ (V ∩ V ′) .

Let us show that V ′′ = V . Assume that there exist points x ∈ V \V ′′ and x ′ ∈ V ′\V ′′.
Choose points x ′′i ∈ V ′′i \ V ′′ for i = 1, . . . ,m. Then {x, x ′, x ′′1 , . . . , x ′′m} ∈ Y ∪ Y ′,
so that {x, x ′} ∩ V = ∅ or {x, x ′} ∩ V ′ = ∅. Since both these statements lead to
contradictions, we conclude that V = V ′′ or V ′ = V ′′. The latter is impossible,
since then Vn ⊂ V ∪ V ′ = V leads to Y = ∅. Therefore, V = V ′′, V ⊂ V ′ and
Vn ⊂ V ′.

For each F ∈ Y∪Y ′, the condition F∩Vn �= ∅ yields F /∈ Y ′, while F∩Vn = ∅
implies F ∈ Y ′. Thus,

Y = (Y ∪ Y ′) ∩ FVn = FV
V ′′1 ,...,V ′′m,Vn

,

Y ′ = (Y ∪ Y ′) ∩ FVn = FV∪Vn
V ′′1 ,...,V ′′m

.

Then

−P(Y) = �Vn�V ′′m · · ·�V ′′1 T (V )

= �V ′′m · · ·�V ′′1 T (V )−�V ′′m · · ·�V ′′1 T (V ∪ Vn)

= −P(Y ∪ Y ′)+ P(Y ′) ,

which implies the additivity of P on V. ��
The following lemma uses the upper semicontinuity assumption on T and the

local compactness of E.

Lemma 1.22. Let T be a completely alternating upper semicontinuous functional on
K. By the same letter denote its extension defined by (1.19) and (1.20). Consider any
two open sets G and G0, any K ∈ K, a sequence {Kn, n ≥ 1} ⊂ K such that Kn ↑ G
and a sequence {Gn, n ≥ 1} ⊂ G such that Gn ↓ K and Gn ⊃ cl(Gn+1) ∈ K for
every n ≥ 1. Then

T (G0 ∪ K ∪ G) = lim
n→∞ T (G0 ∪ Gn ∪ Kn) .

Proof. Since T is monotone,

T (G0 ∪ K ∪ Kn) ≤ T (G0 ∪ Gn ∪ Kn) ≤ T (G0 ∪ Gn ∪ G) .

For each open G′ ⊃ G0∪G∪K we have G′ ⊃ Gn for sufficiently large n. By (1.20),
T (G0 ∪ Gn ∪ G) ↓ T (G0 ∪ G ∪ K ). Similarly, T (K ∪ Kn ∪ G0) converges to
T (K ∪ G ∪ G0), since T is continuous from below. ��


