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Preface to the Second Edition

Since the first edition of this book was published several new developments have been

made in the field of the moiré theory. The most important of these concern new results

that have recently been obtained on moiré effects between correlated aperiodic (or random)

structures, a subject that was completely absent in the first edition, and which appears now

for the first time in a second, separate volume.

This also explains the change in the title of the present volume, which now includes the

subtitle “Volume I: Periodic Layers”. This subtitle has been added to clearly distinguish

the present volume from its new companion, which is subtitled “Volume II: Aperiodic

Layers”. It should be noted, however, that the new subtitle of the present volume may be

somewhat misleading, since this book also treats (in Chapters 10 and 11) moiré effects

between repetitive layers, which are, in fact, geometric transformations of periodic layers,

that are generally no longer periodic in themselves. The most suitable subtitle for the

present volume would therefore have been “Periodic or Repetitive Layers”, but in the end

we have decided on the shorter version.

Although this revised edition maintains the general structure of the original book, it also

includes some important improvements. It provides additional topics that were not

explicitly treated in the first edition, such as the hybrid (1,-1)-moiré effects with 2D

intensity profiles (now in Sec. C.14 of Appendix C), the moiré effects between hexagonal

screens (now in Sec. C.15 of Appendix C) or the extension of the indicial equations

method to the case of 2D screens (in Sec. 11.2). The present edition of the book also

includes several new figures and some new or revised problems. New references have

been added throughout the book, and all the Internet references have been verified and

updated. And finally, cross-references have been added wherever appropriate to the second

volume, and in particular to those of its appendices which may be of interest to readers of

the present book. Note, however, that the two volumes are basically independent of each

other. Each volume thus contains its own Glossary, List of notations and symbols,

References and Index.

In preparing this second edition, we have also taken the opportunity to correct errors and

typos that crept into the original edition of the book. However, some errors may have been
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overlooked, and some may have been inadvertently added in this new edition. Such errors,

when detected, will be listed along with their corrections in the Internet site of the book,

and we therefore encourage readers to inform us of any errors they may find.

The material in this book is based on the author’s personal research at the Swiss Federal

Institute of Technology of Lausanne (EPFL: Ecole Polytechnique Fédérale de Lausanne),

and on his Ph.D. thesis (thesis No. 1341: “Analysis of Moiré Patterns in Multi-Layer

Superpositions”) which won the best EPFL thesis award in 1995.

This work would not have been possible without the support and the excellent research

environment provided by the EPFL. In particular, the author wishes to express his

gratitude to Prof. Roger D. Hersch, the head of the Peripheral Systems Laboratory of the

EPFL, for his encouragement throughout the different stages of this project. Many thanks

are also due to the publishers for their helpfulness and availability throughout the

publishing cycle.



From the Preface to the First Edition

Who has not noticed, on one occasion or another, those intriguing geometric patterns

which appear at the intersection of repetitive structures such as two far picket fences on a

hill, the railings on both sides of a bridge, superposed layers of fabric, or folds of a nylon

curtain? This fascinating phenomenon, known as the moiré effect, has found useful

applications in several fields of science and technology, such as metrology, strain analysis

or even document authentication and anti-counterfeiting. However, in other situations

moiré patterns may have an unwanted, adverse effect. This is the case in the printing world,

and, in particular, in the field of colour reproduction: moiré patterns which may be caused

by the dot-screens used for colour printing may severely deteriorate the image quality and

turn into a real printer’s nightmare.

The starting point of the work on which this book is based was, indeed, in the research

of moiré phenomena in the context of the colour printing process. The initial aim of this

research was to understand the nature and the causes of the superposition moiré patterns

between regular screens in order to find how to avoid, or at least minimize, their adverse

effect on colour printing. This interesting research led us, after all, to a much more far-

reaching mathematical understanding of the moiré phenomenon, whose interest stands in

its own right, independently of any particular application. Based on these results, the

present book offers a profound insight into the moiré phenomenon and a solid theoretical

basis for its full understanding. In addition to the question of moiré minimization between

regular screens, the book covers many interesting and important subjects such as the

navigation in the moiré parameter space, the intensity profile forms of the moiré, its

singular states, its periodic or almost-periodic properties, the phase of the superposed

layers and of each of the eventual moirés, the relations between macro- and micro-

structures in the superposition, polychromatic moirés between colour layers, etc. All this is

done in the most general way for any number of superposed layers having any desired

forms (line-gratings, dot-screens with any dot shape, etc.). The main aim of this book is,

therefore, to present all this material in the form of a single, unified and coherent text,

starting from the basics of the theory, but also going in depth into recent research results

and showing the new insight they offer in the understanding of the moiré phenomenon.
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Fourier-based tools are but a natural choice when dealing with periodic phenomena; and,

indeed, our approach is largely based on the Fourier theory. We consider each of the

superposed layers as a function (reflectance or transmittance function) having values in

the range between 0 and 1. We study the original layers, their superpositions, and their

moiré effects by analyzing their properties both in the image domain and in the spectral,

frequency domain using the Fourier theory. Further results are obtained by investigating

the spectrum using concepts from geometry of numbers and linear algebra, and by

interpreting the corresponding image-domain properties by means of the theories of

periodic and almost-periodic functions. However, no prior knowledge of these fields of

mathematics is assumed, and the required background is fully introduced in the text (in

Chapter 5 and in Appendices A and B, respectively). The only prerequisite mathematical

background is limited to undergraduate mathematics and an elementary familiarity with the

Fourier theory (Fourier series, Fourier transforms, convolutions, Dirac impulses, etc.).

This book presents a comprehensive approach that provides a full explanation of the

various phenomena which occur in the superposition, both in the image and in the spectral

domains. This includes not only a quantitative and qualitative analysis of the moiré effect,

but also the synthesis of moiré effects having any desired geometric forms and intensity

profiles. In the first chapters we present the basic theory which covers the most

fundamental case, namely: the superposition of monochrome, periodic layers. In later

chapters of the book we extend the theory to the even more fascinating cases of

polychromatic moirés and moirés between repetitive, non-periodic layers. Throughout the

whole text we favour a pictorial, intuitive approach supported by mathematics, and the

discussion is accompanied by a large number of figures and illustrative examples, some of

which are visually striking and even spectacular.

This book is intended for students, scientists, and engineers wishing to widen their

knowledge of the moiré effect; on the other hand it also offers a beautiful demonstration

of the Fourier theory and its relationship with other fields of mathematics and science.

Teachers and students of imaging science will find moiré phenomena to be an excellent

didactic tool for illustrating the Fourier theory and its practical applications in one or more

dimensions (Fourier transforms, Fourier series, convolutions, etc.). People interested in

the various moiré applications and moiré-based technologies will find in this book a

theoretical explanation of the moiré phenomenon and its properties. Readers interested in

mathematics will find in the book a novel approach combining Fourier theory and

geometry of numbers; physicists and crystallographers may be interested in the intricate

relationship between the macro- and microstructures in the superposition and their relation

to the theories of periodic and almost-periodic functions; and colour scientists and

students will find in the polychromatic moirés a vivid demonstration of the additive and

subtractive principles of colour theory. Finally, the occasional reader will enjoy the beauty

of the effects demonstrated throughout this book, and — it is our hope — may be tempted

to learn more about their nature and their properties.

From the Preface to the First Edition



Chapter 1

Introduction

1.1 The moiré effect

The moiré effect is a well known phenomenon which occurs when repetitive structures

(such as screens, grids or gratings) are superposed or viewed against each other. It

consists of a new pattern of alternating dark and bright areas which is clearly observed at

the superposition, although it does not appear in any of the original structures.1

The moiré effect occurs due to an interaction between the overlaid structures. It results

from the geometric distribution of dark and bright areas in the superposition: areas where

dark elements of the original structures fall on top of each other appear brighter than areas

in which dark elements fall between each other and fill the spaces better (see Fig. 1.1).

Because of its extreme sensitivity to the slightest displacements, variations, or distortions

in the overlaid structures the moiré phenomenon has found a vast number of applications

in many different fields. For example, in strain analysis moirés are used for the detection

of slight deflections or object deformations, and in metrology moirés are used in the

measurement of very small angles, displacements or movements [Patorski93; Kafri89;

Shepherd79; Takasaki70; Durelli70; Theocaris69]. Among the numerous applications of

the moiré one can mention fields as far apart as optical alignment [King72], crystallo-

graphy [Oster63 p. 58], and document anti-counterfeiting [Renesse05 pp. 146–161].

Moiré effects have been used also in art [Oster65; Witschi86; Durelli70 pp. xiii–xxxviii],

and even just for fun, enjoying their various intriguing shapes.

However, in other situations moiré patterns prove to be an undesired nuisance, and many

efforts may be required to avoid or to eliminate them. This is the case, for example, in the

printing world, and in particular in the field of colour image reproduction, where moiré

patterns may appear between the dot-screens used for colour printing and severely corrupt

the resulting image.

Clearly, mastering the moiré theory is essential for the proper use and control of moiré-

based techniques, as well as for the elimination of unwanted moirés. It is the aim of this

book, therefore, to provide the reader with a full theoretical understanding of the moiré

phenomenon.

1 The term moiré comes from the French, where it originally referred to watered silk, a glossy cloth with
wavy, alternating patterns which change form as the wearer moves, and which is obtained by a special
technique of pressing two watered layers of cloth together. Note that the term moiré does not refer to a
presumed French physicist who studied moiré patterns, as has sometimes been stated (either mistakenly
or humorously; see, for example, [Coudray91] and [Weber73]). Therefore the term moiré should not be
written with a capital letter.
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Figure 1.1: (a) Alternating dark and bright areas which form the moiré effect in
the superposition of two identical, mutually rotated line-gratings.
(b) Enlarged view.

1.2 A brief historical background

The moiré phenomenon has been known for a long time; it was already used by the

Chinese in ancient times for creating an effect of dynamic patterns in silk cloth. However,

modern scientific research into the moiré phenomenon and its application started only in

the second half of the 19th century with pioneering works such as [Rayleigh74] and

[Righi87]. During almost a full century since then the theoretical analysis of moiré

phenomena has been based on purely geometric or algebraic approaches (see Sec. 2.1).

Based on these approaches many special purpose mathematical developments have been

devised for the needs of specific applications such as strain analysis, metrology, etc. More

recently several new approaches have been proposed for studying moiré phenomena,

based, respectively, on non-standard analysis [Harthong81], on elementary geometry and

potential theory [Firby84], or on algebraic geometry [Kendig80]. It was, however,

undoubtedly the Fourier-based approach that most significantly contributed to the

theoretic investigation of the moiré phenomenon.

The first significant steps in the introduction of the Fourier theory to the study of moiré

phenomena can be traced back to the 1960s and 1970s. This pioneering work can be

divided into two distinct stages: First came the use of Fourier series decompositions,

purely in the image domain, for representing the original repetitive structures, their

superpositions and their moirés (see, for example, [Lohmann67]). Only then were

introduced further elements of the Fourier theory, such as the dual role of the image and

the spectral domains [Bryngdahl74; Bryngdahl75], and the interpretation of the moiré in

spectral terms as an aliasing phenomenon [Legault73]. Since then the Fourier approach

has been used occasionally for the needs of some particular applications [Steinbach82;

Takeda82; Morimoto88], but no systematic effort has been made to explore the full

possibilities it offers. A possible reason for this fact may be that, as we show in this book,

←  bright
←  dark

←  bright
←  dark

(a) (b)
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any such systematic attempt inevitably leads one to some branches of mathematics that are

not very widespread, notably the theory of almost-periodic functions (see Appendix B)

and the theory of geometry of numbers (see Chapter 5). The present book offers, for the

first time, a full scale theoretical exploration of the moiré phenomenon which is based on

the Fourier approach, and it contains several new results, both qualitative and quantitative,

which have been obtained thanks to this fruitful approach.

A more detailed historical account on the research of the moiré phenomenon can be

found in [Patorski93]. This book also gives a survey of various applications of the moiré

effect, and an extensive bibliography on the subject. A collection of key scientific papers,

both new and old, on the moiré effect and its applications can be found in [Indebetouw92].

1.3 The scope of the present book

The theory of the moiré phenomenon is an interdisciplinary domain whose range of

applications is extremely vast. Its various theoretical and practical aspects concern the

fields of physics, optics, mechanics, mathematics, image reproduction, colour printing, the

human visual system, and numerous other fields. It would be in order, therefore, to clearly

delimit here the scope of our present work.

Our main aim in this book is to present the moiré theory in the form of a unified and

coherent text, starting from the basics of the theory, but also going in depth into recent

research results. Among other topics we will discuss questions such as the minimization

of moirés between regular screens, the moiré profile forms, its singular states, its periodic

or almost-periodic properties, the phase of the superposed layers and of each of their

eventual moirés, the relations between macro- and microstructures in the superposition,

polychromatic moirés, moirés between repetitive, non-periodic layers, etc. These questions

will be treated in the most general way, for any number of superposed layers having any

desired forms (line-gratings, dot-screens with any dot shape, etc.).

It is clear, however, that it was impossible to include all the interesting material related to

the moiré phenomenon in the present book. In the following list we enumerate some of the

main points which have remained beyond the scope of this volume.

• First of all, we limit ourselves here to the analysis of moiré effects in the superposition

of periodic or repetitive layers (like straight or curved line-gratings, dot-screens, etc.).

Moiré effects between aperiodic or random layers are treated in Vol. II of the present

work. Other types of moiré phenomena, such as moirés between almost-periodic or

fractal structures (like Penrose tilings [Steinhardt90] or Cantor structures [Zunino03]),

temporal moirés [Yule67 p. 330], etc., are not directly addressed in the present book,

although they can be considered as natural extensions of the theory presented here.

• We do not consider here effects such as light scattering, light diffraction through the

gratings, or any other physical questions concerning the nature of light (coherent/
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incoherent) and its influence on the moiré [Patorski93 Chapter 4]. In particular, we will

always assume that the line spacing in each grating is coarse enough for diffraction

effects to be ignored [Durelli70 pp. 16, 35–42; Ebbeni70 p. 338; Theocaris75 p. 280].

• We do not consider here, either, the discrete nature of gratings and screen elements

which are produced on digital devices such as laser printers, high-resolution filmsetters,

etc., and the influence of this discrete nature on the moiré (this question is discussed in

[Réveillès91 pp. 176–183]). The jagged aspect of discrete lines or dots is considered

here as a real-world constraint, and we try to avoid it (or at least to reduce its influence)

by producing our samples on appropriate devices with high enough resolutions

(normally, at least 600 dots per inch).

• We suppose here that the different layers are superposed in contact (see [Post94

p. 90]), for example by overprinting, and we ignore the possible effects of the distance

between the layers on the resulting moiré patterns, such as parallax-related phenomena

[Huck03; Huck04] or the Talbot effect [Latimer93; Post94 pp. 76–78; Kafri90 pp.

102–103]; see also Sec. 1.8.6 in [Durelli70].

• We do not treat explicitly kinematic aspects of the moiré patterns, such as the speed of

movement in the superposed layers and the speed of the resulting evolution in the moiré

patterns (see, for example, Problems 7-6 and 7-7 at the end of Chapter 7). But although

the kinematic aspects of the moiré theory are not explicitly developed here, they can be

obtained in a rather straightforward manner by introducing the notion of time, and by

considering shifts, rotations or any other layer transformations as functions of this new

parameter.

• We also intentionally content ourselves here with a simplified model of the human

visual system (see Sec. 2.2), and we avoid going any further into the complex questions

related to the modelization of the human visual system and its performance in an

inhomogeneous environment (like the perception of a moiré pattern on the irregular

background of a screen superposition). More details about human vision and its

modelization can be found, for example, in [Wandell95] and [Daly92].

• Finally, we usually prefer a pictorial, intuitive approach supported by mathematics over a

rigorous mathematical treatment. In many cases we give informal demonstrations rather

than formal proofs, or defer detailed derivations to an appendix.

It should be noted that although we occasionally use questions related to image

reproduction to illustrate our discussion, this book has not been written with any specific

moiré application in mind. In fact, our principal aim is to present the theoretical aspects of

the moiré phenomenon in a general, application-independent way. Consequently a full

discussion on the various applications of the moiré remains beyond the scope of the book;

this material can be found in other books such as [Patorski93] or [Post94]. However, we

felt that presenting the moiré theory without giving at least some flavour of its numerous

applications would not serve the interest of the reader. Therefore, as a reasonable
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compromise, we have included among the problems at the end of each chapter some of the

main applications of the theory being covered, along with additional references for the

benefit of the interested readers. This should give the reader a general idea about the vast

range of applications that the moiré effect has found in various different fields.

1.4 Overview of the following chapters

Chapter 2 lays the foundations for the entire book. This chapter presents the Fourier

spectral approach that is the basis for our investigation of the moiré effect, and shows, step

by step and in a systematic way, how this approach explains the moiré phenomenon

between superposed layers: Starting with the simplest case, the superposition of

cosinusoidal gratings, it gradually proceeds through the cases of binary gratings and

square grids to the superposition of dot-screens. It also presents the notational system that

we use for the identification, classification and labeling of the moiré effects, and introduces

several fundamental notions such as the order of a moiré, singular moiré states, etc.

Chapter 3 presents the problem of moiré minimization, namely: the question of finding

stable moiré-free combinations of superposed screens. In this chapter we focus on the

moiré phenomenon from a different point of view: we introduce the moiré parameter

space, and show how changes in the parameters of the superposed layers vary the moiré

patterns in the superposition. This leads us to an algorithm for moiré minimization which

provides stable moiré-free screen combinations that can be used, for example, for colour

printing. Other methods for fighting unwanted moirés are also briefly reviewed (see, in

particular, the problem section at the end of the chapter).

In Chapter 4 we show how, by considering not only the impulse locations in the

spectrum but also their amplitudes, the Fourier-based approach provides a full quantitative

analysis of the moiré intensity profiles, in addition to the qualitative geometric analysis of

the moiré patterns which is already offered by the earlier classical approaches. We analyze

the profile forms and intensity levels of moirés of any order which are obtained in the

superposition of any periodic layers (gratings, dot-screens, etc.), and we show how they

can be derived analytically from the original superposed structures, either in the spectral

domain or directly in the image domain. We show how this analysis method can fully

explain the surprising profile forms of the moiré patterns that are generated in the

superposition of screens with any desired dot shapes, and how it can be used to synthesize

moiré effects with any desired intensity profiles.

In Chapter 5 we set up a new algebraic formulation that will help us better understand

the structure of the spectrum-support of the superposition, based on concepts from the

theory of geometry of numbers and on linear algebra. In this discussion we completely

ignore the impulse amplitudes, and we only consider their indices, their geometric

locations, and the relations between them. This algebraic abstraction provides a new,

important insight into the properties of the spectrum of the layer superposition and its
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moiré effects. Yet, this chapter can be skipped upon first reading and revisited later, when a

deeper understanding is required.

In Chapter 6 we reintroduce the impulses on top of the spectrum-support, and we

investigate the properties of the impulse amplitudes that are associated with the algebraic

structures discussed in Chapter 5. Through the Fourier theory we see how both the

structure and the amplitude properties of the spectral domain are related to properties of

the layer superposition and their moirés in the image domain. In particular, we show the

fundamental relationship between the Fourier expression of the layer superposition and

the algebraic structure of the spectrum support.

In Chapter 7 we introduce the notion of phase, and we investigate what happens to the

layer superposition (and particularly to the moiré effects) when the superposed layers are

shifted on top of each other while keeping their angles and frequencies unchanged.

In Chapter 8 we focus our attention to the microstructure which occurs in the

superposition and its relationship with the macro-moirés. We will see, in particular, that

any moiré effect in the superposition is generated, microscopically speaking, by a

repetitive alternation between zones of different microstructure in the superposition; when

observed from a distance, this microstructure alternation is perceived as a repetitive gray

level alternation in the superposition, i.e., as a macroscopic, visible moiré pattern.

In Chapter 9 we extend our Fourier-based approach to polychromatic moirés in the

superposition of any coloured periodic layers. This will be done by considering the full

colour spectrum of each point in any of the superposed layers; we will be dealing,

therefore, with both colour spectra and Fourier spectra simultaneously. This extension of

our theory will allow a full qualitative and quantitative analysis of moirés in colour, and it

will enable us to synthesize moirés of any desired colours.

In Chapter 10 we further extend the scope of our Fourier-based approach, this time, to

the superposition of repetitive, non-periodic layers such as curvilinear gratings or curved

screens. We will see that although the Fourier spectrum in such cases are no longer purely

impulsive, the fundamental principles of the theory remain valid in these cases, too. In

particular, we will obtain the fundamental moiré theorem, which is a generalization of the

results that were obtained in Chapter 4. We will see also how this approach can be used to

synthesize moiré effects having any desired geometric layout and any intensity profile.

Finally, in Chapter 11 we briefly review some of the most widely used classical methods

of moiré analysis, which are not directly based on the Fourier approach. We show that

these alternative methods are, in fact, encompassed by the spectral approach, so that the

results they can provide are only partial to the full information which can be obtained by

the spectral approach. Nevertheless, these methods remain very useful in many real-world

applications in which the use of the full scale spectral approach may prove to be

impractical.

The main body of the book is accompanied by several appendices:
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In Appendix A we review the main properties of 1D and 2D periodic functions both in

the image and in the spectral domains. We also introduce the notion of step-vectors (in

contrast to period-vectors), and the vector notations for 2D Fourier series that are

extensively used in our work (notably in Chapters 6–10).

In Appendix B we review the main properties of 1D and 2D almost-periodic functions,

both in the image and in the spectral domains. This appendix serves us as an introduction

standard textbooks on the Fourier theory.

results that we preferred, for different reasons, not to include in the main text of our work.

And finally, in Appendix D we provide a glossary of the most important terms that have

been used in the present book.

The organization of Chapters 1–11 is as follows:

Although reading the chapters in their sequential order is recommended, any reader may

choose to concentrate on one (or more) of the branches in this organization chart,

according to his own needs and preferences.

1.5 About the exercises and the moiré demonstration samples

At the end of each chapter we provide a section containing a number of problems and

exercises. Many of these problems are not merely routine exercises, but really intriguing

and sometimes even challenging problems. Their aim is not only to aid the assimilation of

the material covered by the chapter, but also to develop new insights beyond it. As already

mentioned, these problems also include examples of real-world applications of the theory

discussed in the chapter, along with references to existing publications on these

applications (books, scientific papers, patents, etc.). We therefore highly encourage

readers to dedicate some time for reviewing these exercises.

Since moiré effects are best appreciated by a hands-on experience, some of the key

figures of this book have been also provided in the form of PostScript® programs

[Adobe90], which can be printed on transparencies using any standard desktop laser

1 2

3

4

5

6 7 8

9

10 11

In Appendix C we group together various issues, including the derivations of several

to the mathematical theory of almost periodic functions, which is not usually covered by
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printer. These PostScript programs and the instructions for using them can be found in

the Internet site of this book, at the address:

http://lspwww.epfl.ch/books/moire/

By printing these demonstration samples the reader will obtain a kit of transparencies

offering a vivid illustration of the moiré effects and their dynamic behaviour in the

superposition. This demonstration set will allow the interested reader to make his own

experiments by varying different parameters (angles, frequencies, etc.) in order to better

understand their effects on the resulting moirés. This will not only be a valuable aid for the

understanding of the material, but certainly also a source of amusement and fun.

 * * *

Finally, a word about our notations. Throughout this book we adopt the following

notational conventions:

      Sec. 3.2 —    Section 2 of Chapter 3.

      Sec. A.2 —    Section 2 of Appendix A.

      Fig. 3.2 —    Figure 2 of Chapter 3.

      Fig. A.2 —    Figure 2 of Appendix A.

      (3.2) —    Equation or formula 2 of Chapter 3.

      (A.2) —    Equation or formula 2 of Appendix A.

Similar conventions are also used for enumerating tables, examples, propositions,

remarks, etc.; for instance, Example 3.2 is the second example of Chapter 3.

Whenever reference is made to the second volume of this work, we use the abbreviation

“Vol. II ”. When referring to a section, a figure or an equation in Vol. II, we simply add

the prefix “II  ” to the specified number; for example, Sec. II.3.2 refers to Sec. 2 of

Chapter 3 in Vol. II, Fig. II.3.2 means Fig. 2 of Chapter 3 in Vol. II, and Eq. (II.A.2)

refers to the second equation in Appendix A of Vol. II.

The mathematical symbols and notations used in the present volume are listed at the end;

a glossary of the main terms is provided in Appendix D.



Chapter 2

Background and basic notions

2.1 Introduction

Several mathematical approaches can be used to explore the moiré phenomenon. The

classical geometric approach [Nishijima64; Tollenaar64; Yule67] is based on a geometric

study of the properties of the superposed layers, their periods and their angles. By

considering relations between triangles, parallelograms, or other geometric entities

generated between the superposed layers, this method leads to formulas that can predict,

under certain limitations, the geometric properties of the moiré patterns. Another widely

used classical approach is the indicial equations method (see Sec. 11.2); this is a pure

algebraic approach, based on the equations of each family of lines in the superposition,

which also yields the same basic formulas [Oster64]. A more recent approach, introduced

in [Harthong81], analyzes the moiré phenomenon using the theory of non-standard

analysis. This approach can also provide the intensity levels of the moiré in question, in

addition to its basic geometric properties.

However, the best adapted approach for investigating phenomena in the superposition of

periodic structures is the spectral approach, which is based on the Fourier theory. This

approach, whose first applications to the study of moiré phenomena appeared in the 1960s

and 1970s (see Sec. 1.2), is the basis of our work, and it will be largely developed in the

present book. Unlike the previous methods, this approach enables us to analyze properties

not only in the original layers and in their superposition but also in their spectral

representations, and thus it offers a more profound insight into the problem and provides

indispensable tools for exploring it. We will discuss the advantages that the spectral

approach offers in the study of moiré phenomena at the end of this chapter (Sec. 2.14),

after having introduced the basic notions of the theory.

The present chapter lays the foundations for the entire book. In Sec. 2.2 we present the

background and the basic concepts of the spectral approach, and we determine the image

types with which we will be concerned in our work. Then we proceed in the following

sections by showing step by step, in a didactic way, how our approach explains the

various moiré phenomena between superposed layers. We start in Secs. 2.3–2.4 with the

simplest case, the superposition of cosinusoidal gratings, and then we gradually proceed to

the more interesting cases involving binary gratings, grids and dot-screens. On our way

we will also introduce some fundamental terms and notions of the theory, such as first-

order and higher-order moirés, singular moirés, stable and unstable moiré-free

superpositions, etc. The problems at the end of the chapter include some of the main

applications of the moiré effect in various fields of science and technology, along with

additional references for the interested readers.
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2.2 The spectral approach; images and their spectra

The spectral approach is based on the duality between functions or images in the spatial

image domain and their spectra in the spatial frequency domain, through the Fourier

transform. A key property of the Fourier transform is its ability to allow one to examine a

function or an image from the perspective of both the space and frequency domains. By

allowing us to analyze properties not only in the original image itself but also in its

spectral representation this approach combines the best from both worlds, namely: it

accumulates the advantages offered by the analysis in each of the two domains.1

In this book we will be concerned with bidimensional (2D) structures in the continuous

x,y plane, that we will call images, and their 2D spectra in the continuous u,v plane which

are obtained by the 2D Fourier transform.2 In fact, we will restrict ourselves only to some

particular types of 2D images, such as line-gratings or dot-screens, which are liable to

generate moiré effects when superposed. In this section we will review the basic properties

of the image types with which we are concerned, and the implications of these properties

both in the image and in the spectral domains.

First, let us mention that we will mainly deal here with moiré effects between

monochrome, black and white images; the extension of our discussion to the fully

polychromatic case will be delayed until Chapter 9. In the monochrome case each image

can be represented in the image domain by a reflectance function, which assigns to any

point (x,y) of the image a value between 0 and 1 representing its light reflectance: 0 for

black (i.e., no reflected light), 1 for white (i.e., full light reflectance), and intermediate

values for in-between shades. In the case of transparencies, the reflectance function is

replaced by a transmittance function which is defined in a similar way: it gives 0 for black

(i.e., no light transmittance through the transparency), 1 for white (or rather transparent,

i.e., full light transmittance through the transparency), or any intermediate value between

them. A superposition of such images can be obtained by means of overprinting, or by

laying printed transparencies on top of each other. Since the superposition of black and

any other shade always gives here black, this suggests a multiplicative model for the

superposition of monochrome images. Thus, when m  monochrome images are

superposed, the reflectance of the resulting image (also called the joint reflectance) is

given by the product of the reflectance functions of the individual images:

r(x,y) = r1(x,y)· ... ·rm(x,y)      (2.1)

1 It should be emphasized that since the Fourier transform is reversible, no information is gained or lost
by its application. It only reveals certain image features which were present but not explicitly apparent
before the image was transformed.

2 Note that throughout this book we adopt the Fourier transform conventions that are commonly used in
optics (see [Bracewell86 p. 241] or [Gaskill78 p. 128]); thus, the Fourier transform of a function f(x,y)
and its inverse are given by:

 F(u,v) = ∫
-∞

 ∞
 ∫

-∞

 ∞
f(x,y) e–i2π(ux+vy) dx dy,        f(x,y) = ∫

-∞

 ∞
 ∫

-∞

 ∞
F(u,v) ei2π(ux+vy) dx dy.

For alternative definitions used in literature and the relationships between them see [Bracewell86 pp. 7
and 17] or [Gaskill78 pp. 181–183].
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The same rule applies also to the superposition of monochrome transparencies, in which

case ri(x,y) and r(x,y) simply represent transmittance rather than reflectance functions.

Now, according to the convolution theorem [Bracewell86 p. 244], the Fourier transform of

a function product is the convolution of the Fourier transforms of the individual functions.

Therefore, if we denote the Fourier transform of each function by the respective capital

letter and the 2D convolution by **, the spectrum of the superposition is given by:

R(u,v) = R1(u,v) ** ... ** Rm(u,v)      (2.2)

Remark 2.1: It should be noted, however, that the multiplicative model is not the only

possible superposition rule, and in other situations different superposition rules can be

appropriate. For example, when images are superposed by making multiple exposures on

a positive photographic film (assuming that we do not exceed the linear part of the film’s

response [Shamir73 p. 85]), intensities at each point are summed up, which implies an

additive rule of superposition. In another example, when images are superposed by

making multiple exposures on a negative photographic film (again, assuming a linear

response) an inverse additive rule can be appropriate. More exotic superposition rules

(involving, for example, various Boolean operations etc.) can be artificially generated by

computer, even if they do not correspond to any physical reality. The interested reader

may find examples which illustrate various superposition rules in references like

[Bryngdahl76], [Asundi93] or Chapter 3 of [Patorski93]. Note that different superposi-

tion rules in the image domain will have different spectrum composition rules in the

spectral domain, which are determined by properties of the Fourier transform. For

example, in the case of the additive superposition rule, where Eq. (2.1) is replaced by:

r(x,y) = r1(x,y) + ... + rm(x,y)      (2.3)

the spectrum of the superposition is no longer the spectrum-convolution given by Eq.

(2.2), but rather the sum of the individual spectra:

R(u,v) = R1(u,v) + ... + Rm(u,v)      (2.4)

As we will see in Remark 2.3 at the end of Sec. 2.3 below, this case is less interesting

from the point of view of moiré generation.    p

Second, until Chapter 10 we will be basically interested in periodic images, such as line-

gratings or dot-screens, and in their superpositions. This implies that the spectrum of the

image on the u,v plane is not smooth but rather consists of impulses, which represent the

frequencies in the Fourier series decomposition of the periodic image [Bracewell86 p.

204].3 A strong impulse in the spectrum indicates a pronounced periodic component in

the original image at the frequency and direction of that impulse.

Each impulse in the 2D spectrum is characterized by three main properties: its label

(which is its index in the Fourier series development);  its  geometric location  (or impulse

3 A short survey of the spectral Fourier representation of periodic functions is also provided in Appendix
A.
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Figure 2.1: The geometric location and amplitude of impulses in the 2D
spectrum. To each impulse is attached its frequency vector, which
points to the geometric location of the impulse in the u,v
spectrum plane.

location); and its amplitude (see Fig. 2.1). To the geometric location of any impulse is

attached a frequency vector f in the spectrum plane, which connects the spectrum origin to

the geometric location of the impulse. This vector can be expressed either by its polar

coordinates (f,θ), where θ is the direction of the impulse and f is its distance from the

origin (i.e., its frequency in that direction), or by its Cartesian coordinates (u,v), where u

and v are the horizontal and vertical components of the frequency. In terms of the original

image, the geometric location of an impulse in the spectrum determines the frequency f

and the direction θ of the corresponding periodic component in the image, and the

amplitude of the impulse represents the intensity of that periodic component in the

image.4 Note, however, that the impulse which is located on the spectrum origin is rather

unique in its properties and requires some particular attention: It represents the zero

frequency, which corresponds in the image domain to the constant component of the

image, and its amplitude corresponds to the intensity of this constant component.5 This

particular impulse is traditionally called the DC impulse (because it represents in electrical

transmission theory the direct current component, i.e., the constant term in the frequency

decomposition of an electric wave), and we will maintain here this convention.

The periodic images with which we will be dealing will normally be of a symmetric

nature (gratings, grids, etc.). For the sake of simplicity we also assume, unless otherwise

mentioned, that the given images are not shifted, but indeed centered symmetrically about

4 It should be stressed that the direction θ of the impulse, i.e., the direction of the corresponding periodic
component in the image, is perpendicular to the corrugations of the periodic component (see, for
example, gratings (a) and (b) and their spectra (d) and (e) in Fig. 2.2).

5 In fact, as shown in Appendix C.2, the amplitude of the DC impulse represents the average intensity
level of the image (which is, in our case, a number between 0 and 1, since our images can only take
values between 0 and 1).

u

v
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Amplitude
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θ
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the origin. As a result, we will normally deal with images (and image superpositions)

which are real-valued and symmetric, and whose spectra are consequently also real-valued

and symmetric [Bracewell86 pp. 14–15]. This means that each impulse in the spectrum

(except for the DC impulse at the origin) is always accompanied by a twin impulse of an

identical amplitude, which is symmetrically located at the other side of the origin as in Fig.

2.1 (their frequency vectors being f and –f). Note, however, that if the original image is not

symmetric about the origin (but, of course, still real-valued), the amplitudes of the twin

impulses at f and –f are complex conjugates; in this case the amplitude of each impulse

in the spectrum (except for the DC impulse) may also have a non-zero imaginary

component. We will return to such cases in more detail in Chapter 7, where we will

discuss the superposition of non-centered or shifted images. It is important to understand,

however, that even in such cases each frequency f of the image is still represented in the

spectrum by a pair of impulses, whose geometric locations are f and –f. 6

However, the question of whether or not an impulse pair in the spectrum represents a

visible periodic component in the image strongly depends on properties of the human

visual system. The fact that the eye cannot distinguish fine details above a certain

frequency (i.e., below a certain period) suggests that the human visual system model

includes a low-pass filtering stage. This is a bidimensional bell-shaped filter whose form

is anisotropic (since it appears that the eye is less sensitive to small details in diagonal

directions such as 45° [Ulichney88 pp. 79–84]).7 However, for the sake of simplicity this

low-pass filter can be approximated by the visibility circle, a circular step-function around

the spectrum origin whose radius represents the cutoff frequency (i.e., the threshold

frequency beyond which fine detail is no longer detected by the eye). Obviously, its radius

depends on several factors such as the contrast of the observed details, the viewing

distance, light conditions, etc. If the frequencies of the image details are beyond the border

of the visibility circle in the spectrum, the eye can no longer see them; but if a strong

enough impulse in the spectrum of the image superposition falls inside the visibility circle,

then a moiré effect becomes visible in the superposed image. (In fact, the visibility circle

has a hole in its center, since very low frequencies cannot be seen, either.)

Another possible property of our images (although it is not necessarily a requirement)

comes from the fact that most printing devices are only bilevel, namely: they are only

capable of printing solid ink or leaving the paper unprinted, but they cannot produce

intermediate ink tones. (This is also true for most colour printing devices, where each of

the printed primary colours is bilevel.) In such devices the visual impression of

intermediate tone levels is usually obtained by means of the halftoning technique, i.e., by

breaking the continuous-tone image into small dots whose size depends on the tone level

(see Sec. 3.2).  Therefore,  in  most  practical  cases  the  reflectance function  of   a  printed

6 For the sake of completeness we mention here that this conjugate symmetry property in the spectrum
only breaks up in the case of complex-valued images. For example, a single impulse at the point (u,v) in
the spectrum corresponds to the complex-valued function p(x,y) = e–2πi(ux+vy) in the image domain. We
will rarely be concerned with such cases, since all physically realizable images are purely real.

7 For a more detailed account on the human visual system and its properties the reader is referred to
specialized references on this subject such as [Cornsweet70], [Wandell95] or Chapter 34 in [Boff86].



14 2. Background and basic notions

Figure 2.2: First row: cosinusoidal gratings (a) and (b) and their superposition
(c) in the image domain. Second row: top view of the respective
spectra (d), (e) and their convolution (f). Black dots in the spectra
indicate the geometric locations of the impulses; the line segments
connecting them have been added only in order to clarify the
geometric relations. (g), (h), (i): Side view of the same spectra,
showing the impulse amplitudes. Note the two new impulse pairs
which have appeared in the spectrum convolution (f); the isolated
contributions of these two impulse pairs to the superposition (c) are
shown in (j) and (k): (j) is the periodic component contributed by
the new impulse pair which is located at the difference frequencies
f1 – f2 and f2 – f1, and (k) is the periodic component contributed by the
new impulse pair at the sum frequencies, f1+ f2 and –f1 – f2.
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