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TECHNICAL PROGRAMME CHAIR’S INTRODUCTION 

M.A.BRAMER 
University of Portsmouth, UK 

This volume comprises the refereed technical papers presented at AI-2007, the 
Twenty-seventh SGAI International Conference on Innovative Techniques and 
Applications of Artificial Intelligence, held in Cambridge in December 2007. The 
conference was organised by SGAI, the British Computer Society Specialist Group 
on Artificial Intelligence. 

The papers in this volume present new and innovative developments in the field, 
divided into sections on Constraint Satisfaction, AI Techniques, Data Mining and 
Machine Learning, Multi-Agent Systems, Data Mining, and Knowledge 
Acquisition and Management. The volume also includes the text of short papers 
presented as posters at the conference. 

This year's prize for the best refereed technical paper was won by a paper entitled 
'An Evolutionary Algorithm-Based Approach to Robust Analog Circuit Design 
using Constrained Multi-Objective Optimization' by Giuseppe Nicosia, Salvatore 
Rinaudo and Eva Sciacca. SGAI gratefully acknowledges the long-term 
sponsorship of Hewlett-Packard Laboratories (Bristol) for this prize, which goes 
back to the 1980s. 

This is the twenty-fourth volume in the Research and Development series. The 
Application Stream papers are published as a companion volume under the title 
Applications and Innovations in Intelligent Systems XV.

On behalf of the conference organising committee I should like to thank all those 
who contributed to the organisation of this year's technical programme, in 
particular the programme committee members, the executive programme 
committee and our administrators Rachel Browning and Bryony Bramer. 

Max Bramer 
Technical Programme Chair, AI-2007 
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Adventures in Personalized Web Search 
Barry Smyth 

University College Dublin 
Dublin, Ireland 

Abstract

Even the most conservative estimates of the Web’s current size refer 
to its billions of documents and daily growth rates that are measured 
in 10’s of terabytes. To put this into perspective, in 2000 the entire 
World-Wide Web consisted of about 20 terabytes of information, 
now it grows by more than 3 times this every single day. This 
growth frames the information overload problem that is threatening 
to stall the information revolution as users find it increasingly 
difficult to locate the right information at the right time in the right 
way. Even today’s leading search engine technologies are struggling 
to cope with the sheer quantity of information that is available, a 
problem that is greatly exacerbated by the apparent inability of Web 
users to formulate effective search queries that accurately reflect 
their information needs. This talk will focus on how so-called 
personalization techniques – which combine ideas from artificial 
intelligence, user modeling and user interface design – are being 
used as a practical response to this information overload problem. 
We will describe the experiences gained, and lessons learned, when 
it comes to personalizing Web search in the wild, taking special care 
to consider the issues that are inherent in any approach to 
personalization in today’s privacy conscious world. 

Professor Barry Smyth 
Barry Smyth received a B.Sc. in computer science from University College Dublin 
in 1991 and a Ph.D. from Trinity College Dublin in 1996. He is currently the Head 
of the School of Computer Science and Informatics at University College Dublin 
where he holds the Digital Chair in Computer Science. He has published over 250 
scientific articles in journals and conferences and has received a number of 
international awards for his research. His research interests include artificial 
intelligence, case-based reasoning, information retrieval, and user profiling and 
personalization. In 1999 he co-founded ChangingWorlds Ltd. to commercialise 
personalization technologies in the mobile sector. Today ChangingWorlds employs 
more than 100 people and has deployments in more than 40 mobile operators. 
Barry continues to serve as the company's Chief Scientist.  
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An Evolutionary Algorithm-Based
Approach to Robust Analog Circuit

Design using Constrained
Multi-Objective Optimization

Giuseppe Nicosia
Department of Mathematics and Computer Science, University of Catania

Catania, Italy

Salvatore Rinaudo
ST Microelectronics, IMS-CAD and Design Group

Catania, Italia

Eva Sciacca
Department of Mathematics and Computer Science, University of Catania

Catania, Italy

Abstract

The increasing complexity of circuit design needs to be managed with
appropriate optimization algorithms and accurate statistical descriptions
of design models in order to reach the design specifics, thus guaranteeing
”zero defects”. In the Design for Yield open problems are the design
of effective optimization algorithms and statistical analysis for yield de-
sign, which require time consuming techniques. New methods have to
balance accuracy, robustness and computational effort. Typical analog
integrated circuit optimization problems are computationally hard and
require the handling of multiple, conflicting, and non-commensurate ob-
jectives having strong nonlinear interdependence. This paper tackles the
problem by evolutionary algorithms to produce tradeoff solutions. In this
research work, Integrated Circuit (IC) design has been formulated as a
constrained multi-objective optimization problem defined in a mixed inte-
ger/discrete/continuous domain. The RF Low Noise Amplifier, Leapfrog
Filter, and Ultra Wideband LNA real-life circuits were selected as test
beds. The proposed algorithm, A-NSGAII, was shown to produce ac-
ceptable and robust solutions in the tested applications, where state-of-
art algorithms and circuit designers failed. The results show significant
improvement in all the chosen IC design problems.

1 Introduction

During the last decade, advances made in fabrication technology and pho-
tolithography have fostered the step from micro- to nano-electronics allow-
ing circuits to be produced on an ULSI (Ultra Large Scale Integration) basis.
This has greatly increased the complexity of state-of-the-art integrated circuits
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(ICs) whose design is even more targeted towards system-on-chip or system-in-
package solutions [4]. In this context, the role of CAD techniques for circuit
analysis and optimization became essential to obtain solutions that satisfy the
requested performance with the minimum time effort (i.e., minimizing the time-
to-market).

Due to the complexity of state-of-the-art analog circuits, global and local
optimization algorithms have to be extensively employed to find a set of feasible
solutions that satisfies all the objectives and the constraints required by a given
application. Typical objective and constraint functions used in the IC design
are area, noise, speed, linearity, or power consumption expressed as a func-
tion of the design parameters such as transistor sizes, resistor/capacitor values,
spiral inductor geometry, etc. Very frequently two or more of these objectives
are conflicting, i.e. improving one objective forces another or others to worsen,
thus a suitable tradeoff has to be accomplished. Traditional single-objective op-
timization algorithms provide only one solution (sometimes a set of candidate
solutions) to such problems, which minimizes/maximizes an overall objective
function obtained by mixing individual targets through application of properly
weighted mathematical operators. As a consequence, such techniques do not
allow multiple competing goals to be accounted for explicitly. Moreover they
do not give circuit designers the freedom to choose among different, equally
feasible solutions. A big step forward in this direction can be achieved using a
multi-objective approach [7]. This technique allows different objectives to be
treated separately and simultaneously during the optimization process.

The circuit designer is allowed to choose a solution that privileges one ob-
jective (considered as primary) with respect to the others or another one that
simply provides an acceptable tradeoff among conflicting goals. Another fea-
ture that characterizes IC design is that the objectives and the constraints to
be optimized are usually defined in a discrete domain. Indeed, as far as de-
sign for manufacturability is of concern, each optimization variable is related to
the physical dimensions of the components placed in the circuit layout, whose
resolution is defined by photolithography. Therefore, optimization techniques
that cannot manage mixed continuous/discrete variables are of limited (if any)
applicability in real-life problems. Based on the above considerations, IC de-
sign can, in general, be treated as a constrained multi-objective optimization
problem (MOP) defined in a mixed continuous/discrete domain.

The paper is structured as follows: Section 2 describes the nominal design
and the design for yield for the analog IC design; Section 3 formally introduces
the adopted multi-objective framework; Section 4 presents the multi-objective
evolutionary algorithm, A-NSGAII; Sections 5, 6, and 7 detail the three real-
world applications faced RF Low Noise Amplifier, LeapFrog Filter and Ultra
WideBand Low Noise Amplifier. For each circuit, the nominal circuits, the de-
sign for yield values and the corresponding Pareto Fronts obtained have been
reported and the results are compared with those obtained by state-of-art opti-
mization algorithms and designers’ circuits. Concluding remarks are presented
in Section 8.
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2 Nominal Design versus Design for Yield

Analog IC design is a rather complex task that involves two important steps:
1) the definition of a circuit topology and 2) circuit sizing. The first step re-
quires deep knowledge of microelectronics and good design experience because
it is essential to verify the overall feasibility of the circuit. The analyses car-
ried out in this step allow the designer to discard solutions that cannot be
employed for a given application due to structural incompatibility. The second
step consists in defining a set of optimal circuit parameters with the aim to
push the performance of the selected topology until all the specifications are
met. Iterations might be necessary if the outcome of the second step (cir-
cuit sizing) does not confirm the feasibility analysis carried out in the first one
(topology definition). Two types of specifications have to be met in the step of
circuit sizing: 1) performance, i.e., fulfilment of the specifications imposed by
a given application, and 2) robustness, i.e., insensitiveness to parametric and
environmental variations. To simplify the design, these two specifications are
commonly treated separately. Therefore, the performance is first assessed un-
der the hypotheses that no parametric or environmental variations take place.
This task is commonly referred to as nominal design because such hypotheses
define the so-called nominal (i.e., ideal) operating condition. Nominal design
represents a first verification of the feasibility analysis carried out during the
topology definition: an unsuccessful outcome mandates circuit topology to be
reviewed.

The so-called nominal operating conditions are defined a priori and depend
on the application for which the IC is being designed. Most commonly they in-
clude given values of supply voltage and ambient temperature, and the typical
(i.e., mean) fabrication process setup. In these conditions, the nominal design
basically consists of determining a set of component parameters (i.e., transis-
tors width and length, resistor or capacitor values, inductor geometry, etc.) of
a given circuit topology that satisfy all specifications. If nominal design is suc-
cessful, then circuit robustness is assessed by verifying that all specifications
are satisfied even when parametric and environmental variations take place.
This is extremely important to ensure that the performance of the IC is still
acceptable once it has undergone the fabrication process and it is put in oper-
ation in a real-world (as opposed to ideal) environment. This task is referred
to as design for robustness or, more commonly, design for yield.

The term yield in the framework of the microelectronics industry denotes
the ratio between the number of chips that have acceptable performance over
those that have been manufactured. There are two classes of causes by which
the performance of a circuit can be classified as unacceptable: 1) local pertur-
bation (silicon crystal defects that cause the malfunctioning of a single chip in
a wafer) and 2) global perturbations (process imprecision like mask misalign-
ment, temperature and/or implantation dose variations involving all the chips
in a wafer). Since there is a direct correlation between the yield and the pro-
duction level, yield maximization is a strategic objective of the microelectronics
industry [5].
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3 IC Design as a Constrained MOP

The research work is motivated by the observation that most circuit design
problems involve multiple, conflicting, and non-commensurate objectives; hence,
it is necessary to use proper algorithms to optimise multiple conflicting objec-
tives while satisfying several constraints. While both integer and discrete vari-
ables have a discrete nature, only discrete variables can assume floating-point
values (they are often unevenly spaced, by a step variable, a designer defined pa-
rameter). In general, variables are commonly defined in a mixed integer discrete
continuous domain. IC design can be defined as a constrained multi-objective
optimization problem defined in a mixed integer/discrete/continuous domain.
A Multi-objective Optimization Problem (MOP) can be formally defined as
follows:

Definition 1 Find a vector �x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]T = [X(I), X(D), X(C)]T which

satisfies the variable bounds:

x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, . . . , n (1)

satisfies the p equality constraints:

hi(�x) = 0 i = 1, 2, . . . , p (2)

is subject to the m inequality constraints:

gi(�x) ≥ 0 i = 1, 2, . . . , m (3)

and optimizes the vector function

�f(�x) = [f1(�x), f2(�x), . . . , fk(�x)]T (4)

where X(I), X(D), X(C) denote feasible subsets of Integer, Discrete and Contin-
uous variables respectively.

Equations (1), (2) and (3) define the feasible region

Ω = {�x ∈ �n : x
(L)
i ≤ xi ≤ x

(U)
i i = 1, 2, . . . , n;

gi(�x) ≥ 0 i = 1, 2, . . . , m;
hi(�x) = 0 i = 1, 2, . . . , p} (5)

and any point �x ∈ Ω defines a feasible solution. The vector function �f(�x)
maps the elements of Ω into a set Λ which represents all possible values of the
objective functions:

Λ = {�f(�x) ∈ �k : �x ∈ Ω} (6)

The evaluation function of the MOP f : Ω → Λ, maps decision variables �x =
(x1, x2, . . . , xn) to vectors �y = (y1, y2, . . . , yk).
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Definition 2 A point �x∗ ∈ Ω is Pareto optimal if for every �x ∈ Ω and I =
{1, 2, . . . , k} either,

∀i∈I(fi(�x) = fi(�x∗)) (7)

or there is at least one i ∈ I such that

fi(�x) ≥ fi(�x∗) (8)

A vector �u = (u1, . . . , uk) is said to dominate �v = (v1, . . . , vk), denoted by
�u � �v if and only if �u is partially less than �v, i.e., for all i ∈ {1, . . . , k},
ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. If the vector �u dominates the vector �v,
or mathematically �u � �v, we also say that �v is dominated by �u, or �u is non-
dominated by �v.

Definition 3 For a given MOP �f(�x), the Pareto optimal set, P∗, is defined
as:

P∗ = {�x ∈ Ω : ¬∃�x′ ∈ Ω �f(�x′) � �f(�x)}. (9)

x∗ is Pareto optimal if there exists no feasible point x which would decrease
some criterion without causing a simultaneous increase in at least one other cri-
terion. The notion of optimum is changed, we are using the Edgeworth-Pareto
Optimum notion [6]: the aim is to find good compromises (or trade-offs) rather
than a single solution as in global optimization. A Pareto optimal set that truly
meets this definition is called a true Pareto optimal set, P∗

true. In contrast, a
Pareto optimal set that is obtained by means of an optimization method is
referred to as an observed Pareto optimal set, P∗

obs. In reality, an observed
Pareto optimal set is an estimate of a true Pareto optimal set. Identifying a
good estimate P∗

obs is the key factor for the decision maker’s selection of a com-
promise solution, which satisfies the objectives as much as possible. We denote
the observed Pareto optimal set at time step t obtained using an optimization
method by P∗,t

obs (or the current observed Pareto optimal set). Moreover, we
have P∗,t

obs = {�xt
1, . . . , �x

t
�} where � =| P∗,t

obs | is the total number of observed
Pareto solutions at time step t. Obviously, the major problem a decision maker
needs to solve, is to find ”the best” �x ∈ P∗

obs.

Definition 4 For a given MOP �f(�x) and Pareto optimal set P∗, the Pareto
front, PF∗, is defined as:

PF∗ = {�u = �f = (f1(�x), . . . , fk(�x)) | �x ∈ P∗} (10)

As for the Pareto optimal set, we can define the observed Pareto front [7]
at time step t by an optimization method: PF∗,t

obs = {�ut
1, �u

t
2, . . . , �u

t
N} where

N =| PF∗,t
obs | is the total number of observed Pareto front solutions at time

step t. Identifying a good estimate of PF∗,t
obs is crucial for the decision maker’s

selection of a good IC in terms of nominal design and yield value.
Summarizing, for a MOP we can define the following procedures: find the

optimal (or the observed) Pareto front; and choose one of the candidate so-
lutions in the Pareto front, using some higher-level information (for instance
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yield in IC design). In this research work we adopt a simple selection criterion:
our selection procedure chooses the non-dominated solution closest to the ideal
point (for each of the k objectives, there exists one different optimal solution;
an objective vector constructed with these individual optimal objective values
constitutes the ideal objective vector).

4 The Algorithm

Evolutionary Algorithms (EAs) are a class of stochastic optimization meth-
ods that simulate the process of natural evolution [7]. EAs can be defined
as population-based stochastic generate-and-test algorithms. They operate on
a set of candidate solutions, which is subsequently modified by the two basic
principles: selection and variation. While selection mimics the competition for
resources among living beings, variation imitates the natural capability of cre-
ating new living beings by means of recombination and mutation. Although the
underlying mechanisms are simple, these algorithms have proven to be general,
robust and powerful search tools [7]. Such approaches do not guarantee that
optimal solutions are identified, but try to find a good approximation of subop-
timal or optimal solutions. Classical optimization methods use a point-to-point
approach, where one solution in each iteration is modified to a different (hope-
fully better) solution. The outcome is a single optimized solution in a single
simulation run. One of the most striking differences to classical optimization
algorithms is that EAs, use a population of candidate solutions in each iteration
instead of a single solution and the outcome is also a population of solutions.
An EA can be used to capture multiple optimal solutions in its final population.
In evolutionary computing there is no restriction on the objective function(s)
that can be used.They can be non-differentiable or even discontinuous, there
is no need to know the exact form of the objective function and simulations
(runs) can be used to derive a fitness value. The initial population does not
necessarily have to be generated randomly but it can also be initialised ad-hoc
(for instance the designer’s circuit). Candidate solutions may be represented
by using various codings (binary, integer, real, mixed, etc.). In this paper, a
well-known evolutionary algorithm, NSGAII, is used. NSGAII [7] is an elitist
evolutionary algorithm with a fast non-dominated sorting procedure and a den-
sity estimation of the solutions provided by the crowding distance. In order to
tackle the integer/discrete/continuous variables, we designed and implemented
a modified version of NSGAII, Advanced NSGAII (A-NSGAII). Different
kind of mutations could be used, in particular convex mutation, self-adaptive
mutation, Gaussian mutation and hybrid Gaussian mutation [8]. They differ in
the procedure used to obtain the mutated value. In detail:

• Self-adaptive mutation is computed by xnew
i = xi + σi ∗ N(0, 1); where

σ′
i = σi ∗ exp((τ ∗ N(0, 1)) + (τ ′ ∗ Ni(0, 1)) with τ = (

√
2
√

n)−1, τ ′ =
1/
√

2n, and σ
(t=0)
i = ((UB − LB)/

√
n)× 0.4

• Hybrid Gaussian Mutation acts according to the following equation:
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xnew
i = xi + σ ∗N(0, 1);

σ =

⎧⎨⎩
β ∗ |xi − xj |, xi = xj , if xi ∗ xj > 0

β ∗ |xi + xj |, xi = xj , if xi ∗ xj < 0

where β ∈ [0.5, 1.5] is a random number obtained with uniform distribu-
tion.

• The Gaussian mutation operator instead applies the following equation:
xnew

i = xi + α ∗N(0, 1); where α = ( 1
β )e(−f) is the mutation potential.

Finally, A-NSGAII uses constrained tournament selection to deal with unfea-
sible solutions during the optimization process. One difficult matter in con-
strained optimization problems is finding a feasible set. In the first steps it
could represent a true challenge. One of the possible reasons is that feasible
regions could be a very small subset of the search space. This method uses
binary tournament selection, that is, two individuals of the population are cho-
sen and compared and the fittest is copied in the following population. When a
problem presents constraints, two solutions can be feasible or unfeasible. Just
one of the following cases is possible: (i) both are feasible; (ii) one solution is
feasible and the other is not; (iii) both are unfeasible. Case (i) is solved using
a dominance relation that takes into account the constraint violation. In case
(ii) only the feasible solution is chosen and in case (iii) a penalty function is
used (see definition of Ω below). Let gj(x) ≥ 0, j = 1. . .m be the constraints
of the normalized problem. The constraints violation is defined as follows:

ωj =
{
|gj(x)|, if gj(x) < 0;
0, otherwise. (11)

The overall violation Ω is defined as: Ω =
∑m

j=1 ωj(x) A solution xi is said
to “constrain dominate” a solution xj if one of these conditions is true: (1)
Solution xi is feasible and xj is not. (2) Solutions xi and xj are infeasible
but xi has a lesser Ω value. (3) Solutions xi and xj are both feasible, but xi

dominates xj . In constrained tournament selection, the individual having a
lower Ω value wins the tournament.

Finally, the optimization process ends when a maximum number of runs is
reached or the information gain reaches a final steady state [2].

5 Radio Frequency Low Noise Amplifier

The RF Low Noise Amplifier (LNA) is one of the most critical building blocks
in modern integrated radio frequency (RF) transceivers. It is integrated into
the receiving chain and is either directly connected to the antenna or placed
after the RF pass-band filter [3]. It must enhance input signal levels at gi-
gahertz frequencies whilst preserving the signal-to-noise ratio. Moreover, low
DC current consumption is mandatory in all portable hand-held application to
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Figure 1: Left plot: Circuit schematic of the RF LNA. Right plot: Pareto Front
obtained by A-NSGAII for RF LNA.

allow for long battery life. Other critical performance parameters of LNAs are
gain and impedance matching. The circuit schematic of the RF LNA under in-
vestigation is shown in Fig. 1 (left plot). It is based on a cascode configuration
with integrated emitter degeneration inductor. The cascode topology provides
excellent frequency stability at high gain and high isolation between input and
output terminals. Moreover, it eliminates Miller amplification of the base col-
lector capacitance making input and output matching almost independent of
each other. These advantages are obtained at the cost of negligible drawbacks
in comparison with the common-emitter configuration, such as lower output
swing and a slight increase in noise figure. The Pareto Front of the RF LNA
(obtained after 5000 runs) is sketched in Fig. 1 (right plot). It displays the ”zig-
zag” behaviour that characterizes optimization problems defined in a discrete
domain. The algorithm is able to find 664 distinct non-dominated solutions
that are well distributed and cover almost all the trade-off curve. The number,
distribution, and coverage of solutions found are all important parameters to
assess an algorithm’s performance when it is employed in IC design problems.
Indeed, they can demonstrate its exploratory capabilities leaving few doubts
about the possibility of pushing the performance of the circuit furthermore.
The inset plot of Fig. 1 (right plot) shows a zoom of the central part of the
Pareto Front where solutions found after 1000 and 2500 runs are also reported.
It demonstrates that reducing the computational load by a large amount (up
to 5) does not degrade algorithm’s performance so much. Indeed, the Pareto
Front found after 1000 and 2500 runs still exhibits very good algorithm perfor-
mance since it includes solutions that differ only slightly from those belonging
to the ”final” one.

The nominal performance of six notable solutions are reported in table 1
together with that of the designer (achieved through ”manual” sizing). Cor-
responding values of yield (computed from Montecarlo simulations with 200
samples in the mismatch-only mode), obtained from Montecarlo simulations,
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Table 1: Multi-Objective Optimization of RF LNA using 5 objectives with
A-NSGAII.

Variable Min NF Min IC Min S11 Max S21 Min S22 Opt. Nom. Designer

Area1 2 1 3 1 1 2 2

Area4 3 3 3 3 3 3 3

C3 (fF) 320 400 440 460 450 400 350

Cout (fF) 170 240 150 200 200 170 190

R1 (Ω) 4k 8.5k 7.3k 5.4k 6.8k 8.2k 6k

R3 (Ω) 30 80 200 70 10 80 400

VBE (mV) 884 864 887 886 867 877 885

Performance Function

| S11 | < −14 dB -16.337 -14.884 -19.852 -14.855 -14.603 -16.673 -17.40

| S21 | > 8 dB 9.736 8.526 8.378 10.936 8.753 9.402 9.30

| S22 | < −6 dB -21.074 -8.216 -7.374 -21.933 -44.297 -28.223 -10.99

NF < 4.7 dB 4.334 4.670 4.456 4.562 4.606 4.377 4.46

IC < 4 mA 3.985 2.193 3.907 3.981 2.460 3.076 3.70

Yield 64.5% 68% 85.5% 70% 94% 100% 99.5%

are also reported. As expected, solutions found (in particular, the optimal
nominal solution) using the multi-objective optimization approach dominate
the designer’s one (i.e., the current or noise ”nominal” performance is better).
However, solutions with minimum noise or minimum current (placed at the
edge of the Pareto Front of Fig. 1 (right plot) and thus farthest away from
the ”ideal” point), exhibit lower values of yield. In fact, statistical fluctuations
around the nominal point cause either the current or noise performance to jump
out of the feasible set, making the whole circuit faulty. On the other hand, the
point selected according to the ”optimality” criterion (i.e., placed closest to the
”ideal” solution) performs 100% yield (see table 1). In the Pareto Front region
closest to the ”ideal” point there is a good probability of finding high-yielding
circuits before design centering process.

6 LeapFrog Filter

Analog front-end filters are essential components in many electronic equip-
ments ranging from communication systems to medical instruments to signal
processors and so on. They provide a narrow pass-band to the signal and at-
tenuate unwanted noise in the stop-band [1]. Fabrication of analog filters in
state-of-the-art VLSI technology allows both passive and active components
to be integrated in the same silicon die. Although there is a great advantage
from the economic point of view, it generally requires wise design because in-
tegrated components suffer from higher process tolerances than their discrete
counterpart. This feature elects integrated analog filters as excellent candi-
dates to benchmark the performance of circuit optimization tools when yield
maximization is of concern. The circuit block employed as test case, i.e. a
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Figure 2: Left Plot: Circuit schematic of the Leapfrog Filter. Right Plot:
Pareto Front observed of Leapfrog Filter using 3 objectives and 13 constrains
after 30000 runs.

fifth-order leapfrog filter, is depicted in Fig. 2 (left plot). Four leapfrog loops
are realized through 4 (equal) differential opamps (OA1-OA4), 18 resistances
(two times R1-R9), and 8 capacitances (two times C1-C4). Differential-to-
single conversion is performed by the output block, which also implements an
additional time constant via a real pole. The filter design was accomplished
in two steps: 1) opamps AO1-AO4 were first designed at the transistor level;
2) the passive network of the filter was then optimized using a behavioural
model of the opamps. Resistance and capacitance values are calculated on the
basis of other quantities that will be treated as input variables of the optimiza-
tion problem. Expressions relating the resistance and the capacitance values
to these quantities are quite complex and will not be reported in the following.
The 20 variables used as input of the optimization problem are: k1, k2, k3, k4,
m1, m2, m3, m4, Vn1, Vn2, Vn3, Vn4, w0, wrp, Ra, C, C1, L2, C3, L4. The
first 4 parameters (k1-k4) influence the output dynamic of each operational
amplifier, m1-m4 allow the scaling of the resistances and capacitances leaving
the leapfrog time constants unchanged; Vn1-Vn4 impose the equivalent input
noise of each operational amplifier; w0 provides a frequency shift of the filter
transfer function; wrp is the frequency of the real pole in the output block; Ra
through to L4 determine the filter time constants. The set of objective func-
tions and related constraints employed in the formulation of the optimization
problem are reported in table 2. Dc gain, pass-band ripples and stop-bands are
directly related to the frequency mask of the filter, whereas the network delay is
assessed using the group delay (ripple and slope). Other performance metrics
are: low-frequency input resistance; output dynamic of each opamp; equiv-
alent input noise, to which both active and passive components contribute;
dc current consumption, related to the equivalent opamp input noise in the
behavioural model; silicon area. The optimization results obtained by us-
ing A-NSGAII are summarized in Table 2, where a comparison with three
state-of-the-art deterministic algorithms (Powel’s algorithm NEWUOA [12],
DIRECT [11], A-CRS [9]) is also reported. None of the investigated algo-
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Table 2: LeapFrog Filter results: comparisons among NEWUOA[12],
DIRECT[11], A-CRS [9], Designer, and A-NSGAII.

Goals Bounds newUOA DIRECT A-CRS Designer A-NSGAII

DC gain ≥ −0.01 dB −0.003 −0.003 −0.0026 −0.003 −0.0025
Pb ripple 9.1MHz ≤ 0.8 dBPP 0.95 0.86 0.85 0.806 0.55
Pb ripple 9.7MHz ≤ 1.8 dBPP 0.97 1.33 1.07 0.97 0.55
Sb 22.5MHz ≥ 25 dBC 26.60 36.56 31.86 36.64 36.84
Sb 34.2MHz ≥ 56 dBC 46.11 55.08 51.64 55.92 56.23
Gd ripple 9.1MHz ≤ 20 ns 24.52 20.7 14.80 19.28 16.17
Gd ripple 9.7MHz ≤ 40 ns 30.55 39.6 16.50 26.36 24.18
Gd slope 6.0MHz ≤ 3 fs/Hz 2.63 1.28 3.23 2.10 2.36
Eq. in. resistance ≥ 12.2 kΩ 11.82 k 31.54 k 13.42k 12.18 k 12.24 k
Out. dynamic 1 ≤ 2.8 V 2.88 2.23 2.72 2.83 2.76
Out. dynamic 2 ≤ 2.8 V 2.68 1.36 2.20 2.22 2.43
Out. dynamic 3 ≤ 2.8 V 3.17 2.60 3.01 1.71 2.70
Out. dynamic 4 ≤ 2.8 V 2.13 1.32 1.43 1.53 1.73

Eq. in. noise ≤ 44 nV/Hz
1
2 47.73 139 47.41 46.44 42.14

Dc current cons. ≤ 40mA 40.64 30 42.17 39.58 34.47
Silicon area ≤ 18000μm2 15964 29500 14457 14037 14622

Global Error 85.95% 289.1% 43.9% 7.8% 0

Yield n.a. n.a. n.a. n.a. 69.5%

rithms is able to find feasible solutions, moreover the best solutions found by
such algorithms violate more than one constraint. The DIRECT algorithm
exhibits the worst performance with huge errors on the equivalent input noise
and silicon area. The NEWUOA violates 8 out of 16 constraints (in boldface)
with moderate errors in each one. The A-CRS performs better than any other
investigated algorithm on this test bed, however its best solution is very far
from being acceptable because it does not satisfy 6 constraints. It is interesting
to note that in most cases such algorithms encountered difficulties in satisfying
performance metrics that also have given problems to the designer. Another
interpretation is that they are not able to perform better than the designer due
to their limited exploration capabilities. On the other hand, A-NSGAII finds
feasible solutions also providing a considerable amount of over-achievement in
most performance metrics producing high yield values. To further consolidate
this concept, Fig. 2 (right plot) shows the Pareto Front of the leapfrog filter
obtained after 30000 runs using A-NSGAII. Among the feasible solutions, the
algorithm provides 36 non dominated points. Moreover, the degree of coverage
and distribution across the objective space is satisfactory.

7 Ultra WideBand Low Noise Amplifier

Ultra wideband (UWB) signalling [14] is the modern art of reusing previously
allocated RF bands by hiding signals under the noise floor. UWB systems
transmit signals across a much wider frequency than conventional narrowband
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Figure 3: Left Plot: Ultra Wideband Low Noise Amplifier Schematic. Right
Plot: Pareto Fronts obtained A-NSGAII. For A-NSGAII the empty triangle
and empty circle are sub-threshold circuits.

systems do, moreover they are usually very difficult to detect. Government reg-
ulators are testing UWB emissions to ensure that adequate protection exists to
current users of the communications bands. The amount of spectrum occupied
by an UWB signal, i.e. the bandwidth of the UWB signal, is at least 25% of
the centre frequency. Thus, an UWB signal centred at 4 GHz would have a
minimum bandwidth of 1 GHz. The most common technique for generating
an UWB signal is to transmit pulses with durations of less than 1 nanosecond.
Recently, the interest in UWB systems for wireless personal area network ap-
plications has increased significantly. Due to the extremely low emission levels
currently allowed by regulatory agencies, UWB systems tend to be short-range
and indoor. The schematic of an UWB Low Noise Amplifier [15] is shown in Fig.
3 (left plot). The UWB LNA adopts a single cascode topology, which allows
high input/output isolation to be achieved. The design should be carried out to
achieve wideband input matching together with good noise performance. The
LS and LG inductors perform the UWB LNA input matching as in the classical
narrow-band design, while CF and RF implement an ac resistive feedback to
broaden the input matching bandwidth. The value of RF should be chosen as
a compromise between the input bandwidth widening and the amount of noise
added by the resistor. An RLC shunt resonator represents the load of the LNA.
The capacitor CP and the primary winding of the load transformer T1 should
be designed to resonate at the frequency of 4 GHz, while the shunt resistance
RP was inserted to lower the quality factor of the resonator. Such a shunted
resonant load allows an adequate gain spectral flatness to be achieved.

Power consumption is a crucial performance parameter in many fields of
electronic design. Indeed, it determines battery life in portable applications
such as mobile phones or contributes to thermal heating in VLSI circuits such
as memories and microprocessors. For these reasons, several efforts have been
undertaken to minimize power dissipations in both analog and digital ICs. The
Sub-threshold operation of MOS transistors has demonstrated to be an effective
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way to accomplish this task without degrading circuit performance. Besides
this, the trend toward sub-threshold operation of MOS transistors has been
motivated by the need for reducing the supply voltage in deeply scaled CMOS
technologies. In fact, the threshold voltage of nanometre CMOS does not scale
down at the same rate as the supply voltage does, moreover it does not scale
at all in some cases. The resulting smaller voltage headroom renders the task
of IC design even more challenging and makes the sub-threshold operation of
MOS devices necessary. The benefits achievable by sub-threshold operations
are paid at the price of much higher sensitivity of ICs to variations in supply
voltage, temperature and in the fabrication process. This in turn contributes
to lower circuit robustness because large deviations from nominal operating
conditions are more likely to take place. Therefore, robust design approaches
such that described in this paper become essential to avoid faulty operations
of MOS-based ICs pushed into the sub-threshold region. Figure 3 (right plot)
shows the Pareto Fronts obtained by A-NSGAII. Empty triangles and empty
circles indicate the subthreshold circuits discovered by A-NSGAII.

8 Conclusions

The present research work is motivated by the observation that most circuit
design problems involve multiple, conflicting, and non-commensurate objec-
tives and several constraints. We formulated IC design as a constrained multi-
objective optimization problem defined in a mixed integer/discrete/continuous
domain. To face this problem an optimization algorithm, A-NSGAII, for ana-
log circuit sizing has been presented. The proposed algorithm, A-NSGAII, was
shown to produce acceptable solutions for RF Low Noise Amplifier, Leapfrog
Filter, and Ultra WideBand Low Noise Amplifier where state-of-art techniques
and circuit designers failed. The results show significant improvements in both
the chosen IC design problems in terms of nominal design and yield values.
Furthermore, the results also show that the sizing of robust analog circuits can
be achieved at lower computational effort than that required by traditional
optimization algorithms minimizing the time-to-market.
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Abstract. We present a distributed iterative improvement algorithm for solv-
ing coarse-grained distributed constraint satisfaction problems (DisCSPs). Our
algorithm is inspired by the Distributed Breakout for coarse-grained DisCSPs
where we introduce a constraint weight decay and a constraint weight learning
mechanism in order to escape local optima. We also introduce some randomi-
sation in order to give the search a better chance of finding the right path to a
solution. We show that these mechanisms improve the performance of the algo-
rithm considerably and make it competitive with respect to other algorithms.

1 Introduction

The recent growth of distributed computing has created more opportunities for col-
laboration between agents (individuals, organisations and computer programs) where
there is a shared objective but, at the same time, there is also a competition for re-
sources. Hence, participants make compromises in order to reach agreement - a pro-
cess which can be automated if the situation is modelled as a Distributed Constraint
Satisfaction Problem (DisCSP) [12]. DisCSPs formally describe distributed problems
where each participant in the problem is represented by an agent, and the collection of
agents have to collaborate in order to reach a satisfactory agreement (or find a solution)
for a problem. Research in this emerging field includes problem solving techniques
which are classified as constructive search or iterative improvement search. Iterative
improvement search is normally able to converge quicker than constructive search on
large problems, but it has a propensity to converge to local optima. Previous work
on iterative improvement search has considered a variety of techniques for dealing
with local optima. Prominent amongst these is the breakout, which attaches weights
to constraints which are difficult to satisfy [13].

Distributed iterative improvement algorithms for DisCSPs such as DisPeL[1] and
DBA[13] assume that each agent is responsible for one variable only and knows its
domain, the constraints which apply to the variable, the agents whose variables are
constrained with its variable and the current value for any varible directly related to


