
Robust Intelligent Systems

Alfons Schuster
Editor

Robust Intelligent Systems

123

Editor

Alfons Schuster
School of Computing and Mathematics
University of Ulster at Jordanstown
Northern Ireland, UK
a.schuster@ulster.ac.uk

ISBN: 978-1-84800-260-9 e-ISBN: 978-1-84800-261-6
DOI: 10.1007/978-1-84800-261-6

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008931892

c© Springer-Verlag London Limited 2008
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

Preface

Our time recognizes robustness as an important, all-pervading feature in the world
around us. Despite its omnipresence, robustness is not entirely understood, rather
difficult to define, and, despite its obvious value in many situations, rather difficult
to achieve.

One of the goals of this edited book is to report on the topic of robustness from a
variety and diverse range of fields and perspectives. We are interested, for instance,
in fundamental strategies nature applies to make systems robust—and arguably
“intelligent”—and how these strategies may hold as general design principles in
modern technology. A particular focus is on computer-based systems and applica-
tions. This in mind, the book has four main sections:

Part I has a look at robustness in terms of underlying technologies and infrastruc-
tures upon which many computer-based “intelligent” systems reside and investi-
gates robustness on the hardware and software level, but also in larger environments
such as the Internet and self-managing systems. The contributions in Part II target
robustness in research areas that are inspired by biology, including brain-computer
interfaces, biological networks, and biological immune systems, for example. Part
III involves the exciting field of artificial intelligence. The chapters here discuss the
value of robustness as a general design principle for artificial intelligence, stressing
its potential in areas such as humanoid robotics and image processing. In a way,
Part IV does the omnipresent nature of robustness justice by lifting it beyond earthly
confines into the vastly inspiring and equally challenging space domain, scrutinizing
its impact for space mission success, space system design, and bio-regenerative life
support systems.

I would like to express my sincerest thankfulness to all authors contributing to
this book for their dedicated efforts. The support, guidance, and help I received
from Beverley Ford, Helen Desmond, and Frank Ganz at Springer, and from
Springer itself, throughout this project was exceptional—thank you very much!
I am also delighted to say thank you to the following individuals for their assis-
tance in the review process of this edited book: Dr. Dewar Finlay, Dr. David Glass,
Dr. Kieran Greer, Dr. Alexander Grigorash, Dr. Christian Hölscher, Dr. Neil Lester,
Dr. Gaye Lightbody, Dr. George Moore, Professor Shahid Masud, Dr. Jürgen Vogel,
Dr. Martin Stetter, and Dr. Philip Taylor.

Belfast, February 2008 Alfons Schuster

v

Contents

Part I Robustness in Computer Hardware, Software, Networks,
and Protocols

1 Robustness in Digital Hardware . 3
Roger Woods and Gaye Lightbody

2 Multiagent-Based Fault Tolerance Management for Robustness 23
Rosa Laura Zavala Gutierrez and Michael Huhns

3 A Two-Level Robustness Model for Self-Managing Software
Systems . 43
David Bustard and Roy Sterritt

4 Robustness in Network Protocols and Distributed Applications
of the Internet . 61
Jürgen Vogel and Jörg Widmer

Part II Robustness in Biology Inspired Systems

5 Detecting Danger: The Dendritic Cell Algorithm 89
Julie Greensmith, Uwe Aickelin, and Steve Cayzer

6 Non-invasive Brain-Computer Interfaces for Semi-autonomous
Assistive Devices . 113
Bernhard Graimann, Brendan Allison, Christian Mandel, Thorsten
Lüth, Diana Valbuena, and Axel Gräser

7 Robust Learning of High-dimensional Biological Networks
with Bayesian Networks . 139
Andreas Nägele, Mathäus Dejori, and Martin Stetter

vii

viii Contents

Part III Robustness in Artificial Intelligence Systems

8 Robustness in Nature as a Design Principle for Artificial
Intelligence . 165
Alfons Schuster

9 Feedback Structures as a Key Requirement for Robustness: Case
Studies in Image Processing . 189
Axel Gräser and Danijela Ristić

10 Exploiting Motor Modules in Modular Contexts in Humanoid
Robotics . 209
Francesco Nori, Giorgio Metta, and Giulio Sandini

Part IV Robustness in Space Applications

11 Robustness as Key to Success for Space Missions 233
Olaf Maibaum, Sergio Montenegro, and Thomas Terzibaschian

12 Robust and Automated Space System Design . 251
Martin Fuchs, Daniela Girimonte, Dario Izzo, and Arnold Neumaier

13 Robust Bio-regenerative Life Support Systems Control 273
Jordi Duatis, Cecilio Angulo, Vicenç Puig, and Pere Ponsa

Index . 297

Contributors

Uwe Aickelin
School of Computer Science, University of Nottingham, NG8 1BB,
United Kingdom, uxa@cs.nott.ac.uk

Brendan Allison
Institute of Automation, University of Bremen, D-28359 Bremen, Germany,
allison@iat.uni-bremen.de

Cecilio Angulo
Automatic Control Department, Technical University of Catalonia, 08034
Barcelona, Spain, cecilio.angulo@upc.edu

David Bustard
University of Ulster, School of Computing and Information Engineering,
Coleraine, Co. Londonderry BT52 1SA, Northern Ireland, dw.bustard@ulster.ac.uk

Steve Cayzer
Hewlett Packard Labs, Bristol, BS34 8QZ, United Kingdom, steve.cayzer@hp.com

Mathäus Dejori
Siemens Corporate Research, Intelligent Vision and Reasoning Princeton, NJ, USA,
mathaeus.dejori@siemens.com

Jordi Duatis
NTE, 08186 Barcelona, Spain, jordid@nte.es

Martin Fuchs
University of Vienna, Faculty of Mathematics, 1090 Vienna, Austria,
martin.fuchs@univie.ac.at

Daniela Girimonte
European Space Agency, Advanced Concepts Team, 2201 Noordwijk,
The Netherlands, daniela.girimonte@esa.int

Bernhard Graimann
Institute of Automation, University of Bremen, D-28359 Bremen, Germany,
graimann@iat.uni-bremen.de

ix

x Contributors

Axel Gräser
Institute of Automation, University of Bremen, D-28359 Bremen, Germany,
ag@iat.uni-bremen.de

Julie Greensmith
School of Computer Science, University of Nottingham, NG8 1BB, United
Kingdom, jqg@cs.nott.ac.uk

Rosa Laura Zavala Gutierrez
University of South Carolina, Department of Computer Science and Engineering
Columbia, SC 29208, USA, zavalagu@engr.sc.edu

Michael Huhns
University of South Carolina, Department of Computer Science and Engineering
Columbia, SC 29208, USA, huhns@engr.sc.edu

Dario Izzo
European Space Agency, Advanced Concepts Team, 2201 Noordwijk,
The Netherlands, dario.izzo@esa.in

Gaye Lightbody
University of Ulster, School of Computing & Mathematics, Newtownabbey, Co.
Antrim BT37 0QB, Northern Ireland, g.lightbody@ulster.ac.uk

Thorsten Lüth
Institute of Automation, University of Bremen, D-28359 Bremen, Germany,
lueth@iat.uni-bremen.de

Olaf Maibaum
German Aerospace Center, Department of Simulation and Software Technology,
D-38108 Braunschweig, Germany, olaf.maibaum@dlr.de

Christian Mandel
Institute of Computer Science, University of Bremen, D-28359 Bremen,
Germany, cmandel@uni-bremen.de

Giorgio Metta
University of Genoa, Department of Communication, Computer and System Sci-
ences 16145 Genoa, Italy, giorgio.metta@iit.it

Sergio Montenegro
German Aerospace Center, Institute of Space Systems, D-28359 Bremen, Germany,
sergio.montenegro@dlr.de

Andreas Nägele
Siemens Corporate Technology, Department of Information and Communications,
D-81730 Munich, Germany, andreas.naegele.ext@siemens.com

Arnold Neumaier
University of Vienna, Faculty of Mathematics, 1090 Vienna, Austria
arnold.neumaier@univie.ac.at

Contributors xi

Francesco Nori
Italian Institute of Technology, 16163 Genoa, Italy, francesco.nori@iit.it

Pere Ponsa
Automatic Control Department, Technical University of Catalonia, 08034
Barcelona, Spain, pedro.ponsa@upc.edu

Vicenç Puig
Automatic Control Department, Technical University of Catalonia 08034
Barcelona, Spain, vicenc.puig@upc.edu

Danijela Ristić
Institute of Automation, University of Bremen, D-28359 Bremen, Germany,
ristic@iat.uni-bremen.de

Giulio Sandini
Italian Institute of Technology, 16163 Genoa, Italy, giulio.sandini@iit.it

Alfons Schuster
University of Ulster, School of Computing & Mathematics, Newtownabbey, Co.
Antrim BT37 0QB, Northern Ireland, a.schuster@ulster.ac.uk

Roy Sterritt
University of Ulster, School of Computing & Mathematics, Newtownabbey, Co.
Antrim BT37 0QB, Northern Ireland, r.sterritt@ulster.ac.uk

Martin Stetter
Siemens Corporate Technology, Department of Information and Communications,
D-81730 Munich, Germany, stetter@siemens.com

Thomas Terzibaschian
German Aerospace Center, Department of Optical, Information Systems,
D-12489 Berlin, Germany, thomas.terzibaschian@dlr.de

Diana Valbuena
Institute of Automation, University of Bremen, D-28359 Bremen, Germany,
valbuena@iat.uni-bremen.de

Jürgen Vogel
European Media Laboratory, D-69118 Heidelberg, Germany,
juergen.vogel@eml.org

Jörg Widmer
DoCoMo Communications, Laboratories Europe, D-80687 Munich, Germany
widmer@docomolab-euro.com

Roger Woods
Queen’s University Belfast, School of Electronics, Electrical Engineering &
Computer Science, Belfast BT3 9DT, Northern Ireland, r.woods@qub.ac.uk

Part I
Robustness in Computer Hardware,

Software, Networks, and Protocols

Chapter 1
Robustness in Digital Hardware

Roger Woods and Gaye Lightbody

Abstract The growth in electronics has probably been the equivalent of the Indus-
trial Revolution in the past century in terms of how much it has transformed our
daily lives. There is a great dependency on technology whether it is in the devices
that control travel (e.g., in aircraft or cars), our entertainment and communication
systems, or our interaction with money, which has been empowered by the onset
of Internet shopping and banking. Despite this reliance, there is still a danger that
at some stage devices will fail within the equipment’s lifetime. The purpose of this
chapter is to look at the factors causing failure and address possible measures to
improve robustness in digital hardware technology and specifically chip technology,
giving a long-term forecast that will not reassure the reader!

1.1 Introduction

The electronics market has been driven by the incredible growth in silicon density
whereby the number of transistors on a single device doubles every 18–24 months,
relating to an annual growth of 58%. This is commonly referred to as Moore’s Law
and is a relationship that is still holding some 30 years from the initial observa-
tion. By 2010, the silicon technology roadmap [Allan et al., 2002] estimates that
chip sizes will be in the region of 4 billion transistors while reaching clock rates
of 10 GHz; this will be expected to exceed 50 GHz by 2017 [IRTS, 2003]. Natu-
rally, this increase in silicon density opens up a wealth of capabilities, permitting
extremely complex functions to be implemented as a complete system-on-a-chip
(SoC) instead of as a collection of individual components. In real terms, this has
driven a number of consumer markets and the computer industry. High-tech prod-
ucts and devices such as digital TV, DVDs, stereos, PCs, PDAs, notebooks, and
mobile telephones are all the result of these advances. In addition to area and speed

R. Woods
School of Electronics, Electrical Engineering and Computer Science, ECIT, Queen’s University
Belfast, Queen’s Island, Queen’s Road, Belfast, BT3 9DT, Northern Ireland
email: r.woods@qub.ac.uk

A. Schuster (ed.), Robust Intelligent Systems, DOI: 10.1007/978-1-84800-261-6 1,
C© Springer-Verlag London Limited 2008 3

4 R. Woods, G. Lightbody

PCB

Rack of PCBs

ASIC chip

FPGA chip

DSP chip

Fig. 1.1 Evolving hardware technologies

gains, reductions in power consumption have also been achieved. This is illustrated
in Fig. 1.1, which shows a rack of printed circuit boards (PCBs) being replaced by
a single PCB, or in some cases, a single chip such as a Digital Signal Processor
microprocessor (DSPμ), a Field Programmable Gate Array (FPGA), or an Applica-
tion Specific Integrated Circuit (ASIC). A more detailed description of these will be
given within this chapter.

Whereas the shrinking of the dimensions of silicon technology provides more
transistors as well as making them go faster and consume less power, it also causes
problems with regard to robustness. As stated within this book, a robust system is
widely viewed to be a system that tolerates faults. We are now dealing with robust-
ness on several fronts. Firstly, with shrinking technology we are now coping with
progressively sensitive transistors whose effects have to increasingly be dealt in
the design process [Phillips, 2007]. Secondly, the methodologies needed to design
advanced silicon chips have not matured at the same rate as the increase in silicon
density. This has resulted in a gap between the rate of growth in silicon density
(58%) to the rate of increase in transistors implemented per staff-month (21%),
commonly referred to as the design productivity gap [Rowen, 2002], as illustrated
in Fig. 1.2.

Fig. 1.2 Design productivity gap [Rowen, 2002]

1 Robustness in Digital Hardware 5

Thirdly, the design problem has changed. More than a decade ago, a single chip
represented a component of a system but now the chip can represent the full system
itself, hence system-on-chip, involving a number of technologies ranging from sen-
sors to technology for receiving data signals. These technologies typically involve
different design approaches, and additional care is needed as they can interfere with
each other. Lastly, there is also an expectation that electronic devices will not fail,
which was a strong selling point over the less reliable mechanical and analog tech-
nology. This is increasingly becoming more difficult to achieve as both the technol-
ogy becomes more unpredictable and the tools lag behind the methodology.

The purpose of the chapter is to address some of the issues regarding robust-
ness of hardware, specifically digital hardware. The aim is to present an insight and
discussion on the elements of digital hardware system design that provide a level
of robustness. It starts with a brief discussion of issues of robustness in hardware
highlighting increasing device complexity. The chapter then focuses on hardware
technologies and describes the characteristics of various types of hardware plat-
forms, namely ASIC, DSPμ, microprocessors, and FPGA. The description also
gives details of their structure and programming model with a particular focus on
robustness. The next section covers the types of faults that can occur in silicon
hardware and the design and operation techniques available to avoid these faults.
The latter sections will then give an overview of the approaches currently available
for proving hardware robustness ranging from the highly practical to some of the
more exotic solutions. Finally, the chapter will conclude by considering the future
problems caused by process variations and the challenges this will create.

1.2 Digital Hardware Technologies

In the evolution of silicon technology over the past 40 years, a number of different
types of hardware technologies have emerged and can be generally classified as
being either ASIC, programmable based designs (DSPμ, microprocessors), or as
FPGAs. A brief description of each is given in Fig. 1.3.

The first offerings were the 74 series logic chips in the 1960s, which were the
building block for many “budding techies” up to recently. This was followed by
the first microprocessor, the Intel 4004 processor in 1971, which along with micro-
controllers have now formed the core for many applications with lower bandwidth
requirements. The concept of developing custom large-scale integration (LSI) com-
ponents emerged in the 1970s, but the development of the programmable logic array
(PLA) in 1978 and the first FPGA in 1984 was the start of an increasing interest in
programmable hardware structures. Remarkably, this was followed by a renaissance
of developing dedicated hardware implementations or ASICs in the late 1980s.

The first aspect is to highlight that silicon fabrication works on the principle
that each chip will meet the specification for which it was designed. Therefore,
a margin of error is built into each design such that it is guaranteed to work at
the required specification. To this end, two specifications are typically catered for,
the industrial one and the more rigorous military specification; these represent the

6 R. Woods, G. Lightbody

Fig. 1.3 Basic technology comparison

worst-case conditions at which the device will operate. Heat is a key issue as it
decreases device speed and can accelerate possible chip malfunctions but it can be
taken into account in the design and simulation stages. The major focus on right
first time design is driven by the spiraling costs of masks, which are the result of
the design process and are used to fabricate the chip. Typically, they cost $1M to
create [LaPedus, 2007]; a price that is incurred whether they are needed for a small
number of prototypes or for a full deployment of a million devices. Even so, yet as
many as 55% of designs are failing to pass first silicon [Robertson, 2004] therefore
incurring a great loss of money and time!

In addition to the highly pessimistic design process, another interesting feature
impacting robustness was first observed by Tsugio Makimoto of Sony. It was coined
Makimoto’s wave and is illustrated in Fig. 1.4. Makimoto observed that system con-
struction seemed to be swinging between standardization where silicon chips were
created as standard parts (e.g., TTL chips, microprocessors, and then FPGAs) and
customization in the form of LSI and ASICs developed for single or a restricted

Fig. 1.4 Makimoto’s wave (Source: Electronics Weekly, January, 1991)

1 Robustness in Digital Hardware 7

range of applications. For the standardized part, the key attribute was usability
across a range of applications implying granularity in the form of a building block
that could be used to build a larger function for a range of applications, therefore
also supporting diversity. The customized solution implies a limited range of appli-
cations, therefore robustness is not a key criteria either in terms of the application
range needed or, indeed, the lifetime of the product.

1.2.1 More Detailed Description of Technology

In the previous section, the various types of technologies were briefly outlined. This
section provides a more detailed overview and their current status.

Microprocessors currently have clock rates of 4 GHz, and recent predictions under
the International Technological Roadmap for Semiconductors [IRTS, 2003]
suggest clock rates will exceed 50 GHz by 2017. Whereas these performance
figures are staggering, it must be remembered that the microprocessor has
a von Neumann architecture where computations are performed in a serial
fashion, not ideal for highly parallel algorithms. It could be argued that the
inefficiency is an acceptable price to pay for the high levels of programmabil-
ity that the microprocessor offers, but energy considerations are becoming a
critical design factor in many applications and this level of inefficiency cannot
be tolerated. The programming route is via high-level software platforms and,
as the user will no doubt be well aware, this platform has a wide application
base. Evolutions over the past decade include hyper-threading [Koufaty and
Marr, 2003] supported on the Intel Pentium 4 device and the evolution of
multiple processors on a single die.

DSPμs are dedicated hardware platforms that are based on a different underlying
architecture from the microprocessor, namely the Harvard architecture, which
uses separate buses for instructions and data and has physically separate
storage memories for program and data. The device is programmed in much
the same fashion as the microprocessor and is applied largely in the DSP
market as a commodity part. An overview of DSP architectures can be
found in [Glossner et al., 2000] and [Tan and Heinzelman, 2003]. The major
innovations in DSPμs include very long instruction words (VLIW) and
single input multiple data (SIMD) architectural changes [Rui et al., 2003].
These innovations are possible due to the computational needs of many DSP
computations.

FPGAs have emerged from being glue logic components in the early 1980s to
offering complete processing platforms for complex systems. They offer pro-
grammability, but unlike the microprocessor/DSPμ, this involves changing
the hardware architecture of the device. This offers a number of advantages
from a robustness perspective. If the FPGA is used as part of a system, it
is possible to reconfigure the hardware and operation to overcome faults

8 R. Woods, G. Lightbody

caused either in the design stage or as a result of malfunction. Given that
the device comprises a lot of similar cells that can be migrated to dif-
ferent parts of the device, it does introduce the possibility of self-healing
[Andraka and Brady, 2002, Samudrala et al., 2004, Gokhale et al., 2006].
However, a key aspect of digital design implementation is the standard-
ization and verification of designs, which the concept of self-healing acts
against.

ASICs and toward system-on-chip (SoC) involve a detailed and costly design
process plus the costs to produce the mask for fabrication. A number of
variations include standard cell, which comprises cells of pre-designed logic
blocks and structured ASIC, which is a more modern version of gate array
technology where the structure is mostly developed and the only custom
fabrication step is the definition of the interconnection. The one-off costs
called non-recurrence engineering (NRE) costs can be amortized into the
component cost when volumes are large. Thus the nature of the designs are
such that they are heavily restricted, as the name suggests, and little thought
will have gone into making the designs robust unless the application directly
requires it. In this case, particular choices may be made to use, for example,
radiation hard fabrication technologies if the applications require this level of
protection, or even to duplicate circuitry [Hollander et al., 1995, Lacoe et al.,
2000, Ruano et al., 2007].

ASSP (application specific standard product) (includes emerging platforms
such as, for example, reconfigurable DSPs) have also emerged. It is clear
from the descriptions above that there is no single suitable technology;
ASSPs combine the fixed architecture structure of microprocessors or DSPμs
but provide some level of hardware programmability to allow the processor
to be customized to the specific application. This represents the new types
of technologies hinted at in the post-2007 part of the Makimoto wave,
which are largely standardized but which can be customized for specific
applications.

In truth, a lot of variations of these classifications are beginning to appear.
For example, FPGAs now have embedded microprocessors such as the Xilinx
MicroBlaze and the Altera NIOS processor, which can be customized for specific
applications. DSPμs are also becoming complex SoC platforms with dedicated
hardware units for high-performance wireless communications and other functions.
IBM has been developing platforms with embedded FPGAs and Intel has been
embedding DSP engines within their RISC (reduced instruction set computer) tech-
nology. It is clear that hybrids are beginning to emerge allowing users to select
architectures based on system requirements and making it difficult to categorize
the technologies in the classical way that has been done here. These technologies
are best compared against time-to-market, performance, price, ease of development,
energy efficiency, as well as a number of other emerging factors, such as radiation
hardware, ability to incorporate legacy designs, and upgradability and, of course,
robustness.

1 Robustness in Digital Hardware 9

1.3 Issues with Testing and Verifying Digital Hardware

Digital design is subject to faults in PCB or chip design formats due to errors in the
manufacturing process. It is therefore essential that the circuit is tested both prior to
delivery to the customer and also prior to operation in normal day-to-day use. From
a manufacturing point-of-view, it is important to carry out fault analysis to detect
where the fault has occurred in order to isolate any production problems. However,
it is typical that faults will occur and a certain level of faults will be tolerated, thus it
falls on the designer to create a series of tests that will allow fault detection thereby
establishing whether a fault has occurred in order that the producer can eliminate
faulty chips/PCBs and thus remove them at production.

In electronic design generally but IC design specifically, there are a number of
causes of faults. These are classified as:

Open Circuit where the circuit connection is broken thus causing an “open” circuit.
This can occur due to electric migration where the electric fields are so strong
that the metal atoms migrate thereby causing a break in the connection and also
due to current overstress where large currents make the wire lift from the silicon
thereby breaking the connection and once again causing an open circuit.

Short Circuit which can be caused by defects in the fabrication material used (e.g.,
silicon oxide) or in the fabrication process itself where the mask used to create
the transistors is not aligned properly. The result is that correct isolation is not
provided and a short circuit can occur thereby causing malfunction.

Latch Up which is a special condition that can happen in CMOS (complementary
metal oxide semiconductor) circuits where transient currents force CMOS gates
to be stuck at a value, thereby preventing it from changing as required. It can be
a temporary condition that terminates upon removal of the inputs or a condition
that requires a full system reset or even replacement of damaged parts.

Single Event Upsets (SEU), which are errors induced by radiation effects when
charged particles, typically from cosmic rays, lose energy by ionizing the
silicon material through which they pass, leaving behind a wake of electron-
hole pairs. Two types of radiation have been identified as the primary cause
of SEUs in semiconductor devices: alpha particle radiation (which has now
been largely avoided by higher-purity package materials) and atmospheric
neutrons, originating from the effects of cosmic rays hitting the Earth’s atmo-
sphere, which remain the primary cause for SEU effects today. Typically,
they appear as transient logic pulses or manifest themselves as bit changes
in memory or flip-flop storage. They tend to be transient soft errors and are
not destructive to the technology.

1.3.1 Static Faults

The static faults, which broadly speaking tend to be physical defects and electrical
faults, are dealt with at the design stage and can be tested at manufacture and in some

10 R. Woods, G. Lightbody

cases during normal operation by applying the built-in self test (BIST) sequence
prior to operation. A physical fault will manifest as a logical fault that can be either
static or dynamic. The dynamic faults appear at certain times and are usually caused
by timing faults. This should be catered for within the design cycle and should be
avoided. Static faults are logical faults and possibly due to one of the effects listed
above and thus must be checked. The designer can incorporate the impact of these
faults using a number of models.

One of the most common mechanisms that is also used commercially is the stuck-
at model, which assumes that the logic gates will be stuck-at-0 or stuck-at-1 as a
result of the physical defects and electrical faults. Therefore, the aim is to generate
a test sequence that will reveal the error by producing an incorrect sequence at the
output of the chip or circuit due to the presence of the fault. From a design perspec-
tive, we do this by stipulating the stuck-at condition and then determining which
input sequences will produce the errored output sequence. We test every stuck-at
condition in the circuit and generate a test file, which will then detect a percentage
of the errors. This is known as fault coverage.

The relationship between faults and yield is given in Fig. 1.5. If the production
yield of fault-free circuits on a wafer is Y , then Y = 0 means that all circuits are
faulty and Y = 1 means that all circuits are fault free. If FC is the fault coverage,
then FC = 0 means that tests do not detect any faults and FC = 1 means that tests
detect all possible faults. Thus, the defect level (DL) is given by the graph outline. It
is easy to determine that a higher fault coverage is desirable with typical production
lines (Y = 0.7 − −0.8).

The major difficulty with generating this test file to provide the fault coverage
is that the designer has only a very limited access to the circuit in terms of inputs
and outputs. In a chip, this will only be provided through the input and output pins
and with multi-layered boards, and it is now becoming increasingly difficult to even
monitor individual chips without adding test connections; this is costly in terms of
area and increases the risk of design failure due to their very existence.

Two terms that are an important measure in fault detection and design for test are
observability, which is used to indicate how well the state of a signal on an internal
node may be detected on the output pins, and controllability, which describes the

Fig. 1.5 Relationship
between defect level and fault
coverage [Hurst, 1988]

Defect level (%)
1

0.8

0.6

0.4

0.2

0

0 20 40 60 80 100

Y = 0.01
Y = 0.1

Y = 0.75

Y = 0.9

Y = 0.99

Fault coverage (%)

Y = 0.5

1 Robustness in Digital Hardware 11

Fig. 1.6 Variation in
observability and
controllability in silicon chips

case with which a particular internal signal value can be set by applying signals to
the input pins. Figure 1.6 shows how these values vary in a silicon chip.

The main problem is that as complexity grows, the number of logic levels
between input and output grows, meaning that large proportions of the transistors
can be neither tested nor observed. The designer’s job is thus to add additional cir-
cuitry that makes the internal nodes more controllable and observable. This can be
done by using a scan path to the circuit allowing the nodes to be linked into one big
scan path in addition to their normal operation. This is now a standard within the
IEEE, called the “IEEE boundary-scan standard 1149”, and can be used at board
level as well as chip level.

1.3.2 Dynamic Faults

There is a well-established mechanism for robustness in IC design with regard to
static faults, as the chip manufacturer will normally insist that a chip design will
be delivered in terms of the mask sets, etc., along with the necessary test data to
provide 95% minimum fault coverage, i.e., 0.95 for Fig. 1.5. This value is used on
the basis that their statistics tell them that 95% fault coverage is usually good enough
to ensure that no chips sent from the production line will contain faults. However,
dynamic faults are more problematic and represent a much greater problem with
regard to robustness.

With regard to CMOS latch up, literature tends to suggest that a lot of problems
can be avoided by using specific technology fixes and by giving careful attention to
CMOS outputs, their loading, and the stresses applied to them in order to avoid the
high transient currents that cause the problem [Naughton and Tyler, 2005, Boselli
and Duvvury, 2005]. However, the SEU issue is becoming much more critical as the
effect is greater as transistors are effectively becoming smaller compared with the
particles as the technology scales. It is of particular concern for airborne or space
industries because of the increased risk in higher atmospheres. A lot of vendors

12 R. Woods, G. Lightbody

are now including additional test circuits to test for these errors as the circuit is
operating [Hollander et al., 1995, Hentschke et al., 2002, Makihara et al., 2003,
Samudrala et al., 2004, Golshan and Bozorgzadeh, 2007].

1.4 Robustness Approaches

Robustness was defined in this book and elsewhere and summarized as possessing
some or all of the following features: redundancy, compensation, diversity, mechan-
ical robustness, granularity, restoration (cognitive), cohesion and coupling, recov-
ery, self-healing, self-repair (physical). From the authors’ perspective, the following
aspects feature strongly in the design and realization of digital circuitry namely
redundancy, diversity, granularity, recovery, as well as self-healing and self-repair
(physical).

1.4.1 Redundancy

Typically, redundancy is applied for two reasons in digital hardware implementa-
tion, namely for improved design performance and for test purposes.

1.4.1.1 Redundancy for Design Performance

Redundancy can be employed at many levels in hardware. At the system level,
redundancy is directly related to cost and will be avoided unless there is a strong
application need for it. For example, the equipment may be either remotely or
inconveniently located making repair a costly exercise as the equipment is difficult
to access. In this case, several modules may be co-located along with the necessary
test circuitry to ensure correct detection of the errored state. The circuitry can be
either switched on live, i.e., hot insertion, or turned on when the equipment is in
reset mode, i.e., temporarily turned-off.

Given that redundancy capability for design can be exploited at the system
level as suggested above, there is little requirement to deliberately introduce redun-
dancy in the components described in Section 1.2.1 as this will involve additional
silicon area and therefore increase component cost. There are a few exceptions
to this. For example, the circuit in Fig. 1.7(a) implements the digital function
f = A.B.D + B.C.D.

However, when the input B changes, as shown, both AND gates can temporarily
give a “0” thus giving an output of “0”, which is not logically correct. This can be
avoided by adding a redundant gate, shown in shading in Fig. 1.7(b), which always
ensures a logical 1 to the OR when B changes ensuring a constant “1” and avoiding
any glitching problems that may result. These types of redundancy techniques are
employed for specific design quality reasons but should be avoided because the tech-
niques used to perform static testing of the circuit in Fig. 1.7(a) are now complicated

1 Robustness in Digital Hardware 13

Fig. 1.7 Redundancy in logic design

by the addition of the gate in Fig. 1.7(b). In some cases, this level of application can
make the circuits untestable.

FPGAs, on the other hand, offer an alternative to employing redundancy due to
their internal structure. As highlighted earlier, the FPGA structure typically com-
prises a series of logic cells that can be interconnected in different ways by pro-
gramming the interconnection. FPGAs are sold on the basis of discrete chip sizes,
which simply scales the number of available resources. With fixed resources within a
chosen device, some level of unused logic may exist, which the designer can exploit
to provide redundancy.

1.4.1.2 Test Circuitry

As was highlighted in Section 1.3, testing is becoming an increasingly difficult task
as transistor counts increase. For this reason, test is now part of the design cycle,
and there is an increased “emphasis” on design for test, i.e., introducing redundant
circuitry with the aim of making the circuit more testable. The key diagram in this
discussion is Fig. 1.6, which shows that our ability to control and observe inter-
nal circuitry is decreasing as the ratio of input and output pins to transistor count
decreases, making it ever more difficult to obtain adequate fault coverage as design
complexity grows. A truer description of this graph would show a large proportion
of the chip that we can neither control nor observe from a testing point of view. It
is vital that we continue to demonstrate that electronics is a robust technology, thus
there is a very strong need to increase these levels and achieve the necessary fault
tolerance.

Design for testability is typically based on three concepts, employing ad-hoc
techniques, scan path, and built-in self test (BIST). Ad hoc as the Latin suggests is
employing design methods that are suitable for the design under consideration. This
includes obvious things like the introduction of test points that allow the designer
to get data into the heart of the circuit and also to observe output from the same or
similar point; isolation of key circuits, e.g., the clock allowing the designer to enter
a test clock as opposed to the normal clock; adding additional circuitry to allow

14 R. Woods, G. Lightbody

bypassing of parts of the circuits, which is similar to the use of test points; strategies
for allowing initialization of circuits in a different mode. All these techniques are
reasonably obvious, but the introduction of test points and bypass circuitry infers
additional circuitry. Typically, test circuitry will constitute an extra 10% silicon area,
which is a unrequited cost as this area is only ever used for test purposes.

Scan path and BIST are two specific design techniques for testing. Scan path
involves using a more complex register that allows all the registers in a circuit to
be connected together in a daisy chain. This is a bit like providing tunnels into the
circuitry allowing data to be fed right into and read from the heart of the circuit at
a desired point. Effectively, this is a system means of providing improved test point
access.

BIST, on the other hand, is a more crude method of testing. All the previous
techniques involve creating the hardware and the necessary data streams to provide
the testing of the circuitry. BIST employs a random number generator to produce
a huge amount of data that is then fed into the circuit and a signature analysis
circuit to capture the output data produced by the circuit under test, producing a
final signature, namely a binary word. If any test problem has occurred, then the
signature produced will be different, or strictly speaking, will have a very small
statistical chance of being the same! All of the above methods involve introducing
redundant circuitry with the aim of making the circuitry more testable and thus more
robust.

Redundancy also features strongly in methods to protect against SEUs. Here,
Triple Mode Redundancy (TMR) can be applied to allow a majority vote, that is,
the logic is repeated three times and the outputs compared with a choice made for
the two that are the same, providing that there is not a failure in the voting logic itself
[Andraka and Brady, 2002, Samudrala et al., 2004]. Naturally, such extreme mea-
sures would be more applicable in safety critical scenarios and applications most
susceptible to SEU effects.

1.4.2 Diversity

The notion of diversity can be best described in Makimoto’s wave in Fig. 1.4, which
shows how the various technology evolutions have swung between standardization
and customization. As the name suggests, customization implies building hardware
that has a very restricted application focus, whereas the standard components such
as FPGAs and microprocessors can be applied to a diverse range of applications.
The provision of suitable programming environments for both these technologies
has meant a wide and varied range of applications. For example, most recently there
has been a huge interest in employing FPGAs for scientific computing applications
as acceleration to arrays of processors and companies such as Silicon Graphics and
Cray who built their reputation of building processor chips are now offering pro-
cessor/FPGA platforms. The attraction of being able to construct highly parallel
architectures for some scientific applications gives huge potential.

1 Robustness in Digital Hardware 15

The microprocessor itself has had a wide and varied application environment.
For example, processors are now starting to be used quite widely in the automobile
industry to provide the range of applications and comforts required by many drivers
today. A whole genera of computer music has now been created where the composer
is now using computers, typically Apple Macs, as instruments. This is only to name
but a few applications. It should not be underestimated that this diversification is
based on the inherent reliability of the technology, which relies heavily on the design
principles described in the previous section.

1.4.3 Granularity

When we talk about granularity of a design, it can mean any one of a number of
things. If the application scales, can the design scale with it? There are a number of
levels of granularity. At the highest level, this could be a matter of using more PCBs
to meet the system demands or adding additional chips. As we go down the level
of granularity, it would mean enabling greater performance output from the chip
designs. Here, performance enhancement could be met by retargeting the design
to a more powerful technology, maybe the current FPGA devices or latest ASIC
foundry technology. But true design scalability is a multidimensional challenge that
has fueled a research area devoted to parameterizable design and design for reuse
strategies. The following section will detail some of the key issues in need of con-
sideration when undertaking a fully parameterizable design. The benefits of rising
to these challenges is also discussed with emphasis given on how design practices
such as these aim to add robustness to chip development.

1.4.3.1 Design Reuse—IP Cores

The increase in transistor count, leading to the incorporation of an entire system on a
single device, has resulted in an exceptionally complex design route with component
heterogeneity escalating problematic issues regarding chip design and in particular
test and verification. As highlighted earlier, the design productivity gap of Fig. 1.2
means that we must think of dramatically different ways of constructing systems.
Specifically, this means treating the design process in a more abstract fashion by
representing designs as comprising components that, if possible, can be reused from
existing designs.

The concept of creating a system in this modular fashion has effectively created
an industry in third-party products referred to as silicon Intellectual Property (IP)
cores, also known as virtual circuits (VCs). These range from actual silicon layout
known as hard cores through to soft cores, which can be in the form of efficient code
targeted to programmable DSP or RISC processors, or dedicated cores captured in
a Hardware Description Language (HDL). Effectively, design for reuse methodolo-
gies provide flexibility allowing designs targeted to one project to be applied to
another one with different specifications.

16 R. Woods, G. Lightbody

…
…

Scalability

Wordlength

…

A

B

C

D

Modules / architecture

A

B

C

D

Pipelining

Core

FPGA

ASIC

Targeting different processes

Truncation Rounding

Arithmetic:

Radix
Two’s complement
Booth encoding
Carry-save etc.

Fig. 1.8 IP parameters

The key aspect in developing IP cores is the concept of identifying the parameters
needed for the general usage of the cores, as demonstrated in Fig. 1.8. Parameter-
ization leads to a library of cores that can be targeted to a range of specifications,
without the need to alter the internal workings of the code. The system should effec-
tively allow a number of parameters to be fed into the top level of the code and then
passed down through the different levels of abstraction of the code to the lowest
levels [Shannon, 2002, Lightbody et al., 2003]. Obviously, considerable effort is
needed at the architecture level to develop this parameterizable circuit architecture.
This initial expense in terms of time and effort undoubtedly hinders the expanded
use of design for reuse principles but could result in savings in the long run.

In Fig. 1.8, design aspects such as arithmetic effects, i.e., type of arithmetic used
namely fixed or floating point representations, need to be defined as a parameter.
Pipelining, which is a design technique to speed up performance, can be applied
but it has timing implications. The cores must also be able to be applied across a
range of platforms, which, as the earlier description showed, can vary quite dra-
matically in terms of their internal architecture. Identifying the key parameters
and then designing the IP core for them requires a detailed understanding of the
range of implementations in which the core may be used. The aim is to balance
flexibility with the additional workload and resulting benefits. This is important as
over-parameterization of a design not only affects the development time but also
affects the verification and testing so to ensure that all permutations of the core have
been considered [Gajski et al., 2000].

1 Robustness in Digital Hardware 17

1.4.4 Recovery, Self-healing, Self-repair

Generally speaking, electronic systems are designed for usually a short life span
when compared with mechanical products because of trends in product aging,
i.e., yesterday’s design. In addition, newer technology is emerging at such a pace
that the performance gain of the new technology is such that the need to reconfigure
or self-heal older technology is not worth the cost of adding the extra functionality
to achieve this. However, this assumes that in the construction of such systems, the
specification is fully defined and does not need to be altered at a later stage of the
design flow. Given the nature of recent systems, the design process is now viewed
as one that is constantly evolving.

Thus, the programmable nature of certainly microprocessor and, more recently,
FPGAs present a highly attractive, low-risk proposition for system designers. A het-
erogeneous platform comprising processors and FPGAs will have a worse per-
formance profile in terms of power-area-speed performance, but this drop-off in
performance can be put against the added advantage of reconfigurability allowing
change during the design cycle and, indeed, afterward. From an engineering per-
spective, this represents a good engineering safety net, but as the title of this section
indicates, users have taken this to a further extreme effectively, with circuits that will
self-repair or self-heal [Gokhale et al., 2006, Andraka and Brady, 2002, Samudrala
et al., 2004].

1.4.4.1 FPGA Reconfiguration

The opportunity offered by the reconfigurability property of FPGAs is very appeal-
ing. It is first worthwhile explaining the operation of FPGAs to see what level of
self-healing the device offers. Most FPGAs are based on static random access mem-
ory (SRAM). The basic principle is that the FPGA is programmed exactly like a
memory, but rather than storing the information as in a conventional memory, the
FPGA uses the data to program circuitry that performs the required function. Thus,
reprogramming the memory is effectively changing the function. The programming
information is created by the design tools that correctly mimic the function that the
user programmed into the tools.

One of the main issues with processors is that they are very inefficient. Typ-
ically, [Hennessey and Patterson, 1996] in their famous text indicated that most
computationally complex applications spend 90% of their execution time in only
10% of their code, and the instructions in this 10% of the code will vary from
application to application. The attraction of being able to dramatically increase
this level of performance by programming the architecture to match the perfor-
mance requirements holds a great attraction from a power-area-speed perspective.
The concept was captured by the notion of FPGA Custom Computing Machines
(FCCMs) for which a dedicated conference has been run every year in Napa,
California.

18 R. Woods, G. Lightbody

1.4.4.2 The Self-repair Rationale

FCCMs typically comprise FPGAs connected to a microprocessor that stores the
reconfiguration data necessary to convert the FPGA into the required functional
engine. The system can either be pre-designed to cope with a number of modes of
operation, thus there is either a required sequence of reconfiguration of the device
or the reconfiguration is triggered by the hardware itself to load the best config-
uration data to match the needs of the device. The reconfiguration can either be
performed by completely reprogramming the device or partially reconfiguring it
[Sezer et al., 1998]. The problem with full reconfiguration is that the device can be
unoperational for up to several milliseconds. In a real application where the data
needs to be processed in the region of millions of cycles per second, this means the
temporary storage of a considerable amount of data. In addition, the rate at which
reconfiguration takes place can then be counter-productive as the graph in Fig. 1.9
indicates. This graph was produced for a key image processing function in image
compression and shows that even though the FPGA implementation is much faster
than the processor implementation, the reconfiguration time required means that it
will only be efficient after a certain time.

Researchers have gotten around this limitation in a number of ways, firstly by
performing partial reconfiguration, which involves changing part of the program-
ming information of the FPGA while it is still operating and actually designing
the circuits to allow this to happen. This involves splitting the application into a
number of sequential stages. Each of these stages could then be implemented on
the FPGA in turn, with the device being reconfigured between stages to support the
next operation. Alternatively or in addition to partial reconfiguration, the amount of
reconfiguration information could be compressed therefore speeding up reconfigu-
ration [Compton and Hauck, 2002].

The real panacea would be to develop a system where the designer does not have
to worry about creating the programming and that the device would reconfigure
itself. These systems are known as evolvable systems [Stoica et al., 2001] and are
an active area of research. Researchers have been building truly evolvable systems
for a range of applications by exploiting the reconfigurability property of FPGAs.
Whereas this is attractive from an implementation perspective, it is laden with trou-

Fig. 1.9 Impact of
reconfiguration time for a
“8X8 2D discrete cosine
transform (DCT)”
implementation

1 Robustness in Digital Hardware 19

ble for an engineer. For example, how can you be sure that the system has correctly
reconfigured? This questions the concept of whether there is an ideal specification
system that a product will work to or whether the user is prepared to accept a system
that will vary in quality of operation. We think that this has to be sold to the public,
but some of the discussion in the summary about where technology is evolving to
may influence this argument.

1.5 Summary

The chapter has considered the robustness of hardware systems covering a range of
topics including redundancy, diversity, granularity, recovery, as well as self-healing
and self-repair (physical). The discussion has been given from an engineering per-
spective, arguably with a word of caution about the opportunities of reconfigurable
FPGAs to employ self-healing or self-repair properties. The reality is that up to
now, this additional level of functionality has been a luxury, and it should also
be realized that the designer is responsible to ensure the correct operation of any
circuitry, even circuitry added with the good intention to make it robust! The long-
term future presents some interesting problems though. Reliability has been key to
Moore’s Law, but future indications suggest that upcoming technologies will start to
be very unreliable due to the variation in performance of the transistors as a result of
shrinking dimensions [Constantinescu, 2003]. We will then just have to work with
the reality of dramatic transistor speed variation or transistors that may not work at
all. Self-healing and self-repair may then be required steps in the design process.
From an engineering perspective, this is a horrendous nightmare that might be best
avoided, thus signaling an end to Moore’s Law?

References

Allan, A., Edenfeld, D., Joyner, W.H., J., Kahng, A., Rodgers, M., and Zorian, Y. (2002). 2001
Technology Roadmap for Semiconductors. Computer, 35(1):42–53.

Andraka, R. and Brady, J. (2002). Low complexity method for detecting configuration upsets in
SRAM-based FPGAs. In Proceedings 5th International Conference on Military and Aerospace
Programmable Logic Devices, volume B4, Maryland, USA.

Boselli, G. and Duvvury, C. (2005). Trends and challenges to ESD and Latch-up designs for
nanometer CMOS technologies. Microelectronics and Reliability, 45(9–11):1406–1414.

Compton, K. and Hauck, S. (2002). Reconfigurable computing: a survey of systems and software.
ACM Computer Survey, 34(2):171–210.

Constantinescu, C. (2003). Trends and challenges in VLSI circuit reliability. IEEE Micro,
23(4):14–19.

Gajski, D., Wu, A.-H., Chaiyakul, V., Mori, S., Nukiyama, T., and Bricaud, P. (2000). Essential
issues for IP reuse. In Proceedings of the ASP-DAC 2000 Design Automation Conference, Asia
and South Pacific, pages 37–42, January 25–28, Yokohama, Japan. IEEE Standards Office.

Glossner, J., Moreno, J., Moudgill, M., Derby, J., Hokenek, E., Meltzer, D., Shvadron, U., and
Ware, M. (2000). Trends in compilable DSP architecture. In Workshop on Signal Processing
Systems (SIPS’2000), pages 181–1999, October 11–13, Lafayette, LA, USA. IEEE Press.

20 R. Woods, G. Lightbody

Gokhale, M., Graham, P., Wirthlin, M., and Johnson, D. (2006). Dynamic reconfiguration for man-
agement of radiation-induced faults in FPGAs. International Journal of Embedded Systems,
2(1):28–38.

Golshan, S. and Bozorgzadeh, E. (2007). Single-event-upset (SEU) awareness in FPGA routing. In
Proceedings 44th Confenrence on Design Automation, pages 330–333. ACM Press, New York.

Hennessey, J. and Patterson, D. (1996). Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers Inc., New York.

Hentschke, R., Marques, F., Lima, F., Carro, L., Susin, A., and Reis, R. (2002). Analyzing
area and performance penalty of protecting different digital modules with Hamming code
and triple modular redundancy. In Proceedings 15th Symposium on Integrated Circuits and
Systems Design, pages 95–100, September 9–14, Porto Alegre, RS, Brazil. IEEE Computer
Society.

Hollander, H., Carlson, B., and Bennett, T. (1995). Synthesis of SEU-tolerant ASICs using con-
current error correction. In Proceedings 5th Great Lakes Symposium on VLSI, pages 90–93,
March 16–18, Washington, USA. IEEE Computer Society.

Hurst, S. (1988). VLSI Testing: digital and mixed analogue/digital techniques. IEE, Savoy Place,
London.

IRTS (2003). International roadmap for semiconductors. http://www.itrs.net/.
Koufaty, D. and Marr, D. (2003). Hyperthreading technology in the netburst microarchitecture.

IEEE Micro, 23(2):56–65.
Lacoe, R., Osborn, J., Koga, R., Brown, S., and Mayer, D. (2000). Application of hardness-by-

design methodology to radiation-tolerant ASIC technologies. IEEE Transactions on Nuclear
Science, 47(6):2334–2341.

LaPedus, M. (2007). Open-silicon to drive down mask costs. EE Times Online. http://www.
eetimes.com/showArticle.jhtml?articleID$=$198900081.

Lightbody, G., Woods, R., and Walke, R. (2003). Design of a parameterizable silicon intellectual
property core for QR-based RLS filtering. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 11(4):659–678.

Makihara, A., Sakaide, Y., Tsuchiya, Y., Arimitsu, T., Asai, H., Iide, Y., Shindou, H.,
Kuboyama, S., and Matsuda, S. (2003). Single-event effects in 0.18/spl mu/m CMOS com-
mercial processes. IEEE Transactions on Nuclear Science, 50(6):2135–2138.

Naughton, J. and Tyler, M. (2005). Best methods to minimize latch-up sensitivities in semicon-
ductor circuits. In IEEE Workshop on Microelectronics and Electron Devices, pages 95–98,
April 15, Boise, Idaho, US. IEEE Standards Office.

Phillips, I. (2007). When less means more; and more, the-same? In IEEE International Sympo-
sium on Industrial Embedded Systems, July 4–6, Lisbon, Portugal. IEEE Industrial Electronics
Society.

Robertson, C. (2004). Silicon modeling of nanometer systems-on-chip. In Proceedings 4th IEEE
International Workshop on System-on-Chip for Real-Time Applications, pages 19–22, July
19–21, Banff, Canada. IEEE Computer Society.

Rowen, C. (2002). Reducing SoC simulation and development time. Computer, 35(12):29–34.
Ruano, O., Reyes, P., Maestro, J., Sterpone, L., and Reviriego, P. (2007). An experimental analysis

of SEU sensitiveness on system knowledge-based hardening techniques. In IEEE Conference
on Design and Diagnostics of Electronic Circuits and Systems (DDECS’07), pages 1–6, April
11–13, Krakow, Poland. IEEE Press.

Rui, S., Ying, H., Dong-Hui, W., Tie-Jun, Z., Qian, Y., and Chao-Huan, H. (2003). A 32-bit
hybrid microprocessor design for multimedia applications. In Proceedings 5th International
Conference on ASIC, page (2.3), Beijing, China, October 21–24. IEEE Press.

Samudrala, P., Ramos, J., and Katkoori, S. (2004). Selective triple Modular redundancy (STMR)
based single-event upset (SEU) tolerant synthesis for FPGAs. IEEE Transactions on Nuclear
Science, 51(5, Part 4):2957–69.

Sezer, S., Woods, R., Heron, J., and Marshall, A. (1998). Fast partial reconfiguration for FCCMs. In
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM’98),
page 318, Washington, DC. IEEE Computer Society.

1 Robustness in Digital Hardware 21

Shannon, L. (2002). Impact of Intellectual Property Cores on Field Programmable Gate Array
Designs. National Library of Canada.

Stoica, A., Zebulum, R., Keymeulen, D., Tawel, R., Daud, T., and Thakoor, A. (2001). Recon-
figurable VLSI architectures for evolvable hardware: from experimental field programmable
transistor arrays to evolution-orientedchips. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 9(1):227–232.

Tan, E. J. and Heinzelman, W. B. (2003). DSP architectures: past, present and futures. SIGARCH
Computer Architecture News, 31(3):6–19.

Chapter 2
Multiagent-Based Fault Tolerance Management
for Robustness

Rosa Laura Zavala Gutierrez and Michael Huhns

Abstract Despite the use of software engineering best practices and tools, it would
be very risky to assume that the software that is developed today is fault-free.
Moreover, we have to consider the fact that the software could face unexpected situ-
ations not considered during its design. Robustness is a highly desirable and some-
times indispensable software requirement, especially for critical systems, where the
consequences of a system failure can be catastrophic. This chapter outlines existing
fault tolerance techniques, followed by a discussion of the potential that multia-
gent systems have to enhance the design of robust, fault-tolerant systems, thereby
improving large-scale, critical, and complex system reliability.

2.1 Introduction

Making software robust—i.e., enabling it to be performed without failure under
a wide range of conditions—has always been a desirable outcome, particularly in
critical applications (e.g., control of aircraft, chemical plants, nuclear plants, finan-
cial transactions, or medical assistance) where the consequences of software failing
go beyond simply annoying the users, and can cause huge financial losses, serious
injuries, or the loss of life. The importance of software as an important contributor
to catastrophic events has been well documented (e.g., [Leveson, 1995]).

There is a large compendium of work in software engineering addressing the
problem of producing reliable and robust software systems. Methods, processes,
technologies, and tools have been proposed for good software design and devel-
opment. These approaches have been very beneficial in improving our ability to
produce better software. Nevertheless, despite significant contributions, the ever
increasing complexity and pervasiveness of software systems creates the need
for continuous improvement. Additionally, the more dependable software systems

R.L.Z. Gutierrez
Department of Computer Science and Engineering, University of South Carolina, 301 Main Street,
Columbia, SC 29208, USA
email: zavalagu@engr.sc.edu

A. Schuster (ed.), Robust Intelligent Systems, DOI: 10.1007/978-1-84800-261-6 2,
C© Springer-Verlag London Limited 2008 23

