SpringerWienNewYork

Imme van den Berg Vítor Neves (eds.)

The Strength
of Nonstandard Analysis

Imme van den Berg
Departamento de Matemática
Universidade de Évora, Évora, Portugal
Vítor Neves
Departamento de Matemática
Universidade de Aveiro, Aveiro, Portugal

This work is subject to copyright.
All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks.
Product Liability: The publisher can give no guarantee for the information contained in this book. This also refers to that on drug dosage and application thereof. In each individual case the respective user must check the accuracy of the information given by consulting other pharmaceutical literature.
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
© 2007 Springer-Verlag Wien
Printed in Germany
SpringerWienNewYork is part of Springer Science + Business Media
springeronline.com
Typesetting: Camera ready by authors
Printing: Strauss GmbH, Mörlenbach, Germany
Cover image: Gottfried Wilhelm Freiherr von Leibniz (1646-1716), tinted lithograph by Josef Anton Seib. © ÖNB, Vienna
Printed on acid-free and chlorine-free bleached paper SPIN 11923817

With 16 Figures

Library of Congress Control Number 2006938803

ISBN-10 3-211-49904-0 SpringerWienNewYork
ISBN-13 978-3-211-49904-7 SpringerWienNewYork

Foreword

> Willst du ins Unendliche schreiten?
> Gch nur im Endlichen nach alle Sciten! Willst du dich am Ganzen erquicken, So must du das Ganze im Kleinsten erblicken.
J. W. Goethe (Gott, Gemüt und Welt, 1815)

Forty-five ycars ago, an article appeared in the Proccedings of the Royal Academy of Sciences of the Netherlands Series A, 64, 432-440 and Indagationes Math. 23 (4), 1961, with the mysterious title "Non-standard Analysis" authored by the eminent mathematician and logician Abraham Robinson (1908-1974).

The title of the paper turned out to be a contraction of the two terms "Nonstandard Model" used in model theory and "Analysis". It presents a treatment of classical analysis based on a theory of infinitesimals in the context of a non-standard model of the real number system \mathbb{R}.

In the Introduction of the article, Robinson states:
"It is our main purpose to show that the models provide a natural approach to the age old problem of producing a calculus involving infinitesimal (infinitely small) and infinitely large quantities. As is well-known the use of infinitesimals strongly advocated by Leibniz and unhesitatingly accepted by Euler fell into disrepute after the advent of Cauchy's methods which put Mathematical Analysis on a firm foundation".

To bring out more clearly the importance of Robinson's creation of a rigorous theory of infinitesimals and their reciprocals, the infinitely large quantities, that has changed the landscape of analysis, I will briefly share with the reader a fcw highlights of the historical facts that are involved.

The invention of the "Infinitesimal Calculus" in the second half of the seventeenth century by Newton and Leibniz can be looked upon as the first funda-
mental new discovery in mathematics of revolutionary nature since the death of Archimedes in 212 BC . The fundamental discovery that the operations of differentiation (flux) and integration (sums of infinitesimal increments) are inverse operations using the intuitive idea that infinitesimals of higher order compared to those of lower order may be neglected became an object of severe criticism. In the "Analyst", section 35, Bishop G. Berkeley states:
> "And what are these fluxions? The velocities of evanescent increments. And what are these same evanescent increments? They are neither finite quantities, nor quantities infinitesimally small, nor yet nothing. May we call them ghosts of departed quantitics?"

The unrest and criticism concerning the lack of a rigorous foundation of the infinitesimal calculus led the Academy of Sciences of Berlin, at its public meeting on June 3, 1774, and well on the insistence of the Head of the Mathematics Section, J. L. Lagrange, to call upon the mathematical community to solve this important problem. To this end, it announced a prize contest dealing with the problem of "Infinity" in the broadest sense possible in mathematics. The announcement read:
"The utility derived from Mathematics, the estecm it is held in and the honorable name of 'exact science' par excellence, that it justly deserves, are all due to the clarity of its principles, the rigor of its proofs and the precision of its theorems. In order to ensure the continuation of these valuable attributes in this important part of our knowledge the prize of a 50 ducat gold medal is for:

A clear and precise theory of what is known as 'Infinity' in Mathematics. It is well-known that higher mathematics regularly makes use of the infinitely large and infinitely small. The geometers of antiquity and even the ancient analysts, however, took great pains to avoid anything approaching the infinity, whereas today's eminent modern analysts admit to the statement 'infinite magnitude' is a contradiction in terms. For this reason the Academy desires an explanation why it is that so many correct theorems have been deduced from a contradictory assumption, together with a formulation of a truly clear mathematical principle that may replace that of infinity without, however, rendering investigations by its use overly difficult and overly lengthy. It is requested that the subject be treated in all possible gencrality and with all possible rigor, clarity and simplicity."

Twenty-three answers were received before the deadline of January 1, 1786. The prize was awarded to the Swiss mathematician Simon L'Huilier for his essay with motto:
"The infinite is the abyss in which our thoughts are engulfed."
The members of the "Prize Committee" made the following noteworthy points: None of the submitted essays dealt with the question raised "why so many correct theorems have been derived from a contradictory assumption?" Furthermore, the request for clarity, simplicity and, above all, rigor was not met by the contenders, and almost all of them did not address the request for a newly formulated principle of infinity that would reach beyond the infinitesimal calculus to be meaningful also for algebra and geometry.

For a detailed account of the prize contest we refer the reader to the interesting biography of Lazare Nicolas M. Carnot (1753-1823), the father of the thermodynamicist Sadi Carnot, entitled "Lazare Carnot Savant" by Ch. C. Gillespie (Princeton Univ. Press, 1971), which contains a thorough discussion of Carnot's entry "Dissertation sur la théorie de l'infini mathématique", received by the Academy after the deadline. The above text of the query was adapted from the biography.

In retrospect, the outcome of the contest is not surprising. Nevertheless around that time the understanding of infinitesimals had reached a more sophisticated level as the books of J. L. Lagrange and L. N. Carnot published in Paris in 1797 show.

From our present state of the art, it seems that the natural place to look for a "general principle of infinity" is set theory. Not however for an "intrinsic" definition of infinity. Indeed, as Gian-Carlo Rota expressed not too long ago:
"God created infinity and man, unable to understand it, had to invent finite sets."

At this point let me digress a little for further clarification about the infinity we are dealing with. During the early development of Cantor's creation of set theory, it was E. Zermelo who realized that the attempts to prove the existence of "infinite" sets, short of assuming there is an "infinite" set or a non-finite set as in Proposition 66 of Dedekind's famous "Was sind und was sollen die Zahlen?" were fallacious. For this reason, Zermelo in his important paper "Sur les ensembles finis et le principe de l'induction complete", Acta Math. 32 (1909), 185-193 (submitted in 1907), introduced an axiom of "infinity" by postulating the existence of a set, say A, non-empty, and that for cach of its elements x, the singleton $\{x\}$ is an element of it.

Returning to the request of the Academy: To discover a property that all infinite sets would have in common with the finite sets that would facilitate
their use in all branches of mathematics. What comes to mind is Zermelo's wellordering principle. Needless to say that this principle and the manifold results and consequences in all branches of mathematics have had an enormous impact on the development of mathematics since its introduction. One may ask what has this to do with the topic at hand? It so happens that the existence of non-standard models depends essentially on it as well and consequently nonstandard analysis too.

The construction of the real number system (linear continuum) by Cantor and Dedekind in 1872 and the Weicrstrass $\varepsilon-\delta$ technique gradually replaced the use of infinitesimals. Hilbert's characterization in 1899 of the real number system as a (Dedekind) complete field led to the discovery, in 1907, by H. Hahn, of non-archimedian totally ordered field extensions of the reals. This development brought about a renewed interest in the theory of infinitesimals. The resulting "calculus", certainly of interest by itself, lacked a process of defining extensions of the elementary and special functions, etc., of the objects of classical analysis. It is interesting that Cantor strongly rejected the existence of non-archimedian totally ordered fields. He expressed the view that no actual infinities could exist other than his transfinite cardinal numbers and that, other than 0 , infinitesimals did not exist. He also offered a "proof" in which he actually assumed order completeness.

It took one hundred and seventy-five years from the time of the deadline of the Berlin Academy contest to the publication of Robinson's paper "Nonstandard Analysis". As Robinson told us, his discovery did not come about as a result of his efforts to solve Leibniz' problem; far from it. Working on a paper on formal languages where the length of the sentences could be countable, it occurred to him to look up again the important paper by T. Skolem "Über dic Nichtcharakterisicrbarkeit der Zahlenrcihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fund. Math. 23 (1934), 150-161*.

Briefly, Skolem showed in his paper the existence of models of Peano arithmetic having "infinitely large numbers". Nevertheless in his models the principle of induction holds only for subsets determined by admissible formulas from the chosen formal language used to describe Peano's axiom system. The non-empty set of the infinitely large numbers has no smallest element and so cannot be determined by a formula of the formal language and is called an external set; those that can were baptized as internal sets of the model.

Robinson, rereading Skolem's paper, wondered what systems of numbers would emerge if he would apply Skolem's method to the axiom system of the real numbers. In doing so, Robinson immediately realized that the real number

[^0]system was a non-archimedian totally ordered field extension of the reals whose structure satisfies all the properties of the reals, and that, in particular, the set of infinitesimals lacking a least upper bound was an external set.

This is how it all started and the Academy would certainly award Robinson the gold medal.

At the end of the fifties at Caltech (California Institute of Technology) Arthur Erdelyi FRS (1908-1977) conducted a lively seminar entitled "Generalized Functions". It dealt with various areas of current research at that time in such fields as J. Mikusinski's rigorous foundation of the so-called Heaviside operational calculus and L. Schwartz' theory of distributions. In connection with Schwartz' distribution theory, Erdelyi urged us to read the just appeared papers by Laugwitz and Schmieden dealing with the representations of the Dirac-delta functions by sequences of point-functions converging to 0 pointwise except at 0 where they run to infinity. Robinson's paper fully clarified this phenomenon. Reduced powers of \mathbb{R} instead of ultrapowers, as in Robinson's paper, were at play here. In my 1962 Notes on Non-standard Analysis the ultrapower construction was used, but at that time without using explicitly the Transfer Principle.

In 1967 the first International Symposium on Non-standard Analysis took place at Caltech with the support of the U.S. Office of Naval Research. At the time the use of non-standard models in other branches of mathematics started to blossom. This is the reason that the Proceedings of the Symposium carries the title: Applications of Model Theory to Algebra, Analysis and Probability.

A little anecdote about the meeting. When I opened the newspaper one morning during the week of the meeting, I discovered to my surprise that it had attracted the attention of the Managing Editor of the Pasadena Star News; his daily "Conversation Piece" read:

> "A Stanford Professor spoke in Pasadena this week on the subject 'Axiomatizations of Non-standard Analysis which are Conservative Extensions of Formal Systems for Standard Classical Analysis', a fact which I shall tuck away for reassurance on those days when I despair of communicating clearly."

I may add here that from the beginning Robinson was very interested in the formulation of an axiom system catching his non-standard methodology.

Unfortunately he did not live to see the solution of his problem by E. Nelson presented in the 1977 paper entitled "Internal Set Theory". A presentation by Nelson, "The virtue of Simplicity", can be found in this book.

A final obscrvation. During the last sixty years we have all seen come about the solutions of a number of outstanding problems and conjectures,
some centuries old, that have enriched mathematics. The century-old problem to create a rigorous theory of infinitesimals no doubt belongs in this category.

It is somewhat surprising that the appreciation of Robinson's creation was slow in coming. Is it possible that the finding of the solution in model theory, a branch of mathematical logic, had something to do with that?

The answer may perhaps have been given by Augustus de Morgan (1806-1871), who is well-known from De Morgan's Law, and who in collaboration with George Boole (1805-1864) recstablished formal logic as a branch of exact science in the nineteenth century, when he wrote:
"We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of exact sciences are mathematics and logic: the mathematical sect puts out the logical eye, the logical sect puts out the mathematical cyc; each believing that it can sce better with one eye than with two."

We owe Abraham Robinson a great deal for having taught us the use of both eyes.

This book shows clearly that we have learned our lesson well.
All the contributors are to be commended for the way they have made an effort to make their contributions that are based on the talks at the meeting "Nonstandard Mathematics 2004" as self-contained as can be expected. For further facilitating the readers, the editors have divided the papers in categories according to the subject. The whole presents a very rich assortment of the nonstandard approach to diverse areas of mathematical analysis.

I wish it many readers.

Acknowledgements

The wide range of applicability of Mathematical Logic to classical Mathematics, beyond Analysis - as Robinson's tcrminology Non-standard Analysis might imply - is already apparent in the very first symposium on the area, held in Pasadena in 1967, as mentioned in the foreword.

Important indicators of the maturity of this field are the high level of foundational and pure or applied mathematics presented in this book, congresses which take place approximately every two years, as well as the experiences of teaching, which proliferated at graduate, undergraduate and secondary school level all over the world.

This book, made of peer reviewed contributions, grew out of the meeting Non Standard Mathematics 2004, which took place in July 2004 at the Department of Mathematics of the University of Aveiro (Portugal). The articles are organized into five groups, (1) Foundations, (2) Number theory, (3) Statistics, probability and measures, (4) Dynamical systems and equations and (5) Infinitesimals and education. Its cohesion is enhanced by many crossovers.

We thank the authors for the care they took with their contributions as well as the three Portuguese Research Institutes which funded the production cost: the Centro Internacional de Matemática CIM at Coimbra, the Centro de Estudos em Optimização e Controlo CEOC of the University of Aveiro and the Centro de Investigação em Matemática e Aplicações CIMA-UE of the University of Évora. Moreover, NSM2004 would not have taken place were it not for the support of the CIM, CEOC and CIMA themselves, Fundação Luso-Americana para o Desenvolvimento, the Centro de Análise Matemática, Geometria c Sistemas Dinâmicos of the Instituto Supcrior Técnico of Lisbon and the Mathematics Department at Aveiro.

Our special thanks go to Wilhclmus Luxcmburg of Caltech, USA, who, being one of the first to recognize the importance of Robinson's discovery of

Nonstandard Analysis, honoured us by writing the foreword. Last but not least, Salvador Sánchez-Pedreño of the University of Murcia, Spain, joined his expert knowledge of Nonstandard Analysis to a high dominion of the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ editing possibilities in order to improve the consistency of the text and to obtain an outstanding typographic result.

Imme van den Berg
Vítor Neves
Editors

Contents

I Foundations 1

1. The strength of nonstandard analysis 3
by H. Jerome Keisler
1.1 Introduction 3
1.2 The theory $P R A^{\omega}$ 4
1.3 The theory NPRA ${ }^{\omega}$ 6
1.4 The theory WNA 7
1.5 Bounded minima and overspill 9
1.6 Standard parts 11
1.7 Liftings of formulas 14
1.8 Choice principles in $L\left(P R A^{\omega}\right)$ 16
1.9 Saturation principles 17
1.10 Saturation and choice 20
1.11 Second order standard parts 21
1.12 Functional choice and $\left(\exists^{2}\right)$ 23
1.13 Conclusion 25
2 The virtue of simplicity 27
by Edward NelsonPart I. Technical27
Part II. General 30
3 Analysis of various practices of referring in classical or non standard mathematics 33
by Yves PÉraire
3.1 Introduction 33
3.2 Généralités sur la référentiation 34
3.3 Le calcul de Dirac. L'égalité de Dirac 37
3.4 Calcul de Heaviside sans transformée de Laplace. L'égalité de Laplace 41
3.5 Exemples 44
4 Stratified analysis? 47
by Karel Hrbacek
4.1 The Robinsonian framework 48
4.2 Stratificd analysis 53
4.3 An axiomatic system for stratified set theory 58
5 ERNA at work 64
by C. Impens and S. Sanders
5.1 Introduction 64
5.2 The system 65
5.2.1 The language 65
5.2.2 The axioms 67
6 The Sousa Pinto approach to nonstandard generalised functions 76
by R. F. Hoskins
6.1 Introduction 76
6.1.1 Generalised functions and N.S.A. 77
6.2 Distributions, ultradistributions and hyperfunctions 77
6.2.1 Schwartz distributions 77
6.2.2 The Silva axioms 78
6.2.3 Fourier transforms and ultradistributions 80
6.2.4 Sato hyperfunctions 81
6.2.5 Harmonic representation of hyperfunctions 83
6.3 Prohypcrfunctions and predistributions 84
6.4 The differential algebra $\mathcal{A}\left(\Omega_{\varepsilon}\right)$ 86
6.4.1 Predistributions of finite order 86
6.4.2 Predistributions of local finite order 88
6.4.3 Predistributions of infinite order 88
6.5 Conclusion 90
7 Neutrices in more dimensions 92
by Imme van den Berg
7.1 Introduction 92
7.1.1 Motivation and objective 92
7.1.2 Setting 94
7.1.3 Structure of this article 95
7.2 The decomposition theorem 95
7.3 Geometry of neutrices in \mathbb{R}^{2} and proof of the decomposition theorem 96
7.3.1 Thickness, width and length of neutrices 97
7.3.2 On the division of neutrices 103
7.3.3 Proof of the decomposition theorem 111
II Number theory 117
8 Nonstandard methods for additive and combinatorial number theory. A survey 119
by Renling Jin
8.1 The beginning 119
8.2 Duality between null ideal and meager ideal 120
8.3 Buy-one-get-one-free scheme 121
8.4 From Kneser to Banach 124
8.5 Inverse problem for upper asymptotic density 125
8.6 Freiman's $3 k-3+b$ conjecture 129
9 Nonstandard methods and the Erdôs-Turán conjecture 133 by Steven C. Leth
9.1 Introduction 133
9.2 Near arithmetic progressions 134
9.3 The interval-measure property 140
III Statistics, probability and measures 143
10 Nonstandard likelihood ratio test in exponential families 145
by Jacques Bosgiraud
10.1 Introduction 145
10.1.1 A most powerful nonstandard test 145
10.2 Some basic concepts of statistics 146
10.2.1 Main definitions 146
10.2.2 Tests 146
10.3 Exponential families 147
10.3.1 Basic concepts 147
10.3.2 Kullback-Leibler information number 148
10.3.3 The nonstandard test 149
10.3.4 Large deviations for \bar{X} 150
10.3.5 n-regular sets 151
10.3.6 n-regular sets defined by Kullback-Leibler information 156
10.4 The nonstandard likelihood ratio test 159
10.4.1 $\frac{\ln \alpha}{n}$ infinitesimal 162
10.4.2 $0 \lesseqgtr \frac{1}{n}|\ln \alpha| \npreceq \widetilde{c}_{0}$ 163
10.4.3 $\frac{1}{n}|\ln \alpha| \gtrsim \widetilde{c}_{0}$ 164
10.5 Comparison with nonstandard tests based on \bar{X} 165
10.5.1 Regular nonstandard tests 165
10.5.2 Case when $\widetilde{\Theta}_{0}$ is convex 167
11 A finitary approach for the representation of the infinitesimal generator of a markovian semigroup 170 by Schérazade Benhabib
11.1 Introduction 170
11.2 Construction of the least upper bound of sums in IST 172
11.3 The global part of the infinitesimal generator 174
11.4 Remarks 176
12 On two recent applications of nonstandard analysis to the theory of financial markets 177
by Frederik S. Herzberg
12.1 Introduction 177
12.2 A fair price for a multiply traded asset 178
12.3 Fairness-enhancing effects of a currency transaction tax 180
12.4 How to minimize "unfairness" 181
13 Quantum Bernoulli experiments and quantum stochastic processes 189
by Manfred Wolff
13.1 Introduction 189
13.2 Abstract quantum probability spaces 191
13.3 Quantum Bernoulli experiments 192
13.4 The internal quantum processes 194
13.5 From the internal to the standard world 196
13.5.1 Brownian motion 197
13.5.2 The nonstandard hulls of the basic internal processes 198
13.6 The symmetric Fock space and its embedding into \mathcal{L} 202
14 Applications of rich measure spaces formed from nonstandard models 206
by Peter Loeb
14.1 Introduction 206
14.2 Recent work of Yeneng Sun 207
14.3 Purification of measure-valued maps 210
15 More on S-measures 217
by David A. Ross
15.1 Introduction 217
15.2 Loeb measures and S-measures 217
15.3 Egoroff's Thcorem 221
15.4 A Theorem of Riesz 222
15.4.1 Conditional expectation 225
16 A Radon-Nikodým theorem for a vector-valued reference measure 227
by G. Beate Zimmer
16.1 Introduction and notation 227
16.2 The existing literature 228
16.3 The nonstandard approach 230
16.4 A nonstandard vector-vector integral 232
16.5 Uniform convexity 233
16.6 Vector-vector derivatives without uniform convexity 234
16.7 Remarks 236
17 Differentiability of Loeb measures 238
by Eva Aigner
17.1 Introduction 238
17.2 S-differentiability of internal measures 240
17.3 Differentiability of Loeb measures 243
IV Differential systems and equations 251
18 The power of Gâteaux differentiability 253by Vítor Neves
18.1 Preliminaries 253
18.2 Smoothness 257
18.3 Smoothness and finite points 261
18.4 Smoothness and the nonstandard hull 263
18.4.1 Strong uniform differentiability 264
18.4.2 The non-standard hull 266
19 Nonstandard Palais-Smale conditions 271
by Natália Martins and Vítor Neves
19.1 Preliminaries 271
19.2 The Palais-Smale condition 273
19.3 Nonstandard Palais-Smale conditions 274
19.4 Palais-Smale conditions per level 280
19.5 Nonstandard variants of Palais-Smale conditions per level 281
19.6 Mountain Pass Theorems 282
20 Averaging for ordinary differential equations and functional differential equations 286
by Tewfik Sari
20.1 Introduction 286
20.2 Deformations and perturbations 287
20.2.1 Deformations 287
20.2.2 Perturbations 288
20.3 Averaging in ordinary differential equations 290
20.3.1 KBM vector fields 291
20.3.2 Almost solutions 292
20.3.3 The stroboscopic method for ODEs 294
20.3.4 Proof of Theorem 2 for almost periodic vector fields 294
20.3.5 Proof of Theorem 2 for KBM vector fields 295
20.4 Functional differential equations 297
20.4.1 Averaging for FDEs in the form $z^{\prime}(\tau)=\varepsilon f\left(\tau, z_{\tau}\right)$ 298
20.4.2 The stroboscopic method for ODEs revisited 299
20.4.3 Averaging for FDEs in the form $\dot{x}(t)=f\left(t / \varepsilon, x_{t}\right)$ 300
20.4.4 The stroboscopic method for FDEs 301
21 Path-space measure for stochastic differential equation with a coefficient of polynomial growth 306
by Tord Nakamura
21.1 Heuristic arguments and definitions 306
21.2 Bounds for the $*$-measure and the $*$-Green function 309
21.3 Solution to the Fokker-Planck equation 310
22 Optimal control for Navier-Stokes equations 317
by Nigel J. Cutland and Katarzyna Grzesiak 22.1 Introduction 317
22.2 Preliminaries 319
22.2.1 Nonstandard analysis 319
22.2.2 The stochastic Navier-Stokes equations 319
22.2.3 Controls 323
22.3 Optimal control for $d=2$ 325
22.3.1 Controls with no feedback 325
22.3.2 Costs 326
22.3.3 Solutions for internal controls 327
22.3.4 Optimal controls 328
22.3.5 Hölder continuous feedback controls $(d=2)$ 329
22.3.6 Controls based on digital observations $(d=2)$ 331
22.3.7 The space \mathcal{H} 331
22.3.8 The observations 332
22.3.9 Ordinary and relaxed feedback controls for digital observations 332
22.3.10 Costs for digitally observed controls 334
22.3.11 Solution of the equations 334
22.3.12 Optimal control 336
22.4 Optimal control for $d=3$ 337
22.4.1 Existence of solutions for any control 338
22.4.2 The control problem for 3D stochastic Navier-Stokes cquations 338
22.4.3 The space $\boldsymbol{\Omega}$ 339
22.4.4 Approximate solutions 340
22.4.5 Optimal control 342
22.4.6 Hölder continuous feedback controls $(d=3)$ 343
22.4.7 Approximate solutions for Hölder continuous controls 344
Appendix: Nonstandard representations of the spaces \mathbf{H}^{r} 345
23 Local-in-time existence of strong solutions of the n-dimensional Burgers equation via discretizations 349 by João Paulo Teixeira
23.1 Introduction 349
23.2 A discretization for the diffusion-advection equations in the torus 351
23.3 Some standard estimates for the solution of the discrete problem 353
23.4 Main estimates on the hyperfinite discrete problem 356
23.5 Existence and uniqueness of solution 361
V Infinitesimals and education 367
24 Calculus with infinitesimals 369
by Keith D. Stroyan
24.1 Intuitive proofs with "small" quantities 369
24.1.1 Continuity and extreme values 369
24.1.2 Microscopic tangency in one variable 370
24.1.3 The Fundamental Theorem of Integral Calculus 372
24.1.4 Telescoping sums and derivatives 372
24.1.5 Continuity of the derivative 373
24.1.6 Trig, polar coordinates, and Holditch's formula 375
24.1.7 The polar area differential 376
24.1.8 Leibniz's formula for radius of curvature 379
24.1.9 Changes 379
24.1.10 Small changes 380
24.1.11 The natural exponential 381
24.1.12 Concerning the history of the calculus 382
24.2 Keisler's axioms 382
24.2.1 Small, medium, and large hyperreal numbers 382
24.2.2 Keisler's algebra axiom 383
24.2.3 The uniform derivative of x^{3} 385
24.2.4 Kcisler's function extension axiom 385
24.2.5 Logical real expressions 386
24.2.6 Logical real formulas 386
24.2.7 Logical real statements 387
24.2.8 Continuity and extreme values 388
24.2.9 Microscopic tangency in one variable 389
24.2.10 The Fundamental Theorem of Integral Calculus 390
24.2.11 The Local Inverse Function Theorem 391
24.2.12 Second differences and higher order smoothness 392
25 Pre-University Analysis 395
by Richard O'Donovan
25.1 Introduction 395
25.2 Standard part 396
25.3 Stratified analysis 397
25.4 Derivative 399
25.5 Transfer and closure 400

Part I

Foundations

The strength of nonstandard analysis

H. Jerome Keisler ${ }^{*}$

Abstract

A weak theory nonstandard analysis, with types at all finite levels over both the integers and hyperintegers, is developed as a possible framework for reverse mathematics. In this weak theory, we investigate the strength of standard part principles and saturation principles which are often used in practice along with first order reasoning about the hyperintegers to obtain second order conclusions about the integers.

1.1 Introduction

In this paper we revisit the work in [5] and [6], where the strength of nonstandard analysis is studied. In those papers it was shown that weak fragments of set theory become stronger when one adds saturation principles commonly used in nonstandard analysis.

The purpose of this paper is to develop a framework for reverse mathematics in nonstandard analysis. We will introduce a base theory, "weak nonstandard analysis" (WNA), which is proof theoretically weak but has types at all finite levels over both the integers and the hyperintegers. In $W N A$ we study the strength of two principles that are prominent in nonstandard analysis, the standard part principle in Section 1.6, and the saturation principle in Section 1.9. These principles are often used in practice along with first order reasoning about the hyperintegers to obtain second order conclusions about the integers, and for this reason they can lead to the discovery of new results.

The standard part principle (STP) says that a function on the integers exists if and only if it is coded by a hyperinteger. Our main results show that in $W N A, S T P$ implies the axiom of choice for quantifier-free formulas (Theorem 17), STP+saturation for quantifier-free formulas implies choice for arithmetical formulas (Theorem 23), and $S T P+$ saturation for formulas with

[^1]first order quantifiers implies choice for formulas with second order quantifiers (Theorem 25). The last result might be used to identify theorems that are proved using nonstandard analysis but cannot be proved by the methods commonly used in classical mathematics.

The natural models of WNA will have a superstructure over the standard integers \mathbb{N}, a superstructure over the hyperintegers ${ }^{*} \mathbb{N}$, and an inclusion map $j: \mathbb{N} \rightarrow{ }^{*} \mathbb{N}$. With the two superstructures, it makes sense to ask whether a higher order statement over the hyperintegers implies a higher order statement over the integers. As is commonly done in the standard literature on weak theories in higher types, we use functional superstructures with types of functions rather than sets. The base theory WNA is neutral between the internal set theory approach and the superstructure approach to nonstandard analysis, and the standard part and saturation principles considered here arise in both approaches. For background in model theory, see [2, Section 4.4].

The theory $W N A$ is related to the weak nonstandard theory $N P R A^{\omega}$ of Avigad [1], and the base theory $R C A_{0}^{\omega}$ for higher order reverse mathematics proposed by Kohlenbach [7]. The paper [1] shows that the theory NPRA ${ }^{\omega}$ is weak in the sense that it is conservative over primitive recursive arithmetic (PRA) for Π_{2} sentences, but is still sufficient for the development of much of analysis. The theory $W N A$ is also conservative over $P R A$ for Π_{2} sentences, but has more expressive power. In Sections 1.11 and 1.12 we will introduce a stronger, second order Standard Part Principle, and give some relationships between this principle and the theories $N P R A^{\omega}$ and $R C A_{0}^{\omega}$.

1.2 The theory $P R A^{\omega}$

Our starting point is the theory $P R A$ of primitive recursive arithmetic, introduced by Skolem. It is a first order theory which has function symbols for each primitive recursive function (in finitely many variables), and the equality relation $=$. The axioms are the rules defining each primitive recursive function, and induction for quantifier-free formulas. This theory is much weaker than Peano arithmetic, which has induction for all first order formulas.

An extension of $P R A$ with all finite types was introduced by Gödel [4], and several variations of this extension have been studied in the literature. Here we use the finite type theory $P R A^{\omega}$ as defined in Avigad [1].

There is a rich literature on constructive theories in intuitionistic logic that are very similar to $P R A^{\omega}$, such as the finite type theory $H A^{\omega}$ over Heyting arithmetic (see, for example, [9]). However, in this paper we work exclusively in classical logic.

We first introduce a formal object N and definc a collection of formal objects called types over N.
(1) The base type over N is N.
(2) If σ, τ are types over N, then $\sigma \rightarrow \tau$ is a type over N.

We now build the formal language $L\left(P R A^{\omega}\right) . L\left(P R A^{\omega}\right)$ is a many-sorted first order language with countably many variables of each type σ over N, and the equality symbol $=$ at the base type N only. It has the usual rules of manysorted logic, including the rule $\exists f \forall u f(u)=t(u, \ldots)$ where u, f are variables of type $\sigma, \sigma \rightarrow N$ and $t(u, \ldots)$ is a term of type N in which f does not occur.

We first describe the symbols and then the corresponding axioms.
$L\left(P R A^{\omega}\right)$ has the following function symbols:

- A function symbol for each primitive recursive function.
- The primitive recursion operator which builds a term $R(m, f, n)$ of type N from terms of typc $N, N \rightarrow N$, and N.
- The definition by cases operator which builds a term $c(n, u, v)$ of type σ from terms of type N, σ, and σ.
- The λ operator which builds a term λv.t of type $\sigma \rightarrow \tau$ from a variable v of type σ and a term t of type τ.
- The application operator which builds a term $t(s)$ of type τ from terms s of type σ and t of type $\sigma \rightarrow \tau$.

Given terms r, t and a variable v of the appropriate types, $r(t / v)$ denotes the result of substituting t for v in r. Given two terms s, t of type $\sigma, s \equiv t$ will denote the infinite scheme of formulas $r(s / v)=r(t / v)$ where v is a variable of type σ and $r(v)$ is an arbitrary term of type N. ミ is a substitute for the missing equality relations at higher types.

The axioms for $P R A^{\omega}$ are as follows.

- Each axiom of PRA.
- The induction scheme for quantifier-free formulas of $L\left(P R A^{\omega}\right)$.
- Primitive recursion: $R(m, f, 0)=m, R(m, f, s(n))=f(n, R(m, f, n))$.
- Cases: $c(0, u, v) \equiv u, c(s(m), u, v) \equiv v$.
- Lambda abstraction: $(\lambda u . t)(s) \equiv t(s / u)$.

The order relations $<, \leq$ on type N can be defined in the usual way by quantifier-free formulas.

In [1] additional types $\sigma \times \tau$, and term-building operations for pairing and projections with corresponding axioms were also included in the language, but
as explained in [1], these symbols are redundant and are often omitted in the literature.

On the other hand, in [1] the symbols for primitive recursive functions are not included in the language. These symbols are redundant because they can be defined from the primitive recursive operator R, but they are included here for convenience.

We state a conservative extension result from [1], which shows that $P R A^{\omega}$ is very weak.

Proposition $1 P R A^{\omega}$ is a conservative extension of $P R A$, that is, $P R A^{\omega}$ and $P R A$ have the same consequences in $L(P R A)$.

The natural model of $P R A^{\omega}$ is the full functional superstructure $V(\mathbb{N})$, which is defined as follows. \mathbb{N} is the set of natural numbers. Define $V_{N}(\mathbb{N})=\mathbb{N}$, and inductively define $V_{\sigma \rightarrow \tau}(\mathbb{N})$ to be the set of all mappings from $V_{\sigma}(\mathbb{N})$ into $V_{\tau}(\mathbb{N})$. Finally, $V(\mathbb{N})=\bigcup_{\sigma} V_{\sigma}(\mathbb{N})$. The superstructure $V(\mathbb{N})$ becomes a model of $P R A^{\omega}$ when each of the symbols of $L\left(P R A^{\omega}\right)$ is interpreted in the obvious way indicated by the axioms. In fact, $V(\mathbb{N})$ is a model of much stronger theories than $P R A^{\omega}$, since it satisfies full induction and higher order choice and comprehension principles.

1.3 The theory $N P R A^{\omega}$

In [1], Avigad introduced a weak nonstandard counterpart of $P R A^{\omega}$, called $N P R A^{\omega}$. NPR A^{ω} adds to $P R A^{\omega}$ a new predicate symbol $S(\cdot)$ for the standard intcgers (and S-relativized quantifiers \forall^{S}, \exists^{S}), and a constant H for an infinite integer, axioms saying that $S(\cdot)$ is an initial segment not containing H and is closed under each primitive recursive function, and a transfer axiom scheme for universal formulas. In the following sections we will use a weakening of $N P R A^{\omega}$ as a part of our base theory.

In order to make $N P R A^{\omega}$ fit better with the present paper, we will build the formal language $L\left(N P R A^{\omega}\right)$ with types over a new formal object ${ }^{*} N$ instcad of over N. The base type over ${ }^{*} N$ is ${ }^{*} N$, and if σ, τ are types over ${ }^{*} N$ then $\sigma \rightarrow \tau$ is a type over ${ }^{*} N$.

For each type σ over N, let ${ }^{*} \sigma$ be the type over ${ }^{*} N$ built in the same way. For each function symbol u in $L\left(P R A^{\omega}\right)$ from types $\vec{\sigma}$ to type $\tau, L\left(N P R A^{\omega}\right)$ has a corresponding function symbol * u from types ${ }^{*} \vec{\sigma}$ to type ${ }^{*} \tau$. $L\left(N P R A^{\omega}\right)$ also has the equality relation $=$ for the base type ${ }^{*} N$, and the extra constant symbol H and the standardness predicate symbol S of type ${ }^{*} N$.

We will use the following conventions throughout this paper. When we write a formula $A(\vec{v})$, it is understood that \vec{v} is a tuple of variables that contains
all the free variables of A. If we want to allow additional free variables we write $A(\vec{v}, \ldots)$. We will always let:

- m, n, \ldots be variables of type N,
- x, y, \ldots be variables of type ${ }^{*} N$,
- f, g, \ldots be variables of type $N \rightarrow N$.

To describe the axioms of $N P R A^{\omega}$ we introduce the star of a formula of $L\left(P R A^{\omega}\right)$. Given a formula A of $L\left(P R A^{\omega}\right)$, a star of A is a formula ${ }^{*} A$ of $L\left(N P R A^{\omega}\right)$ which is obtained from A by replacing each variable of type σ in A by a variable of type ${ }^{*} \sigma$ in a one to one fashion, and replacing each function symbol in A by its star. The order relations on ${ }^{*} N$ will be written $<, \leq$ without stars.

The axioms of $N P R A^{\omega}$ are as follows:

- The star of each axiom of $P R A^{\omega}$.
- S is an initial segment: $\neg S(H) \wedge \forall x \forall y[S(x) \wedge y \leq x \rightarrow S(y)]$.
- S is closed under primitive recursion.
- Transfer: $\forall^{S} \vec{x}^{*} A(\vec{x}) \rightarrow \forall \vec{x}^{*} A(\vec{x}), A(\vec{m})$ quantifier-free in $L\left(P R A^{\omega}\right)$.

It is shown in [1] that if $A(m, n)$ is quantifier-free in $L(P R A)$ and $N P R A^{\omega}$ proves $\forall^{S} x \exists y^{*} A(x, y)$, then $P R A$ proves $\forall m \exists n A(m, n)$. It follows that $N P R A^{\omega}$ is conservative over $P R A$ for Π_{2} sentences.

The natural models of $N P R A^{\omega}$ are the internal structures ${ }^{*} V(\mathbb{N})$, which are proper elementary extensions of $V(\mathbb{N})$ in the many-sorted sense, with additional symbols S for \mathbb{N} and H for an clement of ${ }^{*} \mathbb{N} \backslash \mathbb{N}$.

1.4 The theory WNA

We now introduce our base theory $W N A$, weak nonstandard analysis. The idea is to combine the theory $P R A^{\omega}$ with types over N with a weakening of the theory $N P R A^{\omega}$ with types over ${ }^{*} N$, and form a link between the two by identifying the standardness predicate S of $N P R A^{\omega}$ with the lowest type N of $P R A^{\omega}$. In this setting, it will make sense to ask whether a formula with types over ${ }^{*} N$ implies a formula with types over N.

The language $L(W N A)$ of $W N A$ has both types over N and types over ${ }^{*} N$. It has all of the symbols of $L\left(P R A^{\omega}\right)$, all the symbols of $L\left(N P R A^{\omega}\right)$ except the primitive recursion operator ${ }^{*} R$, and has one more function symbol j which goes from type N to type ${ }^{*} N$.

We make the axioms of $W N A$ as weak as we can so as to serve as a blank screen for viewing the relative strengths of additional statements which arise in nonstandard analysis.

The axioms of WNA are as follows:

- The axioms of $P R A^{\omega}$.
- The star of each axiom of $P R A$.
- The stars of the Cases and Lambda abstraction axioms of $P R A^{\omega}$.
- S is an initial segment: $\neg S(H) \wedge \forall x \forall y[S(x) \wedge y \leq x \rightarrow S(y)]$.
- S is closed under primitive recursion.
- j maps S onto $\mathbb{N}: \forall x[S(x) \leftrightarrow \exists m x=j(m)]$.
- Lifting: $j(\alpha(\vec{m}))={ }^{*} \alpha(j(\vec{m}))$ for each primitive recursive function α.

The star of a quantifier-free formula of $L(P R A)$, possibly with some variables replaced by H, will be called an internal quantifier-free formula. The stars of the axioms of $P R A$ include the star of the defining rule for each primitive recursive function, and the induction scheme for internal quantifier-free formulas (which we will call internal induction).

The axioms of $N P R A^{\omega}$ that are left out of $W N A$ are the star of the Primitive Recursion scheme, the star of the quantifier-free induction scheme of $P R A^{\omega}$, and Transfer. These axioms are statements about the hyperintegers which involve terms of higher type.

Note that WNA is noncommittal on whether the characteristic function of S exists in type ${ }^{*} N \rightarrow{ }^{*} N$, while the quantifier-free induction scheme of $N P R A^{\omega}$ precludes this possibility.

In practice, nonstandard analysis uses very strong transfer axioms, and extends the mapping j to higher types. Strong axioms of this type will not be considered here.

Theorem $2 W N A+N P R A^{\omega}$ is a conservative extension of $N P R A^{\omega}$, that is, $N P R A^{\omega}$ and $W N A+N P R A^{\omega}$ have the same consequences in $L\left(N P R A^{\omega}\right)$.

Proof. Let M be a model of $N P R A^{\omega}$, and let M^{S} be the restriction of M to the standardness predicate S. Then M^{S} is a model of $P R A$. By Proposition 1, the complete theory of M^{S} is consistent with $P R A^{\omega}$. Therefore $P R A^{\omega}$ has a model K whose restriction K^{N} to type N is elementarily equivalent to M^{S}. By the compactness theorem for many-sorted logic, there is a model M_{1} elementarily
equivalent to M and a model K_{1} elementarily equivalent to K with an isomorphism $j: M_{1}^{S} \cong K_{1}^{N}$, such that $\left\langle K_{1}, M_{1}, j\right\rangle$ is a model of $W N A+N P R A^{\omega}$. Thus every complete extension of $N P R A^{\omega}$ is consistent with $W N A+N P R A^{\omega}$, and the theorem follows.

Corollary 3 WNA is a conservative extension of $P R A$ for Π_{2} formulas. That is, if $A(m, n)$ is quantifier-free in $L(P R A)$ and $W N A \vdash \forall m \exists n A(m, n)$, then $P R A \vdash \forall m \exists n A(m, n)$.

Proof. Suppose $W N A \vdash \forall m \exists n A(m, n)$. By the Lifting Axiom, WNA \vdash $\forall^{S} x \exists^{S} y{ }^{*} A(x, y)$. By Theorem 2, $N P R A^{\omega} \vdash \forall^{S} x \exists^{S} y^{*} A(x, y)$. Then $P R A \vdash$ $\forall m \exists n A(m, n)$ by Corollary 2.3 in [1].

Each model of $W N A$ has a $V(\mathbb{N})$ part formed by restricting to the objects with types over N, and a $V\left({ }^{*} \mathbb{N}\right)$ part formed by restricting to the objects with types over ${ }^{*} N$. Intuitively, the $V(\mathbb{N})$ and $V\left({ }^{*} \mathbb{N}\right)$ parts of $W N A$ are completely independent of each other, except for the inclusion map j at the zeroth level. The standard part principles introduced later in this paper will provide links between types $N \rightarrow N$ and $(N \rightarrow N) \rightarrow N$ in the $V(\mathbb{N})$ part and types ${ }^{*} N$ and ${ }^{*} N \rightarrow{ }^{*} N$ in the $V\left({ }^{*} \mathbb{N}\right)$ part.

WNA has two natural models, the "internal model" $\left\langle V(\mathbb{N}),{ }^{*} V(\mathbb{N}), j\right\rangle$ which contains the natural model ${ }^{*} V(\mathbb{N})$ of $N P R A^{\omega}$, and the "full model" $\left\langle V(\mathbb{N}), V\left({ }^{*} \mathbb{N}\right), j\right\rangle$ which contains the full superstructure $V\left({ }^{*} \mathbb{N}\right)$ over ${ }^{*} \mathbb{N}$. In both models, j is the inclusion map from \mathbb{N} into ${ }^{*} \mathbb{N}$. The full natural model $\left\langle V(\mathbb{N}), V\left({ }^{*} \mathbb{N}\right), j\right\rangle$ of $W N A$ does not satisfy the axioms $N P R A^{\omega}$. In particular, the star of quantificr-free induction fails in this model, because the characteristic function of S exists as an object of type ${ }^{*} N \rightarrow{ }^{*} N$.

1.5 Bounded minima and overspill

In this section we prove some useful consequences of the $W N A$ axioms.
Given a formula $A(x, \ldots)$ of $L(W N A)$, the bounded minimum operator is defined by

$$
u=(\mu x<y) A(x, \ldots) \leftrightarrow[u \leq y \wedge(\forall x<u) \neg A(x, \ldots) \wedge[A(u, \ldots) \vee u=y]]
$$

where u is a new variable. By this we mean that the expression to the left of the \leftrightarrow symbol is an abbreviation for the formula to the right of the \leftrightarrow symbol. In particular, if z docs not occur in $A,(\mu z<1) A(\ldots)$ is the (inverted) characteristic function of A, which has the value 0 when A is true and the value 1 when A is false.

In $P R A$, the bounded minimum operator is defined similarly.

Lemma 4 Let $A(m, \vec{n})$ be a quantifier-free formula of $L(P R A)$ and let $\alpha(p, \vec{n})$ be the primitive recursive function such that in $P R A$,

$$
\alpha(p, \vec{n})=(\mu m<p) A(m, \vec{n})
$$

Then
(i) WNA $\vdash^{*} \alpha(y, \vec{z})=(\mu x<y)^{*} A(x, \vec{z})$.
(ii) In WNA, there is a quantifier-free formula $B(p, \ldots)$ such that

$$
(\forall m<p) A(m, \ldots) \leftrightarrow B(p, \ldots), \quad(\forall x<y)^{*} A(x, \ldots) \leftrightarrow{ }^{*} B(y, \ldots)
$$

Similarly for $(\exists x<y)^{*} A(x, \ldots)$, and $u=(\mu x<y)^{*} A(x, \ldots)$.
Proof. (i) By the axioms of $W N A$, the defining rule for ${ }^{*} \alpha$ is the star of the defining rule for α.
(ii) Apply (i) and observe that in $W N A$,

$$
(\forall x<y)^{*} A(x, \ldots) \leftrightarrow y=(\mu x<y) \neg^{*} A(x, \ldots)
$$

Let us write $\forall^{\infty} x A(x, \ldots)$ for $\forall x[\neg S(x) \rightarrow A(x, \ldots)]$ and $\exists^{\infty} x A(x, \ldots)$ for $\exists x[\neg S(x) \wedge A(x, \ldots)]$.

Lemma 5 (Overspill) Let $A(x, \ldots)$ be an internal quantifier-free formula. In WNA,

$$
\forall^{S} x A(x, \ldots) \rightarrow \exists^{\infty} x A(x, \ldots) \text { and } \forall^{\infty} x A(x, \ldots) \rightarrow \exists^{S} x A(x, \ldots)
$$

Proof. Work in WNA. If $A(H, \ldots)$ we may take $x=H$. Assume $\forall^{S} x A(x, \ldots)$ and $\neg A(H, \ldots)$. By Lemma 4 (ii) we may take $u=(\mu x<H) \neg A(x, \ldots)$. Then $\neg S(u)$. Let $x=u-1$. We have $x<u$, so $A(x, \ldots)$. Since S is closed under the successor function, $\neg S(x)$.

We now give a consequence of $W N A$ in the language of $P R A$ which is similar to Proposition 4.3 in [1] for $N P R A^{\omega}$. Σ_{1}-collection in $L(P R A)$ is the scheme

$$
(\forall m<p) \exists n B(m, n, \vec{r}) \rightarrow \exists k(\forall m<p)(\exists n<k) B(m, n, \vec{r})
$$

where B is a formula of $L(P R A)$ of the form $\exists q C, C$ quantifier-free.
Proposition $6 \Sigma_{1}$-collection in $L(P R A)$ is provable in $W N A$.

Proof. We work in WNA. By pairing existential quantifiers, we may assume that $B(m, n, \vec{r})$ is quantifier-free. Assume $(\forall m<p) \exists n B(m, n, \vec{r})$. Let ${ }^{*} B$ be the formula obtained by starring each function symbol in B and replacing variables of type N by variables of type ${ }^{*} N$.

By the Lifting Axiom and the axiom that S is an initial segment,

$$
(\forall x<p) \exists^{S} y^{*} B(x, y, j(\vec{r})) .
$$

Then

$$
\forall^{\infty} w(\forall x<p)(\exists y<w)^{*} B(x, y, j(\vec{r}))
$$

By Lemma 4 and Overspill,

$$
\exists^{S} w(\forall x<p)(\exists y<w)^{*} B(x, y, j(\vec{r}))
$$

By the Lifting Axiom again,

$$
\exists k(\forall m<p)(\exists n<k) B(m, n, \vec{r})
$$

1.6 Standard parts

This section introduces a standard part notion which formalizes a construction commonly used in nonstandard analysis, and provides a link between the type $N \rightarrow N$ and the type ${ }^{*} N$.

In type N let $(n)_{k}$ be the power of the k-th prime in n, and in type ${ }^{*} N$ let $(x)_{y}$ be the power of the y-th prime in x. The function $(n, k) \mapsto(n)_{k}$ is primitive recursive, and its star is the function $(x, y) \mapsto(x)_{y}$.

Hereafter, when it is clear from the context, we will write t instead of $j(t)$ in formulas of $L(W N A)$.

Intuitively, we identify $j(t)$ with t, but officially, they are different because t has type N while $j(t)$ has type ${ }^{*} N$. This will make formulas easier to read. When a term t of type N appears in a place of type ${ }^{*} N$, it really is $j(t)$.

In the theory $W N A$, we say that x is near-standard, in symbols $n s(x)$, if $\forall^{S} z S\left((x)_{z}\right)$. Note that this is equivalent to $\forall n S\left((x)_{n}\right)$. We employ the usual convention for relativized quantifiers, so that $V^{n s} x B$ means $\forall x[n s(x) \rightarrow B]$ and $\exists^{n s} x B$ means $\exists x[n s(x) \wedge B]$. We write

$$
x \approx y \text { if } n s(x) \wedge \forall^{S} z(x)_{z}=(y)_{z}
$$

This is equivalent to $n s(x) \wedge \forall n(x)_{n}=(y)_{n}$. We write $f={ }^{\circ} x$, and say f is the standard part of x and x is a lifting of f, if

$$
n s(x) \wedge \forall n f(n)=(x)_{n} .
$$

Note that the operation $x \mapsto{ }^{o} x$ goes from type ${ }^{*} N$ to type $N \rightarrow N$. In nonstandard analysis, this often allows one to obtain results about functions of type $N \rightarrow N$ by reasoning about hyperintegers of type * N.

Lemma 7 In WNA, suppose that x is near-standard. Then
(i) If $x \approx y$ then $n s(y)$ and $y \approx x$.
(ii) $(\exists y<H) x \approx y$.

Proof. (i) Suppose $x \approx y$. If $S(z)$ then $S\left((x)_{z}\right)$ and $(y)_{z}=(x)_{z}$, so $S\left((y)_{z}\right)$. Therefore $n s(y)$, and $y \approx x$ follows trivially.
(ii) Let β be the primitive recursive function $\beta(m, n)=\Pi_{i<m} p_{i}^{(n)_{i}}$. By Lifting and defining rules for β and $* \beta, \forall x \forall u \forall z\left[z<u \rightarrow(x)_{z}=(* \beta(u, x))_{z}\right]$. Thercfore $\forall^{\infty} u \forall^{S} z(x)_{z}=\left({ }^{*} \beta(u, x)\right)_{z}$, and hence $\forall^{\infty} u x \approx{ }^{*} \beta(u, x)$. We have $\forall^{S} w w^{w}<H$, and by Overspill, there exists w with $\neg S(w) \wedge w^{w}<H$. Since x is near-standard, $\forall^{S} u\left[u \leq w \wedge(\forall z<u) p_{z}^{(x)_{z}}<w\right]$. By Overspill,

$$
\exists^{\infty} u\left[u \leq w \wedge(\forall z<u) p_{z}^{(x)_{z}}<w\right]
$$

Let $y={ }^{*} \beta(u, x)$. Then $x \approx y$. By internal induction,

$$
\forall u\left[(\forall z<u) p_{z}^{(x)_{z}}<w \rightarrow{ }^{*} \beta(u, x)<w^{u}\right]
$$

Then $y \leq w^{u} \leq w^{w}<H$.
We now state the Standard Part Principle, which says that every nearstandard x has a standard part and every f has a lifting.

Standard Part Principle (STP):

$$
\forall^{n s} x \exists f f={ }^{o} x \wedge \forall f \exists x f={ }^{o} x
$$

The following corollary is an easy consequence of Lemma 7 .
Corollary 8 In WNA, STP is equivalent to

$$
\left(\forall^{n s} x<H\right) \exists f f={ }^{o} x \wedge \forall f(\exists x<H) f={ }^{o} x
$$

The Weak Koenig Lemma is the statement that every infinite binary tree has an infinite branch. The work in reverse mathematics shows that many classical mathematical statements are equivalent to the Weak Kocnig Lemma.

Theorem 9 The Weak Koenig Lemma is provable in WNA + STP.

[^0]: *See also: T. Skolem "Peano's Axioms and Models of Arithmetic", in Symposium on the Mathematical Interpretation of Formal Systems, North-Holland, Amsterdam 1955, 1-14.

[^1]: *University of Wisconsin, Madison.
 keisler@math.wisc.edu

