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Preface

In operations research and physics, optimisation was introduced a long time
ago. A physical system always tries to reach a state with maximal entropy.
Thus, a physicist needs to solve an optimisation problem in order to find
these states. In operations research one looks for business strategies leading
to minimal costs or maximal profit. For example, one has to decide how many
items one has to produce. On the one hand, there are storage costs if items
cannot be sold immediately; on the other hand, a penalty has to be paid if
an order cannot be fulfilled because the non-served customer is lost. Another
problem is the construction of a computer or telecommunication network.
Such a network preferably is small, but at the same time the probability of a
buffer overflow should be small, too.

The problems considered in this book start with some stochastic pro-
cess {Xu

t } whose dynamics can be changed via a control process {ut}.
To each initial value x and each admissible control process {ut} we asso-
ciate a value V u(x). We are interested in determining the maximal value
V (x) = supu V u(x) called the value function. Two questions then arise: What
is the value function V (x) and — if it exists at all — what is the optimal
control process {u∗

t }, i.e., the control process leading to the value function
V (x) = V u∗

(x)? In many problems the optimal control process is of feedback
form u∗

t = u∗(X∗
t ), where {X∗

t } is the process following the dynamics if the
optimal control is applied.

A well-known approach to these problems — particularly popular in the-
oretical physics — is the variational approach. One writes the function to
optimise as a functional of the strategy applied. By disturbing the “optimal”
control function u∗(x) by another function g(x), that is using the control
u(x) = u∗(x) + εg(x), the functional has a maximum at ε = 0. Holding for
all g(x), this usually leads to an integro-differential equation for the value
function or for an equation for the optimal control u∗(x).

In this book we will use a complementary approach. Our approach is sto-
chastic and based on martingale arguments. The martingale formulation of
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dynamic programming goes back to Striebel [177]. The method had been
available in 1974 but was published 10 years later.

As with the variational approach, we will obtain a Hamilton–Jacobi–
Bellman equation. However, the derivation of the equation is heuristic only.
In order to find the equation, one has to make several assumptions on the
unknown value function. Hence, one has to prove that a possible solution to
the equation really is the value function. This verification theorem often is not
difficult to prove using martingale arguments.

A second problem — and usually the hard problem — is to show that
the value function really is a solution to the Hamilton–Jacobi–Bellman equa-
tion. The most convenient situation is the case where an explicit solution can
be found. Then, of course, one undertakes the verification argument for the
explicit solution and does not have to bother with possible further solutions
to the equation. If an explicit solution cannot be found, one has to solve
the equation numerically. But a numerical solution only makes sense if one
first verifies that a solution really exists. In nice cases a (local) contraction
argument yields this property. A contraction argument automatically gives
uniqueness, and one will not have to worry about conditions guaranteeing the
correct solution. If no contraction argument is at hand, one may have to show
directly that the value function solves the Hamilton–Jacobi–Bellman equation.
The problem then is usually to verify that the value function is (twice contin-
uously) differentiable. In case the solution to the Hamilton–Jacobi–Bellman
equation is not unique one will have to find further properties of the value
function in order to obtain the correct solution.

Sometimes further problems may occur. So the solution may not be dif-
ferentiable. In this case how to solve the equation numerically is not straight-
forward. One then needs to determine the points where the derivative jumps.
Or if the process {Xu

t } contains a diffusion term and the solution is not twice
differentiable, the martingale arguments do not apply directly to the value
function. A possibility to circumvent the problem is to consider viscosity so-
lutions. We will only shortly discuss this more advanced tool in the present
book.

The theory of martingales is standard in probability theory. The strength
of the tool comes from the martingale convergence theorem A.1 and the mar-
tingale stopping theorem A.2. Martingales also occur naturally in financial
mathematics where discounted price processes should be martingales under
some measure. Thus, today’s financial mathematicians are familiar with mar-
tingales. In actuarial mathematics Gerber [74] introduced martingale methods
for the estimation of the ruin probability. Therefore, many actuaries are also
familiar with the concept of martingales.

In this book we do not want to prove general results under quite restric-
tive conditions. The reader can find such general results, for example, in the
monographs [20], [40], [60], [61], [144], [182], or [187]. We will here consider
some optimisation problems and then discuss possible methods to approach
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these problems. In this way we will use different techniques that have been
successful for the corresponding situation. The basic approach always will be
to find a Hamilton–Jacobi–Bellman equation. However, for different problems
we will use different methods to show that the value function really solves the
equation. From this point of view this is a practical approach to the problems.
In some situations the solution of the equation is quite difficult. We therefore
just prove a verification theorem that shows that a solution with the correct
boundary conditions is the value function. Often the general theory of differ-
ential equations shows that a solution really exists. However, the reader has
to be aware that the main problem is to solve the equation.

A natural field of the application of control techniques is insurance math-
ematics. On the one hand, economic problems usually are optimisation prob-
lems. On the other hand, an actuary is educated to make decisions. These
decisions should be taken in an optimal way. In the field of mathematical fi-
nance it was observed quite early that there is a need for the application of
optimisation techniques; see, for instance, [114], [118], [121], [131], [132], and
[182]. The optimisation problems considered in insurance were mainly utility
maximisation problems or the determination of Pareto-optimal risk exchanges
(see, for instance, [178]) or linear programming (see [27]) where no stochastic
control problem is present. A stochastic control problem was formulated by
de Finetti [59] and solved by Gerber [72]. We will consider this problem in
Sections 1.2 and 2.4. The corresponding problem for a diffusion approxima-
tion has been solved by Shreve et al. [168]. A similar problem was treated
by Frisque [63]. Another early work on the topic is a series of lectures given
by Martin-Löf [130] for the Swedish society of actuaries. The author is not
aware of other early work in the application of stochastic control techniques
in insurance.

A conference on the Interplay between Insurance, Finance and Control
(see [8]) initiated a lot of work on stochastic control applied to insurance.
The present book is a summary of some of the problems that have been
considered since or shortly before this conference. An alternative summary
article on stochastic control problems in insurance is Hipp [96], where some
of the problems considered in this book also have been treated.

The above-mentioned conference was also my starting point for research
in the area. Here I saw the stochastic control approach for the first time and
realised that this was the tool to solve the optimal reinsurance problem that
we consider in Section 2.3.1. I had this problem in my mind for quite a long
time but no clue how to attack it.

The prerequisite knowledge for this book is basic probability theory with
a basic knowledge of Brownian motion, Markov processes, martingales, and
stochastic calculus. These topics are covered in Appendices A and B. It is rec-
ommended that a reader not familiar with these tools also has a look at some
of the references given in the appendix in order to obtain some experience. In
order to understand the technical details, measure theory is also needed. How-
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ever, a reader only interested in the application of the optimisation techniques
may skip these theoretical aspects. But it is possible to understand intuitively
many of the concepts only with the knowledge given in the appendices.

Part of this book was used as material for an optional course at the Lab-
oratory of Actuarial Mathematics in Copenhagen. At the end of the course
the students were able to find the Hamilton–Jacobi–Bellman equations and
to perform the verification arguments without clearly knowing what the gen-
erator of a Markov process is. A reader interested in a broader understanding
will find material to deepen the required knowledge in the references given in
the bibliographical remarks at the end of the sections and the appendices.

The book is organised as follows. Chapter 1 gives an introduction to sto-
chastic control in discrete time. In this case the results can be stated quite
generally. Discrete-time dynamic programming was the starting point for sto-
chastic control and was initiated in operations research a long time ago.
The continuous time case is treated in Chapter 2. After the presentation
of the Hamilton–Jacobi–Bellman approach, several optimisation problems are
solved. Chapter 3 also deals with optimisation in continuous time, but the
problems originate from life insurance. Finally, Chapter 4 considers the prob-
lem of how asymptotic properties of the value function can be obtained from
the Hamilton–Jacobi–Bellman equation. The problem is that the solutions
and the optimal controls are not known explicitly but via the Hamilton–
Jacobi–Bellman equation only, that is, via a highly nonlinear equation. Sev-
eral appendices give a short introduction to the theory the book is based on,
such as stochastic processes, Markov processes, risk theory, or life insurance
mathematics.

Finally, we make some conventions. Throughout the book we work on a
probability space (Ω,F , IIP) that is large enough to carry all the stochastic
objects defined. We assume that F is complete, i.e., that it contains all IIP-
null sets. The filtrations {Ft} are assumed to be right-continuous, that is,
Ft = ∩s>tFs. But we do not, as usual in books, assume that {Ft} is complete
in the continuous-time case. That is, Ft does not necessarily contain all the
IIP-null sets. If we completed the filtration, in Chapter 4 we would not be able
to change the measure on F , because the measure IIP∗ could not be extended
to F .

Unless stated otherwise, the stochastic processes in continuous time are as-
sumed to be cadlag (right-continuous with left limits existing). This simplifies
some technical problems. For example, the martingale convergence theorem
and the optional stopping theorem hold quite generally. In particular, we will
choose controls that are cadlag. Instead of the left-continuity that usually is
used in books, we will need the left limit of the control for the development
of the controlled process. The disadvantage is that the controlled process is
observed after the effect of the control and the information has to be taken
from the filtration instead of from the controlled process. For example, in the
optimal dividend problem the post-dividend process and not the pre-dividend
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process is observed. The controlled process then has a jump of the size of
the claim plus the dividend. Hence, we cannot get the size of the dividend
from the surplus. We need additionally to know the claim size to determine
the dividend payment. However, because we lose the cadlag property when
considering the pre-dividend process, I prefer the presentation with cadlag
stochastic processes.

If one of the basic processes is Brownian motion, we often will deal with
stochastic differential equations. Then we have the problem of the existence
of a unique solution. Sometimes it may even happen that no solution exists
on the given probability space, but that there is a probability space on which
a solution exists. This is called a weak solution. In order to avoid the prob-
lem, we assume that we have chosen a probability space on which at least
the stochastic differential equation for the optimal process has a (strong) so-
lution. The reader, however, should be aware that some technical difficulties
may arise. Anyway, an insurer has a surplus process and not a probability
space. Since the law of the process and not the underlying probability space
is important it is no problem to choose the “right” probability space.

To simplify the notation we will omit the expressions almost surely or
with probability one. Unless otherwise stated, we consider all statements to
hold almost surely. For example, we say that a stochastic process is “cadlag”
rather than saying it is “cadlag a.s.” Of course, we could consider a probability
space on which all the paths are cadlag. But sometimes it is more convenient
also to allow for paths in the probability space that are not cadlag. The reader
should always be aware that there might be elements in the sample space Ω
for which an assertion does not hold. Because this is more a technical problem.
No confusion should arise with this simplification.

A book could never be written without the help and encouragement of
many other people. I therefore conclude this preface by thanking Natalie Ku-
lenko and Julia Eisenberg for finding many misprints. I further thank Hansjörg
Albrecher, Christian Hipp, and Stefan Thonhauser for pointing out some mis-
prints and some useful references. Many very helpful remarks from an un-
known reviewer are acknowledged. The reviewer, which spent a lot of time
giving me detailed comments, led to a considerable improvement of the pre-
sentation and removed several mistakes present in an earlier version of the
book. Last but not least, the biggest thanks go to my family, Monika, Eliane,
and Stefan, for accepting that their husband/father was busy writing a book
instead of enjoying more time with them.

Hanspeter Schmidli
Cologne, June 2007
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1

Stochastic Control in Discrete Time

We start by considering stochastic processes in discrete time. Optimisation is
simpler in discrete time than in continuous time because we can give quite
general results like the dynamic programming principle (Lemma 1.1) or the
optimal strategy (Corollaries 1.2 and 1.3). We will show in some simple ex-
amples how the theory can be applied.

In this chapter we consider processes in discrete time, i.e., the set of pos-
sible time points is I = IIN. We will work on some Polish measurable space
(E, E), with E denoting the Borel-σ-algebra on E. The Borel-σ-algebra is the
smallest σ-algebra containing all the open sets. A reader not familiar with
metric spaces can just replace E by IINd, ZZd, or IRd endowed with the Eu-
clidean distance. By IIN∗ we denote the strictly positive integers.

1.1 Dynamic Programming

1.1.1 Introduction

Let {Yn : n ∈ IIN∗} be an iid sequence of random variables on some Polish
space (EY , EY ). These random variables model the stochastic changes over
time. We work with the natural filtration {Fn} = {FY

n }. At each time point
n ∈ IIN a decision is made. We model this decision as a variable Un from
some space U . U is endowed with some topology we do not mention explicitly
here. The stochastic process U = {Un : n ∈ IIN} must be adapted, because
the decision can only be based on the present and not on future information.
We therefore only allow controls U that are adapted. We may make some
restriction to the possible strategies U . Let U denote the set of admissible
strategies, i.e., the adapted strategies U = {Un} that are allowed.

The controlled stochastic process is now constructed in the following way.
Let (E, E) be a Polish space, the state space of the stochastic process, and
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x ∈ E be the initial state. We let X0 = x be the starting value of the process.
Note that the initial value is not stochastic. The process at time n + 1 is

Xn+1 = f(Xn, Un, Yn+1) ,

where f : E×U×EY → E is a measurable function. The interpretation is the
following. The next state of the process X only depends on the present state
and the present decision. The decisions made at earlier times and the path
up to the present state do not matter. The process X therefore looks similar
to a Markov process. Note that we do not have a Markov process unless the
decision Un depends on Xn only.

At each time point there is a reward, r(Xn, Un). A negative value of
r(Xn, Un) can be regarded as a cost. The value connected to some strategy U
is then

V U
T (x) = IIE

[ T∑
n=0

r(Xn, Un)e−δn
]

.

The time horizon T can be finite or infinite. The parameter δ ≥ 0 is a dis-
counting parameter. If T = ∞, we often will have to assume that δ > 0 in
order for V U

∞(x) to be finite for all U ∈ U.
Our goal will be to maximise V U

T (x). We therefore define the value function

VT (x) = sup
U∈U

V U
T (x) .

In the case T = ∞, we just write V (x) and V U (x) instead of V∞(x) and
V U
∞(x), respectively. We now assume that VT (x) ∈ IR for all x. It is clear

that if there is a strategy U such that V U
T (x) ∈ IR, then VT (x) > −∞. The

property VT (x) < ∞ has to be proved for every problem separately. Another
(technical) problem is to show that VT (x) is a measurable function. In many
problems it can be shown that VT (x) is increasing or continuous, and hence
measurable.

In the following considerations we will need measurability in several steps.
We will just assume that we can always make our choices in a measurable
way. General conditions for measurability can be found in more advanced
textbooks on control in discrete time. We will not worry about this point
because the examples we consider later have continuous value functions. Then
measurability is granted. In any case, this is a technical issue, and readers not
familiar with measure theory should just accept that measurability is not a
problem.

1.1.2 Dynamic Programming

It is not feasible to find V (x) by calculating the value function V U
T (x) for each

possible strategy U , particularly not if E and T are infinite. One therefore has
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to find a different way to characterise the value function VT (x). In our setup
it turns out that the problem can be simplified. We next prove the dynamic
programming principle, also called Bellman’s equation. We allow all controls
{Un} that are adapted. With Vt(x) and V U

t (x) we denote the remaining value
if t time units are left. For instance, VT−1(x) is the value if we stand at time
1 and X1 = x. We let V−1(x) = 0.

Lemma 1.1. Suppose that VT (x) is finite. The function VT (x) fulfils the dy-
namic programming principle

VT (x) = sup
u∈U

{
r(x, u) + e−δ IIE[VT−1(f(x, u, Y ))]

}
, (1.1)

where Y is a generic random variable with the same distribution as Yn. If
T = ∞, the dynamic programming principle becomes

V (x) = sup
u∈U

{r(x, u) + e−δ IIE[V (f(x, u, Y ))]} . (1.2)

Proof. Let U be an arbitrary strategy. Then X1 = f(x,U0, Y1) and

V U
T (x) = IIE[r(x,U0)] + e−δ IIE

[T−1∑
n=0

r(Xn+1, Un+1)e−δn
]

.

Condition on X1, U0 (we allow random decisions) and let X̃n = Xn+1, Ũn =
Un+1, and Ỹn = Yn+1. Then

X̃n+1 = f(X̃n, Ũn, Ỹn+1)

and

IIE
[T−1∑

n=0

r(Xn+1, Un+1)e−δn
∣∣∣ X1, U0

]
= IIE

[T−1∑
n=0

r(X̃n, Ũn)e−δn
∣∣∣ X1, U0

]

= V Ũ
T−1(X1) ≤ VT−1(X1) .

Thus,

V U
T (x) ≤ IIE

[
r(x,U0) + e−δVT−1(X1)

]

= IIE
[
r(x,U0) + e−δVT−1(f(x,U0, Y1))

]

≤ sup
u∈U

{r(x, u) + e−δ IIE[VT−1(f(x, u, Y ))]} .

Because U is arbitrary, this shows that

VT (x) ≤ sup
u∈U

{r(x, u) + e−δ IIE[VT−1(f(x, u, Y ))]} .
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Fix ε > 0 and u ∈ U . Let us now consider a strategy Ũ such that, conditioned
on X1 = f(x, u, Y1), VT−1(X1) < V Ũ

T−1(X1)+ ε. Here, we do not address here
the problem of whether we can do that in a measurable way because this
point usually is clear in the examples, particularly the examples treated in
this book. For conditions on measurability, see, for example, [20]. Let U0 = u
and Un = Ũn−1. Then

r(x, u) + e−δ IIE[VT−1(f(x, u, Y1))] < r(x, u) + e−δ IIE[V Ũ
T−1(X1)] + ε

= V U
T (x) + ε ≤ VT (x) + ε .

Thus,
sup
u∈U

{r(x, u) + e−δ IIE[VT−1(f(x, u, Y ))]} ≤ VT (x) + ε .

Because ε is arbitrary, the result follows.
The proof does not explicitly use the finiteness of T . Thus, we can replace

T and T − 1 by ∞, and (1.2) is proved in the same way. �	

The result says that we have to maximise the present reward plus the value
of the future rewards. If we do that at each time point, we end up with the
optimal value. Equation (1.1) can be solved recursively. We will discuss later
how to solve Equation (1.2) numerically.

1.1.3 The Optimal Strategy

We next characterise the optimal strategy.

Corollary 1.2. Suppose that T < ∞, VT (x) is finite, and that for any t ≤ T
there exists ut(x) such that u = ut(x) is maximising the right-hand side of
(1.1) for T = t. We assume that ut : E → U is measurable for each t. Let
Un = uT−n(Xn). Then

VT (x) = V U
T (x) .

Proof. Clearly, V U
T (x) ≤ VT (x). If T = 0, then for any strategy U ′ = U ′

0

V U ′

0 (x) = IIE[r(x,U ′
0)] ≤ r(x, u0(x)) = V U

0 (x) ,

and V0(x) ≤ V U
0 (x) follows. We prove the assertion for T < ∞ by induction.

Suppose that the assertion is proved for T = n. Let U ′ be an arbitrary strategy
for T = n + 1, and use the tilde sign as in the proof of Lemma 1.1. Then

V U ′

n+1(x) = IIE[r(x,U ′
0) + e−δ IIE[V Ũ ′

n (f(x,U ′
0, Y1)) | U ′

0]]

≤ IIE[r(x,U ′
0) + e−δ IIE[Vn(f(x,U ′

0, Y1)) | U ′
0]]

≤ r(x, un+1(x)) + e−δ IIE[Vn(f(x, un+1(x), Y1))]

= r(x, un+1(x)) + e−δ IIE[V Ũ
n (f(x, un+1(x), Y1))] = V U

n+1(x) .

This proves that Vn+1(x) ≤ V U
n+1(x). �	
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We can easily see from the proof that if Un does not maximise the Bellman
equation, then it cannot be optimal. In particular, if un(x) does not exist for
all n ≤ T , then an optimal strategy cannot exist.

If the time horizon is infinite, the proof of the existence of an optimal strat-
egy is slightly more complicated. But the optimal strategy does not explicitly
depend on time and is therefore simpler.

Corollary 1.3. Suppose that T = ∞, V (x) < ∞, and that for every x there
is a u(x) maximising the right-hand side of (1.2). Suppose further that u(x)
is measurable and that

lim
n→∞

sup
U ′∈U

IIE
[ ∞∑

k=n

|r(X ′
k, U ′

k)|e−δk
]

= 0 , (1.3)

where X ′
n+1 = f(X ′

n, U ′
n, Yn+1). Let Un = u(Xn). Then V U (x) = V (x).

Proof. We first show that for any strategy U ′ with a value U ′
0 that does

not maximise the right-hand side of (1.2) there exists a strategy U ′′ with
U ′′

0 = u(x) that yields a larger value. Choose ε > 0. For each initial value x̃

there exists a strategy Ũ ′′ such that V (x̃) < V Ũ ′′
(x̃) + ε. Also here we refrain

from the technical problem of showing that Ũ ′′ can be chosen in a measurable
way, because it is simpler to address this problem for the specific examples.
Let U ′′ be the strategy with U ′′

0 = u(x) and U ′′
n+1 = Ũ ′′

n , where the initial
capital is x̃ = f(x, u(x), Y1). Thus,

V U ′
(x) = IIE[r(x,U ′

0) + e−δ IIE[V Ũ ′
(f(x,U ′

0, Y1)) | U ′
0]]

≤ IIE[r(x,U ′
0) + e−δ IIE[V (f(x,U ′

0, Y1)) | U ′
0]]

< r(x, u(x)) + e−δ IIE[V (f(x, u(x), Y1))] = V (x)

< r(x, u(x)) + e−δ IIE[V Ũ ′′
(f(x, u(x), Y1))] + ε = V U ′′

(x) + ε .

If ε < V (x) − V U ′
(x), we have that V U ′

(x) < V U ′′
(x).

Let Un be the set of all strategies U ′ with U ′
k = u(Xk) for 0 ≤ k ≤ n.

We just have shown that V (x) = supU ′∈U0
V U ′

(x). Suppose that V (x) =
supU ′∈Un

V U ′
(x). Let U ′ be a strategy such that U ′

k = u(Xk) for k ≤ n
and U ′

n+1 does not maximise the right-hand side of (1.2) for x = Xn+1. Let
Ũ ′

k = U ′
n+1+k. Then by the argument used for n = 0, there is a strategy

Ũ ′′ with Ũ ′′
0 = u(Xn+1) such that V Ũ ′′

(Xn+1) > V Ũ ′
(Xn+1). Let U ′′ be the

strategy with U ′′
k = U ′

k and U ′′
n+1+k = Ũ ′′

k . Because

V U ′
(x) = IIE

[ n∑
k=0

r(Xk, u(Xk))e−δk + e−δ(n+1)V Ũ ′
(Xn+1)

]

< IIE
[ n∑

k=0

r(Xk, u(Xk))e−δk + e−δ(n+1)V Ũ ′′
(Xn+1)

]
,

we get V (x) = supU ′∈Un+1
V U ′

(x).
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Because for all n we have that V (x) = supU ′∈Un
V U ′

(x), we are now able
to prove that Un = u(Xn) is optimal. Let ε > 0. There exists n ∈ IIN such that
IIE[

∑∞
k=n+1 |r(X ′

k, U ′
k)|e−δk] < ε for any strategy U ′. Let U ′ be a strategy in

Un such that V (x) − V U ′
(x) < ε. Then

V (x) < V U ′
(x) + ε = IIE

[ ∞∑
k=0

r(X ′
k, U ′

k)e−δk
]

+ ε

< IIE
[ n∑

k=0

r(X ′
k, U ′

k)e−δk
]

+ 2ε

= IIE
[ n∑

k=0

r(Xk, Uk)e−δk
]

+ 2ε ≤ V U (x) + 3ε .

Because ε is arbitrary, it follows that V (x) ≤ V U (x). �	

The reader should note that the technical condition (1.3) is always fulfilled if
the reward r(x, u) is bounded and δ > 0. Alternatively, if one knows the value
function V (x), one could just prove that V U (x) = V (x). Then condition (1.3)
is not needed.

1.1.4 Numerical Solutions for T = ∞

In general, if T < ∞, then the optimal strategy Un will depend on the time
point n. Therefore, the only way to calculate the value function (and the
optimal strategy) is to calculate Vn(x) recursively. The situation is different
for T = ∞. A first idea is to consider the corresponding finite horizon problem
and calculate Vn(x). Letting n → ∞ will yield the value function, at least
under condition (1.3). The problem is only that we need some criteria when
n is large enough. The result below uses this idea [let v0(x) = 0] and shows
that V (x) is the fixed point of a contraction.

Lemma 1.4. Suppose that δ > 0 and supx∈E |V (x)| < ∞. Then the operator

V(v)(x) = sup
u∈U

{
r(x, u) + e−δ IIE[v(f(x, u, Y ))]

}

is a contraction. In particular, V (x) is the only bounded solution to (1.2). If
v0(x) is an arbitrary function and vn+1(x) = V(vn)(x), then limn→∞ vn(x) =
V (x). The convergence rate is geometric, i.e.,

sup
x∈E

|V (x) − vn(x)| ≤ e−δn sup
x∈E

|V (x) − v0(x)| .

Remark 1.5. The assumption that supx∈E |V (x)| < ∞ is quite strong. In some
cases it may happen that it is enough to find the value function on a bounded
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interval and that outside this interval the value function can be calculated
as a function of the values inside the interval. Such an example is given in
Section 1.2. Another situation may arise when V is locally a contraction, and
some value v(x0) is known. In this case vn(x) will first converge close to x0.
If the value is close enough on some interval around x0, then it will also
converge close to this interval. In this way it also is possible to calculate V (x)
even though V is not globally a contraction. An example in continuous time
is given in Section 2.3. ��

Proof. Note that by (1.2), the reward r(x, u) must be bounded from above.
Define the norm ‖v‖ = supx∈E |v(x)|. Let v1(x) and v2(x) be two functions.
Suppose that u(x) satisfies

r(x, u(x)) + e−δ IIE[v1(f(x, u(x), Y ))] > V(v1)(x) − ε .

Then r(x, u(x)) is finite and

V(v1)(x) − V(v2)(x) < r(x, u(x)) + e−δ IIE[v1(f(x, u(x), Y ))]
− {r(x, u(x)) + e−δ IIE[v2(f(x, u(x), Y ))]} + ε

= e−δIIE[v1(f(x, u, Y )) − v2(f(x, u, Y ))] + ε

≤ e−δ‖v1 − v2‖ + ε .

Because ε is arbitrary, we have V(v1)(x)−V(v2)(x) ≤ e−δ‖v1−v2‖. Interchang-
ing the rôles of v1 and v2, we find that ‖V(v1)(x)−V(v2)(x)‖ ≤ e−δ‖v1 − v2‖.
Thus, V is a contraction. We have already proved in Lemma 1.1 that V(V ) =
V . If v is a solution to (1.2), then ‖V − v‖ = ‖V(V ) − V(v)‖ ≤ e−δ‖V − v‖,
and ‖V − v‖ = 0 follows. Finally, for vn+1(x) = V(vn)(x), we find that

‖vn+1 − V ‖ = ‖V(vn) − V(V )‖ ≤ e−δ‖vn − V ‖ ≤ e−δ(n+1)‖v0 − V ‖ .

Thus, ‖vn − V ‖ converges to zero. �	

Lemma 1.4 provides a possibility to calculate the function V numerically.
An alternative way to find the solution works in the case where both E

and U are finite. This alternative algorithm is often faster than the method
of Lemma 1.4, because it solves the problem in finite time.

Let n = 0 and choose controls u0(x) for all x ∈ E. Then

i) Solve the equations

Vn(x) = r(x, un(x)) + e−δIIE[Vn(f(x, un(x), Y ))] (1.4)

in order to find Vn(x).
ii) Choose the largest un+1(x) (with respect to some ordering of U) maximis-

ing
r(x, un+1(x)) + e−δIIE[Vn(f(x, un+1(x), Y ))] . (1.5)
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iii) If un+1(x) = un(x) for all x ∈ E, the algorithm terminates; otherwise,
increase n by 1 and return to step i).

The next result shows that the procedure works.

Lemma 1.6. Suppose that E and U are finite and δ > 0. Then the algorithm
described above terminates in finite time m, say. The function Vm(x) is the
value function and um(x) is an optimal control.

Proof. Because Vn solves (1.4) and un+1(x) maximises (1.5), we have

Vn+1(x) = r(x, un+1(x)) + e−δIIE[Vn+1(f(x, un+1(x), Y ))] ,

Vn(x) ≤ r(x, un+1(x)) + e−δIIE[Vn(f(x, un+1(x), Y ))] .

Taking the difference yields

Vn+1(x) − Vn(x) ≥ e−δIIE[Vn+1(f(x, un+1(x), Y )) − Vn(f(x, un+1(x), Y ))] .

Suppose that Vn+1(x) < Vn(x) for some x. We can choose x such that
Vn+1(x) − Vn(x) = infy∈E Vn+1(y) − Vn(y). But then

Vn+1(x) − Vn(x) ≥ e−δIIE[Vn+1(f(x, un+1(x), Y )) − Vn(f(x, un+1(x), Y ))]
≥ e−δ(Vn+1(x) − Vn(x))

would be a contradiction. Thus, Vn(x) is increasing. Because there is only a
finite number of controls u(x), there exists m such that um(x) = uk(x) for
some k < m for all x ∈ E. Thus, as the solution to (1.4) we also have

Vm(x) − Vk(x) = e−δIIE[Vm(f(x, um(x), Y )) − Vk(f(x, um(x), Y ))] .

If we choose x such that Vm(x)−Vk(x) is maximal, we see that Vk(x) = Vm(x).
Because Vn(x) is increasing, the algorithm terminates. By the construction of
um(x), it follows that Vm(x) solves (1.2). By Lemma 1.4, Vm(x) = V (x).
Because r(x, u) necessarily is bounded as a function on a finite space, the
conditions of Corollary 1.3 are fulfilled and um(x) is the optimal strategy. �	

In solving the problem numerically, it may happen that the maximiser of (1.5)
is not unique. If in this case one chooses the maximal or the minimal u at
which the maximum is taken, the algorithm will terminate as soon as the
value function is reached.

Bibliographical Remarks

Introductions to discrete-time dynamic programming can be found in such
textbooks as [17], [18], [19], [24], [81], [95], [106], or [111]. These textbooks
give a more general introduction to the topic than considered in this section.



1.2 Optimal Dividend Strategies in Risk Theory 9

In our situation we only considered the Markov case. This is because usually
a Markov process can be obtained by Markovization, that is, by adding more
state variables {(Xk, Jk)} to the existing process {Xk}. If the process J is
not observable, it is possible to estimate the process by filtering techniques.
If one then considers the process {(Xk, J ′

k)}, where J ′ is the filtered process
(for example, the parameters of the distribution of Jk), it is often possible to
find the optimal control based on the observable information.

The algorithm in Lemma 1.6 is described by Howard [106].
Discrete-time optimisation in insurance was also considered by Martin-

Löf [130].

1.2 Optimal Dividend Strategies in Risk Theory

1.2.1 The Model

Let us consider the following risk model. In a unit interval an insurance com-
pany earns some premia and has to pay possible claims. Premia minus payout
are denoted by Yn, where Yn is an integer. We let {Yn} be an iid sequence,
and pn = IIP[Yk = n] for all n ∈ ZZ. As before we work with the natural fil-
tration {Ft = FY

t }. We denote by Y a generic random variable and suppose
that IIE[|Y |] < ∞. In order not to deal with a trivial problem we assume that
IIP[Y < 0] > 0; otherwise, the optimal strategy defined below is Un = Xn.
At time n the insurer can pay a dividend Un with 0 ≤ Un ≤ Xn. The (pre-
dividend) surplus process is modelled as X0 = x, and

Xn+1 = Xn − Un + Yn+1 .

The process is stopped at the time of ruin, τ = inf{n : Xn < 0}. Ruin is
a technical expression and does not necessarily mean that the company is
bankrupt, but that the capital reserved for the business was not sufficient; see
also Appendix D. It will turn out that under the optimal strategy ruin will
happen in finite time almost surely.

The goal is now to maximise the expected discounted dividend payments

V U (x) = IIE
[τ−1∑

n=0

e−δnUn

]
,

where δ > 0. The factor δ has to be considered as an additional discounting.
Because the {Yn} are iid, the claim sizes and the premium should be measured
in values at time 0, i.e., claim sizes and premia are already discounted. The
additional discounting of the dividends can be seen as the investor’s preference
for dividends today to dividends tomorrow.
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In order to fit into the setup of Section 1.1, we let Xn+1 = Xn if Xn < 0,
Xn+1 = Xn − Un if Un > Xn, and r(Xn, Un) = Un1IXn≥01IUn≤Xn

. Thus,
E = IR and U = [0,∞). We will soon see that we can work on smaller spaces
E and U .

Before we consider the problem in more detail, we prove a useful tool.

Lemma 1.7. Let {Un} and {U ′
n} be some dividend strategies. We denote by

Wn =
∑n

k=0 Uk and W ′
n =

∑n
k=0 U ′

k the accumulated dividend payments. If
Wn ≥ W ′

n for all n, then

∞∑
n=1

e−δnUn ≥
∞∑

n=1

e−δnU ′
n .

If IIP[U �= U ′] > 0, then

IIE
[ ∞∑

n=1

e−δnUn

]
> IIE

[ ∞∑
n=1

e−δnU ′
n

]
.

Proof. The discounted dividend payments can be written as

∞∑
n=0

e−δnUn = (1 − e−δ)
∞∑

n=0

∞∑
k=n

e−δkUn = (1 − e−δ)
∞∑

k=0

k∑
n=0

Une−δk

= (1 − e−δ)
∞∑

k=0

Wke−δk .

The first inequality follows readily. If IIP[U �= U ′] > 0, there must be an n such
that IIP[Wn > W ′

n] > 0. In particular, the first inequality is strict with strictly
positive probability. Taking expected values proves the result. �	

The result suggests paying dividends as early as possible. One therefore has the
trade-off between paying dividends early and getting ruined early, or paying
dividends later and getting ruined later.

We first obtain some upper and lower bounds for V (x) = supU∈U V U (x).

Lemma 1.8. i) The function V (x) is bounded by

x +
IIE[Y +]e−δ

1 − p+e−δ
≤ V (x) ≤ x +

IIE[Y +]e−δ

1 − e−δ
, (1.6)

where p+ = IIP[Y ≥ 0] and Y + = Y ∨ 0 is the positive part of Y .
ii) V (x) is strictly increasing and V (x) − V (y) ≥ x − y for any x ≥ y.
iii) If IIP[Y > 0] = 0, then V (x) = x, and the optimal strategy is U0 = x,

resulting in Un = 0 for n ≥ 1.
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Proof. Consider the following “pseudo strategy” U0 = x and Un = Y +
n for

n ≥ 1. Suppose that we do not stop this process at ruin. Then Xn − Un ≤ 0
for all n. Moreover, for any strategy {U ′

n} with U ′
k = 0 for k ≥ τ ′, we have for

n < τ ′

X ′
n = x+

n∑
k=1

(Yk−U ′
k−1) ≤ x−U ′

0 +
n−1∑
k=1

(Y +
k −U ′

k)+Yn =
n−1∑
k=0

(Uk−U ′
k)+Yn .

Because X ′
n − Yn = X ′

n−1 − U ′
n−1 ≥ 0, it follows that

∑n
k=0 U ′

k ≤
∑n

k=0 Uk.
By Lemma 1.7,

V U ′
(x) ≤ x + IIE

[ ∞∑
n=1

e−δnY +
n

]
= x +

IIE[Y +]e−δ

1 − e−δ
,

yielding the upper bound. Using the strategy U , ruin occurs the first time
where Yn < 0. Thus, IIP[τ = n + 1] = (1− p+)pn

+. The value of the strategy U
is

V U (x) − x = IIE
[τ−1∑

n=1

e−δnYn

]
= (1 − p+)

∞∑
n=1

pn
+

n∑
k=1

e−δkIIE[Y | Y ≥ 0]

= (1 − p+)
∞∑

k=1

∞∑
n=k

pn
+e−δkIIE[Y | Y ≥ 0]

=
∞∑

k=1

pk
+e−δkIIE[Y | Y ≥ 0] =

IIE[Y | Y ≥ 0]p+e−δ

1 − p+e−δ

=
IIE[Y +]e−δ

1 − p+e−δ
.

This proves the lower bound.
Let U be a strategy used for initial capital y. Apply the strategy U ′ with

U ′
0 = U0+x−y and U ′

n = Un for n ≥ 1 to the initial capital x. Then X ′
n = Xn

for all n ≥ 1, and V (x) ≥ V U ′
(x) = V U (y) + x − y. Taking the supremum

over all strategies U yields the second assertion.
Now if IIP[Y > 0] = 0, then IIE[Y +] = 0 and V (x) = x follows. One can

readily see that the claimed strategy has the maximal value V (x) = x. �	

We next prove that one can restrict to integer initial capital and to integer
dividend payments. This will simplify our spaces E and U . We denote by

x� = sup{n ∈ ZZ : n ≤ x} the integer part of x. In the rest of this section we
only consider strategies with Un = 0 for n ≥ τ .

Lemma 1.9. Let U be a strategy and X be the corresponding surplus process.
Then there exists a strategy U ′ such that the corresponding surplus process X ′

fulfils X ′
n = 
Xn� for n ≥ 1 and V U ′

(x) ≥ V U (x). If IIP[X �= X ′] > 0, then
the strict inequality holds.
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Proof. Define U ′
0 = x−
x−U0� and U ′

n = 
Xn�−
Xn−Un�. By the definition,
0 ≤ U ′

n ≤ 
Xn�. For the process X ′ we obtain X ′
0 = x, X ′

1 = x + Y1 − U ′
0 =

Y1 + 
x − U0� = 
X1� because Y1 ∈ ZZ. By induction,

X ′
n+1 = 
Xn� + Yn+1 − U ′

n = 
Xn − Un� + Yn+1 = 
Xn+1� .

By the definition of ruin, we get that τ ′ = τ , i.e., ruin occurs at the same time
as for the original strategy. From

x +
n∑

k=0

(Yk+1 − Uk) = Xn+1 ≥ 
Xn+1� = x +
n∑

k=0

(Yk+1 − U ′
k) ,

we conclude that
∑n

k=0 U ′
n ≥

∑n
k=0 Un. The assertion now follows from

Lemma 1.7, noting that the dividend stream is different if X �= X ′. �	

If x /∈ IIN, the above result shows that V (x) = V (
x�) + x − 
x� because
x − U ′

0 ∈ IIN. We therefore can restrict to E = ZZ. If x ∈ IIN, it is not optimal
to choose a dividend with Un /∈ IIN. We therefore can also restrict to U = IIN.

1.2.2 The Optimal Strategy

We proved in Lemma 1.1 that the function V (x) fulfils the dynamic program-
ming principle. Equation (1.2) reads

V (x) = sup
0≤u≤x

{
u + e−δ

∞∑
j=−(x−u)

pjV (x − u + j)
}

. (1.7)

Here V : IIN → IR+. Because there are only a finite number of values over
which the supremum is taken, there exists for each x ∈ IIN a value u(x) such
that

V (x) = u(x) + e−δ
∞∑

j=−(x−u(x))

pjV (x − u(x) + j) . (1.8)

In order to define the optimal strategy in a unique way, we take the largest u
fulfilling (1.8) if u(x) is not uniquely defined.

Theorem 1.10. i) The strategy Un = u(Xn) is an optimal strategy.
ii) For all x ∈ IIN, the equality u(x−u(x)) = 0 holds and u(y) = u(x)−(x−y)

for all x − u(x) ≤ y ≤ x.
iii) For all x ∈ IIN, one has V (x) = V (x−u(x)) + u(x). In particular, V (x)−

V (y) = x − y for all x − u(x) ≤ y ≤ x.
iv) The number x0 := sup{x : u(x) = 0} is finite, i.e., for x large enough a

dividend should be paid immediately.
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v) For all x ≥ x0, u(x) = x − x0, and V (x) = V (x0) + x − x0, i.e., it is not
optimal to have a capital larger than x0 immediately after dividends are
paid.

vi) Under the optimal dividend strategy ruin occurs almost surely.

Proof. i) We need to show (1.3). As in the proof of Lemma 1.7, we find for
any strategy that

∞∑
k=n

e−δkUk = (1 − e−δ)
∞∑

m=n

m∑
k=n

Uke−δm .

The pseudo-strategy

U ′
k =

⎧
⎨
⎩

0, if k < n,
X ′

n
+
, if k = n,

Y +
k , if k > n,

majorises
∑m

k=n Uk for any strategy U . Therefore,

IIE
[ ∞∑

k=n

e−δkUk

]
≤ IIE[(X ′

n)+]e−δn +
e−δ(n+1)IIE[Y +]

1 − e−δ
.

Because IIE[(X ′
n)+] ≤ x + nIIE[Y +], the assertion follows from Corollary 1.3.

ii) and iii) The assertion is trivial if y = x. Let x− u(x) ≤ y < x. For initial
capital y, there is the possibility to pay a dividend u(x) − (x − y); thus,

V (y) ≥ u(x) − (x − y) + e−δ
∞∑

j=−(y−(u(x)−(x−y)))

pjV (y − (u(x) − (x − y)) + j)

= V (x) − (x − y) .

For initial capital x, paying the dividend u(y) + x − y gives

V (x) ≥ u(y) + x − y + e−δ
∞∑

j=−{x−(u(y)+(x−y))}
pjV (x − (u(y) + (x − y)) + j)

= V (y) + x − y .

Thus, equality must hold. By our convention to take the largest possible u,
we find that u(x) = u(y) + x− y. In particular, V (y) = V (x) − (x − y). That
u(x − u(x)) = 0 and V (x) = u(x) + V (x − u(x)) follows for y = x − u(x).
iv) Suppose that u(x) = 0. Applying (1.6) and (1.8), we find that

x +
IIE[Y +]e−δ

1 − p+e−δ
≤ V (x) = e−δ

∞∑
j=−x

pjV (x + j)

≤ e−δ
∞∑

j=−x

pj

(
x + j +

IIE[Y +]e−δ

1 − e−δ

)

≤ e−δx + e−δ
(
IIE[Y +] +

IIE[Y +]e−δ

1 − e−δ

)
= e−δx +

IIE[Y +]e−δ

1 − e−δ
.
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This yields

x ≤ IIE[Y +]e−2δ(1 − p+)
(1 − e−δ)2(1 − p+e−δ)

,

i.e., x0 < ∞. Note that u(0) = 0, showing that {x : u(x) = 0} �= ∅. Therefore,
u(x0) = 0.
v) From ii) we conclude that u(x − u(x)) = 0, and therefore u(x) ≥ x − x0

follows. We also obtain 0 = u(x0) = u(x)−(x−x0). From part iii) we conclude
that V (x) = V (x0) + u(x) = V (x0) + x − x0.
vi) We have

IIP[Y1 < 0, Y2 < 0, . . . , Yx0+1 < 0] = (1 − p+)x0+1 > 0 .

Thus, by the strong law of large numbers, {Yk(x0+1)+1 < 0, Yk(x0+1)+2 <
0, . . . , Y(k+1)(x0+1) < 0} holds for some k. But then ruin must occur. �	

The result gives us an alternative way to characterise the optimal strategy
u(x). Clearly, u(0) = 0. For x ≥ 1 we obtain

u(x) = sup{n ∈ IIN : V (x) = V (x − n) + n} .

Indeed, by part iii) of the above theorem, V (x) = V (x− n) + n for n ≤ u(x).
If u(x) = x, the statement is proved. If V (x) = V (x − u(x) − 1) + u(x) + 1,
then we could conclude from (1.7) for V (x) and for V (x − u(x) − 1) that
u = u(x−u(x)−1)+u(x)+1 maximises the right-hand side of (1.7) for V (x).
But this is not possible, because we assumed that u(x) is the maximal value.
Finally, for 2 ≤ n ≤ x − u(x) we have

V (x) > V (x − u(x) − 1) + u(x) + 1 ≥ (V (x − u(x) − n) + n − 1) + u(x) + 1
= V (x − u(x) − n) + u(x) + n ,

by Lemma 1.8.
Let us now consider the numerical algorithm of Lemma 1.4. Choosing

x1 =
⌊ IIE[Y +]e−2δ(1 − p+)
(1 − e−δ)2(1 − p+e−δ)

⌋
, (1.9)

we can restrict to functions v(x) : IIN → IR+ with v(x1 + n) = v(x1) + n for
all n ∈ IIN. The contraction operator then becomes

V(v)(x) = sup
0≤u≤x

u + e−δ
∞∑

j=−(x−u)

pjv(x − u + j) ,

for x ≤ x1 and V(v)(x) = V(v)(x1) + x − x1 for x > x1. In the algorithm it
is not necessary to consider all possible u. From the proof of Theorem 1.10
parts ii) and iii), we can construct the values uv(x) maximising the right-hand


