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Preface

Overview and Goals

Recognizing people based on their physiological or behavioral characteristics
is the main focus of the science of biometrics. With the ever-increasing need
for secure and reliable human identification methods in a highly security-
conscious society spurred by recent events around the world, biometrics has
surged from an interesting application of pattern-recognition techniques to
a vibrant mainstream research topic over the last decade. The exponential
growth of research in this area focuses on many challenging research prob-
lems including evaluating new biometrics techniques, significantly improving
accuracy in many existing biometrics, new sensing techniques, and large-scale
system design issues. Biometrics technology relies on advances in many allied
areas including pattern recognition, computer vision, signal/image processing,
statistics, electrical engineering, computer science, and machine learning. Sev-
eral books, conferences, and special issues of journals have been published and
many are in the active pipeline covering these advanced research topics.

Most of the published work assumes the biometric signal has been reliably
acquired by the sensors and the task is one of controlling false match and false
rejection rates. Thus, the focus and thrust of many researchers have been on
pattern recognition and machine-learning algorithms in recognizing biometrics
signals. However, the emphasis on the sensors themselves, which are critical
in capturing high-quality signals, has been largely missing from the research
discourse. We have endeavored to remedy this by including several chapters
relating to the sensors for the various biometric modalities. This is perhaps
the first book to provide a comprehensive treatment of the topic. Although
covering the sensing aspect of biometrics at length, we are also equally excited
about new algorithmic advances fundamentally changing the course for some
of the leading and popular biometrics modalities as well as new modalities
that may hold a new future. There has also been interest at the systems level
both from a human factors point of view and the perspective of networking,
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databases, privacy, and antispoofing. Our goal in designing this book has been
primarily based on covering many recent advances made in these three key
areas: sensors, algorithms, and systems.

Organization and Features

The chapters in this book have been authored by the leading authorities in
the field making this book a unique blueprint of the advances being made on
all frontiers of biometrics with coverage of the entire gamut of topics includ-
ing data acquisition, pattern-matching algorithms, and issues such as stan-
dards, security, networks, and databases that have an impact at the system
level. Accordingly, the book has been organized under three roughly clus-
tered parts: Part I pertains to sensors, Part II is about advances in biometric
matching algorithms, and Part III deals with issues at the systems level. Chap-
ters within any one cluster are self-explanatory and do not depend on prior
chapters.

We have emphasized the advances and cutting-edge technologies in each
of the parts with the understanding that readers have other options for look-
ing up matching algorithms for commonly used modalities such as fingerprint
and face recognition. Our focus has been on the newer modalities, be it the
use of infrared imaging for measuring the distinguishing features in vascular
structures, multispectral imaging to ensure liveness, or iris on the move for un-
obtrusive identification in surveillance scenarios. With respect to fingerprints,
we have devoted chapters in Part I to touchless image capture, ultrasonic imag-
ing, and swipe methods.

Part II is divided roughly equally between behavioral (handwriting, voice)
and physical biometrics (face, iris) with an additional chapter on a strikingly
novel modality in headprint biometrics.

Readers will also find the inclusion of the chapter on standards in Part III
to be an extremely convenient reference.

Target Audience

The primary intended audience for this book is the research community both
from industry and academia as reflected by the authorship of the chapters
where we have roughly equal participation from both. The insight provided
by the industry chapters is invaluable as it provides the perspective of actual
working systems. We anticipate the book to be a ready reference on the state
of the art in biometric research.

The secondary audience is graduate students taking an advanced research
topics course on their way to a doctoral dissertation. This will be well suited for
students specializing in biometrics, image processing, and machine learning as
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it can provide ideal application testbeds to test their algorithms. The bench-
marks provided for several modalities in Part II should prove to be useful as
well.
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Introduction

This book has 24 chapters and is divided into three parts: sensors, algorithms,
and systems. There are nine chapters on sensors covering a wide range of
traditional to novel data acquisition mechanisms, ten chapters on advanced
algorithms for matching, and five chapters on system-level aspects such as
standards and smartcards.

Part I: Sensors

Research has shown that biometric image quality is one of the most signifi-
cant variables affecting biometric system accuracy and performance. We have
included four chapters on the latest developments in fingerprint sensors cov-
ering multispectral imaging, touchless sensors, swipe sensors, and ultrasound
capture. The chapter on multispectral imaging describes the capture of both
the surface and subsurface features of the skin in order to generate a compos-
ite fingerprint image that has the added advantage of confirming “liveness”
of human skin. The chapter on touchless fingerprint sensing presents a new
approach that does not deform the skin during the capture, thus ensuring
repeatability of measurements. The advantages and disadvantages with re-
spect to legacy technology are highlighted. The chapter on swipe sensors is
essentially about an image reconstruction algorithm that accounts for varying
swiping speeds and directions. Finally, the chapter on ultrasonic imaging for
livescan fingerprint applications describes how it is more tolerant to humidity,
extreme temperatures, and ambient light when compared to optical scanners.

Measurement of vascular structures has been gaining popularity in mission-
critical applications such as financial transactions because of the accuracy
rendered and, more importantly, because of their robustness against spoof
attacks. Two chapters on this topic have been included to provide an insight
into this novel biometrics, both at the palm level as well as the finger level.
The chapter on iris recognition systems describes image capture from moving
subjects and at greater distances than have been available in the COTS.
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The retina and iris are occular biometrics with uncorrelated complemen-
tary information and anatomical proximity allowing simultaneous capture by
a single device. We have included a chapter that describes their integration
into a single biometric solution. The final chapter in the sensors section is on
the use of the facial vascular network, how it is highly characteristic of the
individual, and how it can be unobtrusively captured through thermal imag-
ing. The efficacy of this information for identity recognition is demonstrated
by testing on substantial databases.

Part II: Algorithms

This part has two chapters pertaining to voice, two chapters that relate to
handwriting, three chapters on face, and a chapter each on iris and headprint.

The first chapter on voice biometrics describes the general framework of a
text-independent speaker verification system. It extracts short-term spectral
features that implicitly capture the anatomy of the vocal apparatus and are
complementary to spectral acoustic features. The other voice-related chapter
introduces conversational biometrics, which is the combination of acoustic
voicematching (traditional speaker verification)withother conversation-related
information sources (such as knowledge) to perform identity verification.

The chapters on handwriting are on signature verification and writer iden-
tification. Readers will find the evaluation experiments to be an extremely
useful benchmark in signature verification. The chapter reports results on a
subcorpus of the MCYT biometric database comprising more than 7000 sig-
natures from 145 subjects with comparisons to results reported at the First
International Signature Verification Competition (SVC, 2004). The chapter
on writer identification describes a methodology of combining textural, allo-
graphic, and placement features to improve accuracy.

The chapter on iris recognition asserts that matching performance becomes
more robust when images are aligned with a flexible deformation model, using
distortion-tolerant similarity cues. Again, useful benchmarks are provided by
comparisons to the standard iris matching algorithm on the NIST Iris Chal-
lenge Evaluation (ICE, 2006).

Headprint-based recognition is a novel and unobtrusive biometric that is
particularly useful in surveillance applications. The chapter presents new al-
gorithms for separation of hair area from the background in overhead imagery
and extraction of novel features that characterize the color and texture of hair.
The more traditional biometrics used in surveillance are face and gait. How-
ever, current algorithms perform poorly when illumination conditions and pose
are changing. We have therefore included one chapter that focuses on uncon-
trolled realistic scenarios, and another that proposes a new method of extend-
ing SVDD (Support Vector Data Description) to deal with noisy and degraded
frames in surveillance videos. Face recognition from video also allows the use of
multiple images available per subject. This strategy is described in a chapter
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where the emphasis is on selection of frames from the video sequences based
on quality and difference from each other. Four different approaches have been
compared on a video dataset collected by the University of Notre Dame. The
last chapter on face biometrics deals with matching against large populations
in real-time. This chapter introduces correlation pattern-recognition-based al-
gorithms for the purpose.

Part III: Systems

There are five chapters in this part dealing with smartcards, privacy and
security issues, methods for system-level improvements, and standards.

It has often been believed that the features derived from a biometric signal
are not helpful in getting much information about the original biometrics and
have been thought of loosely as a one-way hash of the biometrics. The chapter
on fingerprint image synthesis disproves this notion by reconstructing the fin-
gerprint image from its well-known industry standard template often used as
a basis for information interchange between algorithms from multiple vendors.
The results shown should convince the reader that the templates can be used to
attack a biometrics system with these reconstructed images. A related advance
covered in this chapter deals with detecting fake fingers based on odor sensing.

Whether it is a large-scale database such as US-VISIT or a small bank of
biometrics stored on a server for logical access in an office, the solutions are
based on insecure networks that are vulnerable to cyberattacks. The chapter
on smartcards describes technology that eliminates the need for the data-
base by both storing and processing biometric data directly on the card, thus
providing security, privacy, dynamic flexibility, and scalability. Security and
privacy are also the focus of the chapter on BiotopesTM, which is essentially
a method to transform the original biometric signature into an alternative
revocable form (the Biotope) that protects privacy while supporting a robust
distance metric necessary for approximate matching.

The chapter on adaptive biometric systems describes a method of improv-
ing performance by training on the fly. The unlabelled data that a system
examines in test scenarios can be analyzed for parameters such as image qual-
ity (as they are sensor- and session-dependent), which can in turn be used
adaptively by the recognition algorithms.

The final chapter of the book addresses the history, current status, and
future developments of standardization efforts in the field of biometrics. The
focus is on the activities of ISO’s SC37 subcommittee dealing with biometric
standardization.

References
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Sensors
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Multispectral Fingerprint Image Acquisition

Robert K. Rowe, Kristin Adair Nixon, and Paul W. Butler

Abstract. This chapter describes the principles of operation of a new class of
fingerprint sensor based on multispectral imaging (MSI). The MSI sensor captures
multiple images of the finger under different illumination conditions that include
different wavelengths, different illumination orientations, and different polarization
conditions. The resulting data contain information about both the surface and sub-
surface features of the skin. These data can be processed to generate a single com-
posite fingerprint image equivalent to that produced by a conventional fingerprint
reader, but with improved performance characteristics. In particular, the MSI imag-
ing sensor is able to collect usable biometric images in conditions where other conven-
tional sensors fail such as when topical contaminants, moisture, and bright ambient
lights are present or there is poor contact between the finger and sensor. Further-
more, the MSI data can be processed to ensure that the measured optical character-
istics match those of living human skin, providing a strong means to protect against
attempts to spoof the sensor.

1.1 Introduction

Biometric systems are deployed in order to provide a means of fixing the
identity of individuals in an automated manner. In order for such a deployment
to be successful, the biometric sensor needs to be able to collect useful data
over the entire range of conditions in which it operates. These conditions
include differences between users as well as variations in the environment in
which the biometric measurement is taken. In addition, a biometric system
should also be able to detect attempts to defeat it using some type of artificial
sample without compromising successful use by a genuine authorized person.
All of these capabilities should be able to be performed quickly and without
extra steps or inconvenience to the authorized user.

Fingerprint sensing is one of the most widely deployed of all biometric tech-
nologies. There are a number of different techniques for capturing a fingerprint
image including optical, capacitive, radio frequency, ultrasound, and thermal
methods. One common shortcoming of many conventional fingerprint-sensing
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technologies is the frequent occurrence of poor-quality images under a vari-
ety of common operational circumstances. Although each particular imaging
method has different sensitivities, in general poor images may result from
conditions such as dry skin, worn surface features of the finger, poor con-
tact between the finger and sensor, bright ambient light, and moisture on the
sensor.

Many imaging technologies are also unable to provide strong affirmation
that the fingerprint image is collected from a living unadulterated finger rather
than an artificial or spoof sample. This is because the raw data collected
by these systems contain little or no information about the physical proper-
ties of the fingerprint ridges presented. For example, a conventional optical
fingerprint reader based on total internal reflectance (TIR) acquires images
that represent the points of optical contact between the sensor platen and any
material with a minimum index of refraction. Because many materials have
an appropriate refractive index and can be formed to contain a fingerprint
pattern, such a system is susceptible to spoof attempts.

To address these shortcomings, an optical fingerprint sensor has been
developed that is able to work across the range of common operational con-
ditions while also providing strong spoof detection. The sensor is based on
multispectral imaging (MSI) and is configured to image both the surface and
subsurface characteristics of the finger under a variety of optical conditions.
The combination of surface and subsurface imaging ensures that usable bio-
metric data can be taken across a wide range of environmental and physio-
logical conditions. Bright ambient lighting, wetness, poor contact between the
finger and sensor, dry skin, and various topical contaminants present little
impediment to collecting usable MSI data.

A customized algorithm is used to fuse multiple raw MSI images into a
single high-quality composite fingerprint image. This single fingerprint image
can be used to match other MSI fingerprint images as well as images collected
using other methods. Thus, the MSI fingerprint is backward compatible and
can be used with existing fingerprint databases collected with different imaging
technologies.

The surface and subsurface data collected by the MSI sensor provide rich
information about the optical properties of the bulk sample. A classification
methodology has been developed to operate on the MSI data and determine
if the measured optical properties of the sample are consistent with those of
living human skin. If so, the sample is deemed to be genuine; otherwise, the
sample is identified as a possible spoof attempt. This provides the means by
which an MSI sensor can provide strong assurance of sample authenticity.

This chapter describes the principles of operation of an MSI fingerprint
sensor and illustrates the type of raw data that is collected. The methods
used for generating a composite fingerprint are described and examples given.
Medium-scale biometric performance testing procedures and results using
these composite fingerprint images are provided. In a later section of this
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chapter, procedures and results from a study conducted under a variety of
adverse conditions are presented. This study includes both an MSI fingerprint
sensor as well as three common commercially available optical fingerprint sen-
sors. Data from the same study are also analyzed in a way that demonstrates
the cross-compatibility of MSI fingerprint images with those collected from
conventional imagers. The final section of this chapter discusses MSI spoof
detection methods and quantifies spoof detection performance.

1.2 Finger Skin Histology

Human skin is a complex organ that forms the interface between the person
and the outside environment. The skin contains receptors for the nervous sys-
tem, blood vessels to nourish the cells, sweat glands to aid thermal regulation,
sebaceous glands for oil secretion, hair follicles, and many other physiologi-
cally important elements. As well, the skin itself is not a single homogeneous
layer, but is made of different layers with different material properties. These
different layers can be broadly separated into the epidermis, which is the most
superficial layer, the dermis, which is the blood-bearing layer, and the subcu-
taneous skin layer which contains fat and other relatively inert components.

The skin on the palmar side of the finger tips contains dermatoglyphic
patterns comprising the ridges and valleys commonly measured for fingerprint-
based biometrics. It is important to note that these patterns do not exist solely
on the surface of the skin: many of the anatomical structures below the surface
of the skin mimic the surface patterns. For example, the interface between the
epidermal and dermal layers of skin is an undulating layer made of multiple
protrusions of the dermis into the epidermis known as dermal papillae. These
papillae follow the shape of the surface dermatoglyphic patterns (Cummins
and Midlo, 1961) and thus represent an internal fingerprint in the same form
as the external pattern. Small blood vessels known as capillaries protrude into
the dermal papillae (Sangiorgi et al., 2004) as shown in Figure 1.1. These blood
vessels form another representation of the external fingerprint pattern.

There are various methods that can be used to image the internal structure
of the skin of the finger. One method is the use of optics. Recently published
research demonstrated the use of optical coherence tomography to investigate
features of the finger skin below the ridges and valleys (Shirastsuki et al.,
2005). This research showed that there was a distinct area of high reflectivity
(at 850 nm) in the skin approximately 500 µm below each finger ridge. Further-
more, the researchers were able to demonstrate that this subsurface pattern
continued to exist even when the surface pattern was deformed by application
of high pressure or obscured by a wrinkle in the skin.

Multispectral imaging represents another optical method that can be used
to capture surface and subsurface features of the skin. The remainder of this
chapter provides details on MSI operational principles as well as tests and
results from this type of fingerprint sensor.
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Fig. 1.1. Histology of the skin on the palmar surface of the fingertip. The sketch on
the left shows the pattern of the capillary tufts and dermal papillae that lie below
the fingerprint ridges. The SEM photo on the right side shows the rows of capillary
tufts imaged on a portion of an excised thumb after the surrounding skin has been
removed (Simone Sangiorgi, personal communication, 2005).

1.3 MSI Principles of Operation

In order to capture information-rich data about the surface and subsurface
features of the skin of the finger, the MSI sensor collects multiple images of
the finger under a variety of optical conditions. The raw images are captured
using different wavelengths of illumination light, different polarization condi-
tions, and different illumination orientations. In this manner, each of the raw
images contains somewhat different and complementary information about the
finger. The different wavelengths penetrate the skin to different depths and
are absorbed and scattered differently by various chemical components and
structures in the skin. The different polarization conditions change the degree
of contribution of surface and subsurface features to the raw image. Finally,
different illumination orientations change the location and degree to which
surface features are accentuated.

Figure 1.2 shows a simplified schematic of the major optical components
of an MSI fingerprint sensor. Illumination for each of the multiple raw images
is generated by one of the light emitting diodes (LEDs). The figure illustrates
the case of polarized direct illumination being used to collect a raw image.
The light from the LED passes through a linear polarizer before illuminating
the finger as it rests on the sensor platen. Light interacts with the finger and a
portion of the light is directed toward the imager through the imaging polar-
izer. The imaging polarizer is oriented with its optical axis to be orthogonal to
the axis of the illumination polarizer, such that light with the same polariza-
tion as the illumination light is substantially attenuated by the polarizer. This
severely reduces the influence of light reflected from the surface of the skin
and emphasizes light that has undergone multiple optical scattering events
after penetrating the skin.
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Fig. 1.2. Optical configuration of an MSI sensor. The dotted lines illustrate the
direct illumination of a finger by a polarized LED.

The second direct illumination LED shown in Figure 1.2 does not have a
polarizer placed in the illumination path. When this LED is illuminated, the
illumination light is randomly polarized. In this case the surface-reflected light
and the deeply penetrating light are both able to pass through the imaging
polarizer in equal proportions. As such, the image produced from this non-
polarized LED contains a much stronger influence from surface features of the
finger.

It is important to note that all of these direct illumination sources (both
polarized and nonpolarized) as well as the imaging system are arranged to
avoid any critical-angle phenomena at the platen–air interfaces. In this way,
each illuminator is certain to illuminate the finger and the imager is certain to
image the finger regardless of whether the skin is dry, dirty, or even in contact
with the sensor. This aspect of the MSI imager is distinctly different from
most other conventional fingerprint imaging technologies and is a key aspect
of the robustness of the MSI methodology.

In addition to the direct illumination illustrated in Figure 1.2, the MSI
sensor also integrates a form of TIR imaging, illustrated in Figure 1.3. In this
illumination mode, one or more LEDs illuminates the side of the platen. A
portion of the illumination light propagates through the platen by making mul-
tiple TIR reflections at the platen–air interfaces. At points where the TIR is
broken by contact with the skin, light enters the skin and is diffusely reflected.
A portion of this diffusely reflected light is directed toward the imaging sys-
tem and passes through the imaging polarizer (because this light is randomly
polarized), forming an image for this illumination state. Unlike all of the direct
illumination states, the quality of the resulting raw TIR image is critically
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Fig. 1.3. MSI sensor schematic showing TIR illumination.

dependent on having skin of sufficient moisture content and cleanliness mak-
ing good optical contact with the platen, just as is the case with conventional
TIR sensors. However, unlike conventional TIR sensors, the MSI sensor is able
to form a usable representation of the fingerprint from the direct illumination
images even when the TIR image is degraded or missing. Further details of
this are provided in later sections of this chapter.

In practice, MSI sensors typically contain multiple direct-illumination
LEDs of different wavelengths. For example, the Lumidigm J110 MSI sensor
shown in Figure 1.4 is an industrial-grade sensor that has four direct-
illumination wavelength bands (430, 530, and 630 nm as well as a white light)
in both polarized and unpolarized configurations. When a finger is placed on
the sensor platen, eight direct-illumination images are captured along with a
single TIR image. The raw images are captured on a 640×480 image array with
a pixel resolution of 525 ppi. All nine images are captured in approximately
500 mSec.

In addition to the optical system, the sensor shown in Figure 1.4 comprises
control electronics for the imager and illumination components, an embed-
ded processor, memory, power conversion electronics, and interface circuitry.
The embedded processor performs the image-capture sequence and commu-
nicates to the rest of the biometric system through the interface circuitry. In
addition to controlling the image acquisition process and communications, the
embedded processor is capable of processing the nine raw images to generate
a single 8-bit composite fingerprint image from the raw data. The embedded
processor also analyzes the raw MSI data to ensure that the sample being
imaged is a genuine human finger rather than an artificial or spoof material.
Composite fingerprint image generation and spoof detection are described in
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Fig. 1.4. Lumidigm J110 industrial MSI fingerprint sensor with embedded process-
ing capable of performing autonomous generation of a composite fingerprint image,
spoof detection, feature extraction, matching, and network communications.

greater detail in the following sections. In some applications, the J110 is also
configured to perform onboard feature extraction and matching.

1.4 Composite Fingerprint Image Generation

As described in the previous section, multiple raw images of the finger are
collected each time a finger touches the sensor. These multiple images cor-
respond to different illumination wavelengths, polarization conditions, and
optical geometries. As such, each contains a slightly different representation
of the characteristics of the finger, including the fingerprint itself. An example
of the raw images derived during a single measurement from a Lumidigm J110
MSI sensor is shown in Figure 1.5. The upper row shows the raw images for
unpolarized illumination wavelengths of 430, 530, and 630 nm, as well as white
light. The middle row shows the corresponding images for the cross-polarized
case. The single image on the bottom row is the TIR image. The grayscale for
each of the raw images has been expanded to emphasize the features.

It can be seen from the figure that there are a number of features present
in the raw data including the textural characteristics of the subsurface skin,
which appears as mottling that is particularly pronounced under blue (430 nm)
and green (530 nm) illumination wavelengths. As well, the relative intensities
of the raw images under each of the illumination conditions is very indicative
of the spectral characteristics (i.e., color) of the finger or other sample (note
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Fig. 1.5. Raw MSI images. The upper row of images corresponds to cross-polarized
illumination of various wavelengths, the middle row corresponds to cross-polarized
illumination, and the bottom left image is a backscattered image.

that the relative intensities have been obscured in Figure 1.5 to better show
the comparative details of the raw images). Both textural and spectral char-
acteristics play a key role in spoof detection because each exhibits distinct
differences between living skin and most other materials. Methods of using
these characteristics for spoof detection are more fully described in a later
portion of this chapter.

Also of note in the raw images is the area of the finger that each cap-
tures. The directly illuminated images in the top and middle rows capture
details over nearly the entire surface of the finger. In contrast, the TIR im-
age in the bottom row only captures features from a smaller central portion
of the finger, as evinced by the size of the illuminated region in the image.
This difference is due to the fact that the TIR image requires optical contact
between the finger and platen to generate an image whereas direct illumi-
nation does not require contact and can thus effectively capture features of
the finger even in those areas where there is a gap between the skin and the
platen. This is significant because the MSI images contain information about
the finger over a bigger area than an equivalent surface-based imaging technol-
ogy is capable of capturing, which would be expected to result in additional
biometric features (e.g., minutiae) and a corresponding improvement in bio-
metric performance.
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Fig. 1.6. On the left is a composite fingerprint image generated from the raw MSI
images shown in Figure 1.5. On the right is a conventional TIR image collected on
the same finger used to generate the MSI fingerprint.

The set of raw images shown in Figure 1.5 can be combined to produce
a single representation of the fingerprint pattern. This fingerprint generation
relies on a wavelet-based method of image fusion to extract, combine, and
enhance those features that are characteristic of a fingerprint. The wavelet
decomposition method that is used is based on the dual-tree complex wavelet
transform (Kingsbury, 2001). Image fusion occurs by selecting the coefficients
with the maximum absolute magnitude in the image at each position and
decomposition level (Hill et al., 2002). An inverse wavelet transform is then
performed on the resulting collection of coefficients, yielding a single compos-
ite image. An example of the result of applying the compositing algorithm
to the raw data in Figure 1.5 is shown in Figure 1.6. Fine structure such as
incipient fingerprint ridges can be seen throughout the image. For comparison,
a conventional (TIR) fingerprint image was collected on the same finger and
is also shown.

1.5 Biometric Testing and Results

1.5.1 Baseline Performance

The baseline performance of the J110 MSI sensor was assessed in a recent
multi-person study. Three Lumidigm J110 sensors were deployed in the study
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in which 118 people were recruited to participate. The study duration was
three weeks long, during which time the volunteers made multiple visits.
Volunteers were divided roughly evenly between males and females. The ages
ranged between 18 and over 80 years old. Volunteers were not prescreened
for any particular characteristic and the demographic distribution of the vol-
unteers participating in the study generally reflected the local (Albuquerque,
New Mexico) population.

All fingers (i.e., index, middle, ring, and little finger) of the right hand of
each volunteer were measured at multiple times throughout the study. The
first three presentations of a particular finger on the first J110 sensor were
used as enrollment data against which data taken on all other sensors and
during subsequent visits were compared. Volunteers came “as they were” to
each study session and were not asked to wash their hands or pretreat the
finger skin in any way.

The biometric performance was assessed using a feature extraction and
matching algorithm supplied by NEC (NECSAM FE4, ver. 1.0.2.0, PPC2003).
The match values were generated by comparing each of the verification tem-
plates against each of the three enrollment templates and the highest match
value was taken. All properly labeled images were used for the analysis of bio-
metric performances. The only images that were omitted from analysis were
a small number that were collected on incorrect fingers. These occurrences
were assessed using Web cameras and other supplemental means and were not
based on the fingerprint match itself.

The receiver operating characteristic (ROC) curve generated from the
study is shown in Figure 1.7. The equal error rate (EER) is approximately
0.8% and the false rejection rate (FRR) at a false acceptance rate (FAR) of
0.01% is approximately 2.5%, corresponding to a true acceptance rate (TAR)
of 97.5%. The total number of true-match comparisons used for this curve is
5811 and the number of false-match comparisons is 58,110, randomly chosen
from all possible false-match comparisons.

1.5.2 Comparative Performance Under Adverse Influences

The hypothesis that the MSI sensor has the ability to collect usable biometric
data under conditions where the performance of other sensors degrades or the
sensor stops working was tested in a series of comparative multiperson studies.
The studies included both an MSI sensor as well as several conventional TIR
fingerprint sensors. In order to draw a strong conclusion from the study and
avoid spurious results, key aspects of the experiment were varied and the
resulting findings were compiled to yield the overall conclusions. These key
experimental aspects include the following.

• Conventional TIR sensor performance was assessed using three different
commercially available TIR sensors from three different manufacturers.



1 Multispectral Fingerprint Image Acquisition 13

FR
R

 [%
]

FAR [%]
10-2 10-1 100 101

10-1

100

10-1

Fig. 1.7. Baseline biometric performance of the J110 MSI fingerprint sensor assessed
during a three-week study of 118 volunteers using all four fingers (index, middle, ring,
and little finger) of their right hand.

• Three different commercially available feature extractors and matchers
were used to assess biometric performance across all images.

• Six different adverse conditions were tested.

In addition to the Lumidigm J110 MSI fingerprint sensor, the three conven-
tional TIR sensors used in the study were:

• Cross Match Verifier 300 (“Sensor C”)
• Identix DFR 2100 (“Sensor I”)
• Sagem Morpho MSO 300 (“Sensor S”)

The three commercially available fingerprint algorithms used to generate
results from all images were from NEC, Sagem, and Neurotechnologija. The
results presented below were generated by taking the average of the results
produced by each of these algorithms.

The six different adverse conditions that were tested were as follows.

• Acetone: Approximately a teaspoon of acetone was poured on each finger
and allowed to dry prior to the collection of each image.

• Chalk: The volunteer was asked to take a small pinch of chalk and rub it
between his or her fingers prior to each image collection. The chalk was
white climber’s chalk obtained from a local sporting goods store.
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• Dirt: The volunteer was asked to take a small pinch of dirt and rub it
between his or her fingers prior to image collection. The dirt was collected
locally and consisted of sand, small stones, humus, and the like.

• Water: Volunteers were asked to dip their fingers in a glass of water
and immediately place the wet finger on the sensor prior to each image
collection.

• Low pressure: The volunteer was asked to “barely touch” the sensor,
resulting in an estimated force of 0.2–3.0 ounces.

• Bright ambient light: Three quartz tungsten halogen (QTH) lamps with
a total wattage of 1100 W were placed at a height of approximately 30 in.
and a fixed orientation relative to the platen of each sensor. This resulted
in an incident intensity of approximately 7.35 K Lux on the platen surface
when no finger was present.

The study of the effect of these adverse conditions was initiated by
recruiting approximately 20 volunteers for each experimental session (not
all volunteers were able to participate in all portions of the study) from the
local office environment. Each volunteer enrolled four fingers (left middle, left
index, right index, right middle) on each of the study sensors under benign in-
door ambient conditions. Enrollment consisted of collecting three high-quality
images of each finger during a supervised session. During the enrollment ses-
sion, the expert supervisor examined each image prior to accepting it in order
to ensure that the image was properly centered and contained good detail
about the fingerprint pattern. In some cases a volunteer was asked to place
a small amount of skin lotion on his or her fingertips in order to obtain an
image of sufficient quality from one or more of the conventional TIR sensors.

On subsequent test days, the volunteers presented themselves at the mea-
surement station and images would be taken of each of the enrolled fingers
under the designated adverse condition for the session. All of the sensors were
tested during each session, in close succession, and under as similar conditions
as possible. In some cases, one or more of the conventional TIR sensors expe-
rienced a failure to acquire (FTA) due to the real-time image acquisition logic
incorporated in the sensor. In those cases where a volunteer was unable to
successfully collect an image after approximately ten seconds, a blank image
was inserted in its place and used in the subsequent analysis.

Each of the images in the resulting datasets was matched against each
of the enrollment images. The highest match value across the three en-
rollment images was saved and accumulated to compile the matching and
nonmatching values and resulting performance curves for each of the three
feature-extraction and matching packages. The final results were generated by
averaging the performance values for the three matchers.

The size of the dataset for each adverse condition was approximately
230 images, which was used to generate an equivalent number of true-match
comparison values. The number of false-match comparisons used for each



1 Multispectral Fingerprint Image Acquisition 15

Table 1.1. TAR (%) at an FAR of 0.01%. Sensor C is a Cross Match Verifier 300,
Sensor I is an Identix DFR 2100, Sensor S is a Sagem MSO300, and the MSI Sensor
is a Lumidigm J110.

Sensor C Sensor I Sensor S MSI Sensor

Acetone 62.9 97.0 82.8 99.1
Chalk 0.1 1.9 2.2 91.8
Dirt 0.5 7.8 4.3 85.9
Water 18.4 12.1 14.4 99.3
Low pressure 40.2 52.9 39.5 98.0
Bright ambient 5.5 48.8 99.3 99.8
Average (all conditions) 21.3 36.8 40.4 95.7

condition and algorithm varied between 5676 and 22,700 randomly selected
from all possible false-match comparisons.

A table summarizing the resulting average biometric performance of each
of the tested sensors under each adverse condition is given in Table 1.1. The
table shows the TAR corresponding to an FAR = 0.01%.

The performance of the MSI sensor can be seen to be significantly bet-
ter than the conventional sensors in both the average case and in most
specific instances. In some cases, the performance difference is quite dramatic
(e.g., the case of water on the platen). This performance difference is generally
maintained at all operating points along the respective ROC curves.

1.5.3 Backward Compatibility with Legacy Data

The enrollment and verification data collected with the four different sensors
and the six different adverse conditions were analyzed a second way to assess
the ability of the MSI images to be matched to images collected from conven-
tional TIR fingerprint sensors. To make this assessment, the MSI images that
were collected under the adverse conditions were matched to the enrollment
data collected from each of the conventional TIR sensors. As before, the analy-
sis was repeated for each of the three extractor–matcher software packages.
Table 1.2 summarizes the resulting average performance results.

Same-sensor performance, repeated from Table 1.1, corresponds to cross-
sensor matching results. A comparison of the cross-sensor and same-sensor
results shows a dramatic improvement in nearly every tested instance as well
as the overall average. This finding indicates that the MSI imaging technology
is compatible with legacy data collected on conventional TIR fingerprint sen-
sors. Moreover, the performance improvements of the MSI sensor operating in
adverse conditions can be realized even in cases where the enrollment data are
taken under a different imaging method. This is consistent with the premise
that an MSI imager can acquire raw data sufficient to produce a high-quality
composite fingerprint image under conditions where other technologies expe-
rience severe performance degradation.


