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Chapter 1

Introduction

The goal of image interpretation is to convert raw image data into mean-
ingful information. Images are often interpreted manually. In medicine, for
example, a radiologist looks at a medical image, interprets it, and trans-
lates the data into a clinically useful form. Manual image interpretation is,
however, a time-consuming, error-prone, and subjective process that often
requires specialist knowledge. Automated methods that promise fast and ob-
jective image interpretation have therefore stirred up much interest and have
become a significant area of research activity.

Early work on automated interpretation used low-level operations such as
edge detection and region growing to label objects in images. These can pro-
duce reasonable results on simple images, but the presence of noise, occlusion,
and structural complexity often leads to erroneous labelling. Furthermore, la-
belling an object is often only the first step of the interpretation process. In
order to perform higher-level analysis, a priori information must be incorpo-
rated into the interpretation process. A convenient way of achieving this is to
use a flexible model to encode information such as the expected size, shape,
appearance, and position of objects in an image.

The use of flexible models was popularized by the active contour model,
or ‘snake’ [98]. A snake deforms so as to match image evidence (e.g., edges)
whilst ensuring that it satisfies structural constraints. However, a snake lacks
specificity as it has little knowledge of the domain, limiting its value in image
interpretation.

More sophisticated models based on the physical properties of an object
have also been proposed (e.g., [134]). However, the expected patterns of vari-
ation of the model are usually estimated from only a single prototype, which
requires many assumptions to be made. A more promising approach – and
that followed in this book – is to use statistical models that attempt to learn
the actual patterns of variability found in a class of objects, rather than mak-
ing arbitrary assumptions. The idea is to estimate the population statistics
from a set of examples instead of using a single prototype. The pattern of
variation for a given class of object is established from a training set and

R. Davies et al., Statistical Models of Shape, 1
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2 1 Introduction

statistical analysis is used to give an efficient parameterisation of this vari-
ability, providing a compact and efficient representation.

The starting point in the construction of a statistical model is usually a
training set of segmented images. In order to calculate statistics across the
training set, a correspondence must be established between each member. It
is important to choose the correct correspondence, otherwise a poor repre-
sentation of the modelled object will result.

Correspondence is often established manually, but this is a time-consuming
process that presents a major bottleneck in model construction. The manual
definition of correspondence is also restricted to two-dimensional objects,
which limits their use in interpreting medical images, since many of these
are three dimensional. Other approaches to model-building have also been
proposed, but these do not produce correspondences that are correct in any
obvious way and the models that they produce are of limited utility.

This book presents a generic solution to this correspondence problem by
treating it as part of the learning process. We will see that the key is to
treat model construction as an optimisation problem, thus automating the
process and guaranteeing the effectiveness of the resulting models. The other
subject covered in this book is the evaluation of statistical models. This is
also an important aspect of modelling since it allows us to quantify the likely
utility of the model in practical applications. Model evaluation methods are
established for cases with ground truth or in its absence.

In the remainder of this first chapter, we will take a look at some practical
problems where statistical models have been applied before an overview of
the rest of the book is presented.

1.1 Example Applications of Statistical Models

Statistical models have been used to successfully solve a wide range of prac-
tical problems, from Chinese character recognition [163] to cardiac modelling
[72]. The number of applications is vast, but here we will focus on a few
interesting examples and concentrate on the properties of statistical models
that have allowed them to be successfully applied.

1.1.1 Detecting Osteoporosis Using Dental Radiographs

Statistical shape models were originally conceived as a basis for automatic
image segmentation [31] – the process of labelling an image so that the labels
correspond to real-world objects. A big advantage of using a shape model for
this task is that it can produce extremely accurate and objective segmenta-
tions. They can therefore be used to detect changes that might otherwise be
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Fig. 1.1 An example of a segmentation of the inferior mandibular cortex on a panoramic
dental radiograph using the method described in [1]. Top: a panoramic radiograph, where
the red lines represent the segmentation of the left and right inferior mandibular cortex
using a shape model. Bottom: Detail of the segmentation on the right side of the patient’s
mandible. Figure courtesy of P.D. (Danny) Allen, University of Manchester.

missed by human annotation. An example of where this additional accuracy
has proved to be critical is in detecting osteoporosis in dental radiographs
[1, 59].

Osteoporosis is a common disorder that causes a reduction in bone tissue
density, leading to brittle bones that are prone to fracture. The standard
method of diagnosis involves a dual energy x-ray absorbiometry (DXA) scan-
ner, but these are dedicated machines with limited accessibility. Although
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access is improving, only patients with a high index of clinical suspicion are
referred for DXA scans, resulting in missed diagnoses.

It has been reported that osteoporosis can also be detected by careful
measurement of the width of the inferior mandibular cortex on panoramic
dental radiographs – a common investigation in dental practice. However, if
the cortical width is measured manually, the time taken impedes the dental
practitioner from performing the test during a routine consultation. Manual
measurement also introduces considerable inter- and intra-operator variabil-
ity, resulting in reduced sensitivity and specificity of detection. However, it
has been shown [1, 59] that this variability can be reduced by using a sta-
tistical shape model for segmentation – an example of a segmentation of the
inferior mandibular cortex using a statistical shape model is shown in Fig. 1.1.
The accuracy of the resulting segmentations was shown to be sufficient to di-
agnose skeletal osteoporosis with good diagnostic ability and reliability [59].
Furthermore, measurement was performed in real time with minimal human
interaction. This application thus promises another means of detecting osteo-
porosis, or at least of flagging high-risk cases for referral to DXA scanning.

1.1.2 Detecting Vertebral Fractures

Statistical models provide a compact and efficient basis for describing the
variation of a class of object. Model parameter values can therefore be used
as effective features in classifier systems. We already know a bit about osteo-
porosis from the previous section, so we will now look at an example of where
complications of the disease can be detected using a model-based classifier.

A common complication of osteoporosis is a fractured vertebra. Although
many of these fractures are asymptomatic, they are an important indicator of
more harmful fractures in the future. Diagnosis of a fracture is usually made
by a radiologist, but, as with any human operator, they are liable to report
subjective results. Also, vertebral fracture assessment by DXA scanners is be-
coming common in places other than radiology units (e.g., general practice),
and may not be carried out by an expert radiologist. Therefore, it is desirable
to establish quantitative criteria that capture some of the subtle information
used by an expert, since current (vertebral) height-based quantitative meth-
ods are insufficiently specific, especially in diagnosing the mild fractures that
occur in the early stages of the disease. These height-based measures do not
capture subtle shape information, nor other features present in the image. A
recent body of work [167, 145, 146] has shown that using statistical models
of shape and appearance can offer substantial improvements in diagnostic
accuracy over conventional quantitative methods.

The first step in the system is to segment the vertebrae of interest using
a statistical model – an example of a typical segmentation result is given
in Fig. 1.2. As with the example of the inferior mandibular cortex given
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Fig. 1.2 An example of a segmentation of human vertebrae using the method described
in [146]. Left: a DXA image showing the spine from the seventh thoracic vertebra (T7)
down to the fourth lumbar vertebra (L4). Right: the segmentation achieved by the model,
overlaid on the image. Figure courtesy of Martin Roberts, ISBE, University of Manchester.

above, this segmentation is quick, requires minimal user interaction, and,
most importantly, produces more objective and reproducible results than
manual segmentation.

The model parameters found in segmentation can then be fed into a trained
classifier, which will return a positive or negative diagnosis of vertebral frac-
ture. The advantage of using the model parameters, rather than other estab-
lished measures (such as vertebral height), is that they capture much more
information about the state of the vertebrae such as their shape, appearance,
and pose. This information forms a much stronger basis for the classifier
system.
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1.1.3 Face Identification, Tracking, and Simulation of
Ageing

We have said in the introduction that many non-statistical modelling ap-
proaches infer object properties from a single prototype. This approach has
several disadvantages over the statistical approach – one of these is that it
lacks the flexibility to model objects that exhibit significant variability. An
example of where this is particularly evident is in human face analysis.

Face analysis, which includes tasks such as finding, identifying, and track-
ing someone’s face in an image, has application in many fields – from aiding
human-computer interaction to security surveillance monitoring. However,
face analysis is a difficult task, not least because of the huge inherent variabil-
ity of a face – not just between individuals, but variation in the appearance
of the same person’s face due to changes in expression, pose, lighting, etc.

A statistical model has the ability to learn this variability from a set of
examples – as long as enough examples are presented the model will be generic
enough to deal with these variations. Such a model of facial appearance was
presented in [64] and was shown to perform well in finding, identifying, and
tracking faces in images.

Statistical models can also be used in generative mode, where the model
is used to synthesize new examples of the class of object. This opens the
possibility of using the models in different types of applications to those
that we have seen so far. A good example is described in [104], which shows
how facial ageing can be simulated artificially. So, given a photograph of a

Fig. 1.3 Simulated ageing using the method described in [104]. The figure shows the effect

of simulating ageing in photographs of two individuals. Figure reproduced from Fig. 4 in

[104] with permission ( c©2002 IEEE).
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person’s face, the model can generate impressions of that person at different
ages – some examples are shown in Fig. 1.3. This has application in ageing
photographs of missing or wanted persons as well as improving robustness of
face analysis to ageing.

1.2 Overview

The organization of the remainder of this book is as follows.
We start with a theoretical treatment of statistical shape models in

Chap. 2. This contains a comprehensive description of model-building, and
considers both discrete and continuous representations of shape. Several other
aspects of model-building, such as shape alignment and practical applications,
are also covered.

Chapter 3 covers a fundamental problem in shape modelling in greater
detail: that of establishing a correspondence between a set of shapes. The
chapter begins by illustrating the importance of establishing a suitable corre-
spondence, before looking at various ways in which this can be achieved. The
last part of the chapter introduces our approach of model-building within
an optimisation framework. This allows correspondence to be established by
viewing it as an integral part of the learning process.

One essential component of this optimisation approach to model-building
is an objective function that quantifies what is meant by the quality of a
model. The subject of objective functions is covered in Chap. 4; we look
at various objective functions that can be used to establish correspondence,
including a full derivation of the Minimum Description Length objective func-
tion (and various approximations to it).

In order to minimise our chosen objective function, we must be able to ma-
nipulate correspondence across the set of shapes. At the same time, we must
ensure that only valid correspondences are generated. In Chap. 5, we show
how this can be achieved by re-parameterising each shape. Several represen-
tations of curve re-parameterisation are described in Chap. 5. The extension
to surface re-parameterisation is complicated by the need for explicit surface
parameterisation, but a generic method of achieving this along with several
representations of re-parameterisation for surfaces is given in Chap. 6.

The final component of the optimisation approach is a method of finding
the configuration of re-parameterisation functions that lead to the optimal
value of the objective function. This problem is explored in Chap. 7, which
presents a generic optimisation approach, as well as looking at how it can be
tailored for certain situations.

Chapter 8 explores an alternative approach to representing and manipu-
lating correspondence, using a non-parametric approach – the goal being to
produce more robust results in less time. A fluid-based regularizer is described
as well as an efficient method of optimisation.
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Finally, Chap. 9 considers the question of how we should evaluate models
of shape or models of appearance. In particular, we address the question of
whether ground truth data should be used for evaluation, and how models
can be evaluated in the absence of such ground truth data.



Chapter 2

Statistical Models of Shape and
Appearance

As was explained in the Introduction, our aim is to start with a set of example
shapes (the training set), and learn from this the patterns of variability of the
shape of the class of objects for which the training set can be considered a
representative sample. We will first consider this problem in a rather abstract
sense, and illustrate how the question of correspondence between different
shapes is inextricably linked to the question of representing a set of shapes.

Mathematically, the usual approach is to construct a mapping from an
example shape to a point in some shape space. This is the process of con-
structing a representation of shape. The idea is that every physical shape cor-
responds to a point in shape space, and conversely, each point in shape space
corresponds to some physical shape. There are many ways of constructing
such representations, but whichever method is chosen, what is then obtained
is a mapping from our training set of shapes to a set of points in shape space.

Modelling can then be considered as the process of modelling the distri-
bution of our training points in shape space. However, before we can begin
to talk about the distribution of such points, we first need to define a notion
of distance on shape space.

A definition of a distance on shape space then leads directly to the no-
tion of correspondence between the physical shapes themselves. Consider two
distinct physical shapes, and the two points in shape space which represent
those two shapes. We can then imagine a continuous path between the two
points in shape space, and, given that we have a definition of distance, the
shortest such path between the two shapes. When we map this construction
back to the space of physical shapes, what we obtain is a continuous sequence
of physical shapes that interpolates between our two original shapes. If we
now consider a single point on one shape, we can then follow it through this
continuous sequence of shapes, and hence locate the physical point on the
other shape to which this point corresponds. This is what is meant by a
dense correspondence between shapes.

Let us now return to our physical shapes, and imagine translating and
rotating a physical shape (that is, altering the pose of the shape). In many

R. Davies et al., Statistical Models of Shape, 9
DOI: 10.1007/978-1-84800-138-1 2, c© Springer-Verlag London Limited 2008
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cases, the pose of the physical shape is unimportant, and what we mean by
change of shape is not such a transformation.

But there is another transformation we could consider. Suppose we imag-
ine two distinct points in shape space, which give the same physical shape,
but different correspondence when compared to some other (reference) shape
(using the construction defined above). If such a construction is possible, we
see that it is possible (at least in theory) to manipulate the correspondence
between shapes (moving the point in shape space), whilst leaving the physical
shape unaltered. Which then means that we have to answer the question as
to what correspondence we should use for our analysis of shape variability
(the correspondence problem – see also Sect. 3.1).

We hence see that the issue of shape correspondence naturally arises as
soon as we consider the steps necessary to represent a set of shapes, and
analyse their distribution. Some methods of shape representation do not al-
low correspondence to be manipulated independently of shape, and in these
cases, the correspondence they generate can be considered as implicit (for ex-
ample, the SPHARM method [76], or early M-Rep methods [137]). However,
there are other methods of shape representation for which the correspondence
is explicit, which allow correspondence to be manipulated independently of
physical shape.

In the remainder of this book, we will restrict ourselves to such a shape rep-
resentation, the shape representation which leads to the class of deformable
models known as Statistical Shape Models1 (SSMs). We will now describe this
shape representation in detail, beginning with the finite-dimensional case.

2.1 Finite-Dimensional Representations of Shape

Let us consider first building a finite-dimensional representation of a single
shape S. The most intuitive and simplest way to represent such a shape is a
join-the-dots approach.

We take a set of nP points which lie on the shape S, with positions:

x(i) ∈ S, i = 1, . . . nP . (2.1)

The coordinates of each point position can be concatenated to give a single
shape vector x = {x(i)}. For example:

x .= (x(1), y(1), z(1), x(2), y(2), z(2), . . . , x(nP ), y(nP ), z(nP )), S ⊂ R
3, (2.2)

1 Note that these were initially called Point Distribution Models (PDMs). However, due

to a clash with nomenclature in the statistics literature, they were later re-christened

Statistical Shape Models (SSMs). Both terms can be found in the literature.
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where (x(i), y(i), z(i)) are the Cartesian coordinates of the ith point on the
shape. For a shape S in R

d, this gives a d × nP -dimensional representation.
In most cases, Cartesian coordinates are sufficient, but in cases where parts
of shapes can rotate, it may be useful to instead use angular coordinates [87].

The final representation of the shape is then generated from the shape
vector by interpolation. For shapes in R

2 (curves), this is a simple join-the-
dots approach, using either straight-line segments (polygonal representation),
or by spline interpolants if a smoother shape is preferred. For shapes in R

3

(surfaces), interpolants can similarly also be linear (planes), or a higher-order
spline interpolant.

What we have not considered so far is the connectivity of the points, and
the topology of the shape. For the case of shapes in R

2, the simplest case
is where the shape has only one connected component, with the topology of
either an open or closed line. The points are usually numbered so that they
are connected consecutively – for the closed shapes, we must also form a loop
by connecting the last point to the first. For more complicated multi-part
shapes, the points which are members of each part, and the connectivity
within each part have to be specified separately.

Similar considerations holds for shapes in R
3. The simplest case is then

single-part shapes in R
3, with the topology of either open surfaces or spheres,

with the points being part of a triangulated mesh.
Once we have a finite-dimensional representation of a single shape S, we

can easily see how this can be extended to form a common representation of
a set of shapes. To be specific, let us take a set of nS shapes:

Si : i = 1, . . . nS . (2.3)

We suppose that each shape is then represented by a set of nP points, such
that the individual points are placed in corresponding positions across the set
of shapes. This then gives us a set of initial shape vectors {xi : i = 1, . . . nS}
which form a representation of the whole set of shapes in a common shape
space R

dnP .

2.1.1 Shape Alignment

In many cases, the size, placement, and orientation of an object is arbitrary,
and has nothing to do with the actual variation of shape that we are interested
in. In mathematical terms, there are degrees of freedom (scaling, translation,
and rotation) associated with each shape example, which we wish to factor
out of our shape analysis.

Consider a fixed shape y, and a second moving shape x, which we wish
to align with the first by means of a similarity transformation. A general
similarity transformation acting on x can be written as:
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x �→ sR(x − t), (2.4)

where t represents a translation in R
d, R is a dnP × dnP representation of

a rotation in R
d, and s ∈ R

+ is a scaling. Note that these elements of the
representation of a similarity transformation are such that they act on the
concatenated set of shape points in the shape vector. They are constructed
from a representation that acts on single points in the obvious way, although
the exact details depend on the way in which the coordinates of the shape
points have been concatenated.

We wish to find the similarity transformation which brings the moving
shape x as close as possible to the fixed shape y. The simplest way to de-
fine proximity is just the magnitude of the Euclidean norm of the difference
between the two shape vectors in R

dnP :

L .= ‖y − sR(x − t)‖2, (2.5)

which is the square of the Procrustes distance between the shapes [78]. In
terms of the positions of individual points, this expression can be rewritten
as:

L =
nP∑

i=1

‖y(i) − sR(x(i) − t)‖2, (2.6)

where t is now just a vector in R
d, and R is a d × d rotation matrix.

If we define our origin so that it lies at the centre of mass of the fixed
shape:

1
nP

nP∑

i=1

y(i) = 0, (2.7)

with rotation defined about this origin, the optimal translation can then be
calculated as:

∂L
∂t

∣∣∣∣
s,R

= 0 =⇒ ∂

∂t

∣∣∣∣
s,R

nP∑

i=1

‖sR(x(i) − t)‖2 = 0, (2.8)

=⇒ ∂

∂t

∣∣∣∣
s,R

nP∑

i=1

‖(x(i) − t)‖2 = 0, (2.9)

=⇒ t =
1

nP

nP∑

i=1

x(i) =
1

nP

nP∑

i=1

(
x(i) − y(i)

)
. (2.10)

That is, the centroid/centre of mass of the original moving shape is translated
so that it coincides with the centre of mass of the fixed shape.

Once the shapes have been centred, we can then calculate the combined
scaling and rotation:
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∂L
∂sR

= 0 =⇒
nP∑

i=1

y(i)
μ x

(i)
β = sRμα

nP∑

j=1

x(j)
α x

(j)
β , (2.11)

where x(i) = {x(i)
α : α = 1, . . . d} and y(i) = {y(i)

α : α = 1, . . . d} are the
Cartesian components of the point positions. This can then be solved for the
matrix sR (for example, see [102] for further details).

Rather than aligning just a pair of shapes, we wish to mutually align
an entire set of shapes {Si : i = 1, . . . nS}, Si = {x(i)

j : j = 1, . . . nP }.
We use a similar criterion to that considered above, either by considering
the squared Procrustes distances between all pairs of shapes, or between all
shapes and the mean shape. This is known as generalized Procrustes analysis.
The translations are obtained as before, centering each shape on the origin.
However, the general problem of finding the optimal rotations and scalings
is not well-posed unless further constraints are placed on the mean [174], as
will be explained below.

For statistical shape analysis and statistical shape models, a simple it-
erative approach is usually sufficient. After first centering all the shapes, a
typical algorithm then proceeds [38] as Algorithm 2.1.

Algorithm 2.1 : Mutually Aligning a Set of Shapes.

Initialize:

• Choose one shape as the reference frame, call it xref, and retain this.
• Normalize the scale so that ‖xref‖ = 1.
• Set the initial estimate of the mean shape to be xref.

Repeat:

• Perform pairwise alignment of all shapes to the current estimate of the mean shape.
• Recompute the mean of the set of shapes:

x̄
.
= {x̄(i) : i = 1, . . . nP }, x̄

.
=

1

nS

nS∑

j=1

xj.

• Align x̄ to the initial reference frame xref.
• Normalize the mean so that ‖x̄‖ = 1.

Until convergence.

Note that it is necessary to retain the initial reference frame to remove
the global degree of freedom corresponding to rotating all the shapes by
the same amount. Setting ‖x̄‖ = 1 similarly removes the degree of freedom
associated with scaling all the shapes by the same factor. The degrees of
freedom associated with a uniform translation have already been removed by
centering all the shapes before we began the rest of the alignment.
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There remains the question of what transformations to allow during the it-
erative refinement. A common approach is to scale all shapes so that ‖xi‖ = 1,
and allow only rotations during the alignment stage. This means that from
the original shape space R

dnP , all shapes have been projected onto the surface
of a hypersphere ‖x‖ = 1. This means that the submanifold of R

dnP on which
the aligned shapes lie is curved, and if large shape changes occur, significant
non-linearities can appear. This may be problematic when we come to the
next stage of building a statistical model of the distribution of shapes. An
alternative is to allow both scaling and rotation during alignment, but this
can also introduce significant non-linearities. If this is a problem, the non-
linearity can be removed by projecting the aligned shapes onto the tangent
hyperplane to the hypersphere at the mean shape. That is:

xi �→ sixi, si ∈ R
+ such that (x̄ − sixi) · x̄ = 0. (2.12)

See [38] for further details and explicit examples.

2.1.2 Statistics of Shapes

To summarize our progress so far, we have mapped our initial shape vectors
(2.2) in R

dnP to a new set of mutually aligned shape vectors, by factoring
out uninteresting degrees of freedom corresponding to pose (scale, orientation,
and position). We now wish to analyse the statistics of this distribution of
shape vectors. To do this, we first need to find a set of axes specific to the
particular set of shapes. We have in some sense already started to perform
this, since we have a mean shape x̄ that can be used as an origin.

To see that this is a necessary procedure, consider the extreme case where
there is a shape point, x(i) say, which does not change its position across the
set of examples. Since this point does not vary, there is no value in retaining
the axes corresponding to the coordinates of this point {x(i)

α : α = 1, . . . d}.
We wish instead to find a new set of axes in R

dnP that span the subspace
which contains the (aligned) shapes. One simple procedure for performing
this task is Principal Component Analysis (PCA).

2.1.3 Principal Component Analysis

We start from our set of shape vectors {xi : i = 1, . . . nS} (we will assume
from now on that we are only considering sets of shape vectors which have
been aligned), with components relative to our original axes:

xi = {xiμ : μ = 1, . . . d × nP }. (2.13)
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These are the components and axes defined by those in R
d, the original space

in which the input shapes reside.
We wish to find a new set of orthogonal axes in R

dnP that better reflects
the actual distribution of the set. The origin of this new set of axes will be set
to the mean shape x̄. Let these new axes be described by a set of orthonormal
vectors:

{n(a)} such that n(a) · n(b) = δab, (2.14)

where δab is the Kronecker delta.
We then have the following theorem:

Theorem 2.1. PCA.
The set of orthonormal directions {n(a)} that maximises the quantity:

L .=
∑

a

nS∑

i=1

(
(xi − x̄) · n(a)

)2

, (2.15)

are given by the eigenvectors of the data covariance matrix D for the shapes,
where we define D of size dnP × dnP with components:

Dμν
.=

nS∑

i=1

(xi − x̄)μ(xi − x̄)ν . (2.16)

Then the eigenvectors are defined by:

Dn(a) = λan(a), a = 1, . . . nS − 1. (2.17)

Proof. Suppose we are extracting these vectors in some sequential manner, so
that having found an acceptable subset {n(a) : a = 1, . . . b − 1}, we now wish
to make the optimum choice of the next vector n(b). Optimality is then given
by maximising:

L .=
nS∑

i=1

(
(xi − x̄) · n(b)

)2

, (2.18)

with respect to n(b), subject to the orthonormality constraints:

n(a) · n(b) = δab, a = 1, . . . b. (2.19)

Using Lagrange multipliers {cba : a = 1, . . . b}, the solution to this constrained
optimisation problem corresponds to the stationary point of the function:
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L =
nS∑

i=1

(
(xi − x̄) · n(b)

)2

+
b−1∑

a=1

cban(a) · n(b) + cbb

(
n(b) · n(b) − 1

)
. (2.20)

∂L
∂cba

= 0 =⇒ n(a) · n(b) = δab, which are the required constraints. (2.21)

∂L
∂n(b)

= 0 =⇒ 2
nS∑

i=1

(xi − x̄)ν(xi − x̄)μn(b)
μ +

b−1∑

a=1

cban(a)
ν + 2cbbn

(b)
ν = 0,

(2.22)

where we use the Einstein summation convention2 that the repeated index μ
is summed from μ = 1 to dnP . Using the definition of the covariance matrix
D (2.16), we can rewrite the condition as:

2Dn(b) +
b−1∑

a=1

cban(a) + 2cbbn(b) = 0. (2.23)

For the case b = 1 (the first direction we choose), this reduces to:

Dn(1) + c11n(1) = 0 (2.24)

=⇒ Dn(1) = λ1n(1) & n(1)D = λ1n(1), c11
.= λ1. (2.25)

That is, the vector n(1) is a left and right eigenvector of the (symmetric)
shape covariance matrix D, with eigenvalue λ1. The condition for the second
axis can then be written as:

2Dn(2) + c21n(1) + 2c22n(2) = 0. (2.26)

Taking the dot product of this expression with n(1), we obtain:

2n(1)Dn(2) + c21 = 0 (2.27)
=⇒ 2λ1n(1) · n(2) + c21 = 0 =⇒ c21 = 0. (2.28)

∴ Dn(2) + c22n(2) = 0 =⇒ Dn(2) = −c22n(2) .= λ2n(2).

(2.29)

It then follows by induction that the required set of axes {n(a)} are the or-
thonormal set of eigenvectors of the shape covariance matrix D. �	

The sum of the squares of the components of the shape vectors along each
of the PCA directions n(a) is then given by:

2 Note that, in general, indices that appear in brackets ·(a) will not be summed over unless
explicitly stated. See Glossary.
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nS∑

i=1

(
(xi − x̄) · n(a)

)2

= n(a)
μ Dμνn(a)

ν = λa ≥ 0. (2.30)

This means that the set of axes can be ordered in terms of relative impor-
tance by sorting the eigenvalues in terms of decreasing size. Since there are
nS shapes, there are at most nS−1 non-zero eigenvalues. This means that for
the case nS −1 < dnP , we have performed dimensionality reduction by locat-
ing the directions with zero eigenvalue that are orthogonal to the subspace
spanned by the data.

In practice, we retain not just the directions corresponding to non-zero
eigenvalues, but instead that ordered set which encompasses a certain amount
of the total variance of the data.

Ordered set of eigenvalues: λ1 ≥ λ2, . . . ≥ λdnP
, (2.31)

Total variance:
nS−1∑

a=1

λa, (2.32)

Variance up to nm :
nm∑

a=1

λa. (2.33)

The number of modes nm retained is then chosen to be the lowest value such
that the variance up to nm is some specified fraction of the total variance.

We can also transform coordinates to the system defined by the directions
{n(a)}, with origin x̄. For each shape xi this then defines a new vector of
shape parameters b(i) ∈ R

nm thus:

b(i) = {b(i)
a : a = 1, . . . nm}, b(i)

a
.=
(
n(a) · (xi − x̄)

)
, (2.34)

where the covariance in this frame is now given by the diagonal matrix:

Dab
.=

nS∑

i=1

(n(a) · b(i))(n(b) · b(i)) = λaδab. (2.35)

We define the matrix of eigenvectors:

N, Nμa
.= n(a)

μ , (2.36)

which is then of size dnP × nm. We can then form an approximate recon-
struction of the shape vector xi from the corresponding parameter vector b(i)

thus:
xi ≈ x̄ + Nb(i). (2.37)

The reconstruction is only approximate, since we have only retained the first
nm eigenvectors, rather than all eigenvectors with non-zero eigenvalue.
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The matrix N performs a mapping from the coordinate axes defined in
(shape) parameter space to the original shape space. The mean shape simply
performs a translation of the origin, since the origin of parameter space is
taken to correspond to the mean shape. The corresponding backwards map-
ping, from shape space to parameter space, is performed by the matrix NT .
For a general parameter vector b ∈ R

nm and shape vector x ∈ R
dnP :

b �→ x̄ + Nb, x �→ NT (x − x̄) . (2.38)

Note however that the mappings are not the inverse of each other, even if all
the variance is retained, since the dimensionality of parameter space is less
than the dimensionality of shape space. For a shape vector x which is not part
of the original training set, the action of NT first projects the shape vector
into the subspace spanned by the training set, then forms an (approximate)
representation of this using the nm available modes.

If we suppose that the parameter vectors for our original set of shapes are
drawn from some probability distribution p(b), then we can sample parame-
ter vectors b from this distribution. We can then construct the corresponding
shapes for each parameter vector b as above (2.38). This gives us an arbitrar-
ily large set of generated shapes, sharing the same distribution as the original
set. This is usually referred to as applying the SSM in a generative mode.

The remaining task is to learn this distribution p(b), given our original
set of shapes – in this context, we refer to this set as a training set.

2.2 Modelling Distributions of Sets of Shapes

For a simple unimodal distribution of shapes in shape space, PCA generates
a coordinate system centred on the distribution, whose axes are aligned with
the significant directions of the distribution, and represent modes of varia-
tion of that data. If the distribution is not simple, PCA will still enable us to
discard dimensions which are orthogonal to the data, that is, perform dimen-
sional reduction. The individual directions n(a) will not however necessarily
correspond to modes of variation of the data.

In the following sections, we consider various methods for studying and
representing the distribution of the training data in shape space. We start
with the simplest case of a single multivariate Gaussian, where the data is
unimodal and the PCA axes do correspond to real modes of variation of the
input data. For the case of multimodal or non-linear data distributions, we
discuss two types of kernel methods, the classical method of kernel density
estimation, and the more recent technique of kernel principal component
analysis.
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2.2.1 Gaussian Models

We will consider modelling the distribution of the data by a multivariate
Gaussian. Having already applied PCA, we now model the parameter space
containing the vectors {b(i)} defined above (2.34).

We consider a multivariate Gaussian distribution centred on the origin in
parameter space, that is, centred on the mean of the data in shape space.

Theorem 2.2. Maximum Likelihood Method.
Consider a centred Gaussian probability density function (pdf) of the form:

p(b) ∝
(

nm∏

c=1

1
σc

)
exp

(
−1

2

nm∑

a=1

(
b · m(a)

σa

)2
)

, (2.39)

where {m(a) : a = 1, . . . nm} are some orthonormal set of directions:

m(a) · m(b) = δab, (2.40)

and {σa} are the set of width parameters. The fitted Gaussian which max-
imises the quantity:

nS∏

i=1

p(b(i)), (2.41)

is then given by {m(a)} equal to the eigenvectors of the covariance matrix of
{b(i)}. If these eigenvectors have corresponding eigenvalues {λa}, then the
optimum width parameters are:

σ2
a =

1
nS

λa. (2.42)

Proof. We are required to maximise:

nS∏

i=1

p(b(i)). (2.43)

Equivalently, we can maximise instead the logarithm of this:

L = −nS

nm∑

c=1

ln σc −
1
2

nS∑

i=1

nm∑

a=1

(
b(i) · m(a)

σa

)2

+ (constant terms), (2.44)

with the orthonormality constraints as above. For the case of the directions
{m(a)}, if we compare this to (2.20), we see that it is essentially the same
optimisation problem as the one we encountered previously. Hence we can
deduce that the directions {ma} are just the eigenvectors of the covariance
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matrix of the {b(i)}. And since this covariance matrix is diagonal in the PCA
coordinate frame (2.35), we finally have that m(a) = n(a) ∀ a = 1, . . . nm.

For the parameters {σa}, we then have to optimise:

L = −nS

nm∑

c=1

ln σc −
1
2

nm∑

a=1

λa

σ2
a

+ (constant terms), (2.45)

=⇒ ∂L
∂σa

= −nS

σa
+

λa

σ3
a

, (2.46)

∴ ∂L
∂σa

= 0 =⇒ σ2
a =

1
nS

λa =
1

nS

nS∑

i=1

(
(xi − x̄) · n(a)

)2

, (2.47)

which is just the mean variance across the set of shapes in the direction n(a).
�	

In many cases, where the shape variation is linear, a multivariate Gaussian
density model is sufficient. A single Gaussian cannot however adequately
represent cases where there is significant non-linear shape variation, such as
that generated when parts of an object rotate, or where there are changes to
the viewing angle in a two-dimensional representation of a three-dimensional
object. The case of rotating parts of an object can be dealt with by using polar
coordinates for these parts, rather than the Cartesian coordinates considered
previously [87]. However, such techniques do not deal with the case where
the probability distribution is actually multimodal, and in these cases, more
general probability distribution modelling techniques must be used. In what
follows, we consider kernel-based techniques, the first being classical kernel
density estimation, and the second based on the technique of kernel principal
component analysis.

2.2.2 Kernel Density Estimation

As before, we start from the set of nS centred points {b(i)} in shape space
R

nm . Kernel density estimation [165] estimates a pdf from data points by
essentially smearing out the effect of each data point, by means of a kernel
K:

p(b) =
1

nShnm

nS∑

i=1

K

(
b − b(i)

h

)
, (2.48)

where h is a scaling parameter. In the trivial case where the kernel K is a
Dirac δ-function, we obtain the empirical distribution of the data, a pdf p(b)
which is zero everywhere except at a data point. A non-trivial choice of kernel
would be a multivariate Gaussian:
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K(b) .= N (b;0,D), (2.49)

where the covariance D of the kernel can be chosen to match the covariance
of the data {b(i)}.

A slightly more sophisticated approach is the sample smoothing estima-
tor [15, 175]. Rather than a single global scale parameter h, there is now a
local scale parameter, which reflects the local density about each data point,
allowing wider kernels in areas where data points are sparse, and narrower
kernels in more densely populated areas. Similarly, the kernel covariance can
also vary locally [152].

Such kernel methods can give good estimates of the shape distribution.
However, the large number of kernels can make them too computationally ex-
pensive in an application such as the Active Shape Model (ASM) (Sect. 2.4.1).
Cootes et al. [35, 36] developed a method of approximating the full kernel
density estimate using a smaller number of Gaussians within a Gaussian
mixture model:

pmix(b) .=
nmix∑

i=1

wiN (b;μi,Di), (2.50)

where nmix is the number of Gaussians within the mixture model, wi is the
weight of the ith Gaussian, with center μi and covariance Di. The fitting
of the parameters can be achieved using a modification [36] to the standard
Expectation Maximisation (EM) algorithm method [117].

2.2.3 Kernel Principal Component Analysis

The previous method aims to fit a non-linear or multimodal shape distri-
bution by constructing a parametric non-linear and multimodal distribution
within the original shape space.

The Kernel Principal Component Analysis (KPCA) method takes a differ-
ent approach. KPCA [156, 157] is a technique for non-linear feature extrac-
tion, closely related to methods applied in Support Vector Machines [194, 188]
(SVMs). Rather than working within the original data space with non-linear
and multimodal distributions, KPCA seeks to construct a non-linear mapping
of input space I to a new feature space.

Let b represent a point in our input data space3 I = R
nm , which is mapped

to a feature space F :

Φ : R
nm �→ F , R

nm � b �→ Φ(b) ∈ F , (2.51)

3 Here, we start from the dimensionally reduced space R
nm rather than the original shape

space R
dnP in order to also include the infinite-dimensional case nP �→ ∞ that is considered

in Sect. 2.3.


