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Foreword 

Willst du ins Unendliche schreiten? 
Geh nur im Endlichen nach alle Seiten! 
Willst du dich am Ganzen erquicken, 
So must du das Ganze im Kleinsten erblicken. 

J. W. Goethe {Gott, Gemiit und Welt, 1815) 

Forty-five years ago, an article appeared in the Proceedings of the Royal 
Academy of Sciences of the Netherlands Series A, 64, 432-440 and Indagationes 
Math. 23 (4), 1961, with the mysterious title "Non-standard Analysis" authored 
by the eminent mathematician and logician Abraham Robinson (1908-1974). 

The title of the paper turned out to be a contraction of the two terms "Non­
standard Model" used in model theory and "Analysis". It presents a treatment 
of classical analysis based on a theory of infinitesimals in the context of a 
non-standard model of the real number system R. 

In the Introduction of the article, Robinson states: 

"It is our main purpose to show that the models provide a natural 
approach to the age old problem of producing a calculus involving 
infinitesimal (infinitely small) and infinitely large quantities. As is 
well-known the use of infinitesimals strongly advocated by Leibniz 
and unhesitatingly accepted by Euler fell into disrepute after the 
advent of Cauchy's methods which put Mathematical Analysis on 
a firm foundation". 

To bring out more clearly the importance of Robinson's creation of a rigor­
ous theory of infinitesimals and their reciprocals, the infinitely large quantities, 
that has changed the landscape of analysis, I will briefly share with the reader 
a few highlights of the historical facts that are involved. 

The invention of the "Infinitesimal Calculus" in the second half of the sev­
enteenth century by Newton and Leibniz can be looked upon as the first funda-
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mental new discovery in mathematics of revolutionary nature since the death 
of Archimedes in 212 BC. The fundamental discovery that the operations 
of differentiation (flux) and integration (sums of infinitesimal increments) are 
inverse operations using the intuitive idea that infinitesimals of higher order 
compared to those of lower order may be neglected became an object of severe 
criticism. In the "Analyst", section 35, Bishop G. Berkeley states: 

"And what are these fluxions? The velocities of evanescent incre­
ments. And what are these same evanescent increments? They are 
neither finite quantities, nor quantities infinitesimally small, nor 
yet nothing. May we call them ghosts of departed quantities?" 

The unrest and criticism concerning the lack of a rigorous foundation of the in­
finitesimal calculus led the Academy of Sciences of Berlin, at its public meeting 
on June 3, 1774, and well on the insistence of the Head of the Mathematics Sec­
tion, J. L. Lagrange, to call upon the mathematical community to solve this 
important problem. To this end, it announced a prize contest dealing with 
the problem of "Infinity" in the broadest sense possible in mathematics.The 
announcement read: 

"The utility derived from Mathematics, the esteem it is held in and 
the honorable name of 'exact science' par excellence, that it justly 
deserves, are all due to the clarity of its principles, the rigor of its 
proofs and the precision of its theorems. In order to ensure the 
continuation of these valuable attributes in this important part of 
our knowledge the prize of a 50 ducat gold medal is for: 

A clear and precise theory of what is known as 'Infinity' in Mathe­
matics. It is well-known that higher mathematics regularly makes 
use of the infinitely large and infinitely small. The geometers of 
antiquity and even the ancient analysts, however, took great pains 
to avoid anything approaching the infinity, whereas today's emi­
nent modern analysts admit to the statement 'infinite magnitude' 
is a contradiction in terms. For this reason the Academy desires 
an explanation why it is that so many correct theorems have been 
deduced from a contradictory assumption, together with a formula­
tion of a truly clear mathematical principle that may replace that 
of infinity without, however, rendering investigations by its use 
overly difficult and overly lengthy. It is requested that the sub­
ject be treated in all possible generality and with all possible rigor, 
clarity and simplicity." 
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Twenty-three answers were received before the deadhne of January 1, 1786. 
The prize was awarded to the Swiss mathematician Simon L'Huiher for his 
essay with motto: 

"The infinite is the abyss in which our thoughts are engulfed." 

The members of the "Prize Committee" made the fohowing noteworthy 
points: None of the submitted essays dealt with the question raised "why so 
many correct theorems have been derived from a contradictory assumption?" 
Furthermore, the request for clarity, simplicity and, above all, rigor was not 
met by the contenders, and almost all of them did not address the request for a 
newly formulated principle of infinity that would reach beyond the infinitesimal 
calculus to be meaningful also for algebra and geometry. 

For a detailed account of the prize contest we refer the reader to the interest­
ing biography of Lazare Nicolas M. Carnot (1753-1823), the father of the ther-
modynamicist Sadi Carnot, entitled "Lazare Carnot Savant" by Ch. C. Gille­
spie (Princeton Univ. Press, 1971), which contains a thorough discussion of 
Carnot's entry "Dissertation sur la theorie de Tinfini mathematique", received 
by the Academy after the deadline. The above text of the query was adapted 
from the biography. 

In retrospect, the outcome of the contest is not surprising. Nevertheless 
around that time the understanding of infinitesimals had reached a more so­
phisticated level as the books of J. L. Lagrange and L. N. Carnot published in 
Paris in 1797 show. 

From our present state of the art, it seems that the natural place to look 
for a "general principle of infinity" is set theory. Not however for an "intrinsic" 
definition of infinity. Indeed, as Gian-Carlo Rota expressed not too long ago: 

"God created infinity and man, unable to understand it, had to 
invent finite sets." 

At this point let me digress a little for further clarification about the infinity 
we are dealing with. During the early development of Cantor's creation of set 
theory, it was E. Zermelo who realized that the attempts to prove the existence 
of "infinite" sets, short of assuming there is an "infinite" set or a non-finite 
set as in Proposition 66 of Dedekind's famous "Was sind und was sollen die 
Zahlen?" were fallacious. For this reason, Zermelo in his important paper 
"Sur les ensembles finis et le principe de I'induction complete". Acta Math. 
32 (1909), 185-193 (submitted in 1907), introduced an axiom of "infinity" by 
postulating the existence of a set, say A, non-empty, and that for each of its 
elements x, the singleton {x} is an element of it. 

Returning to the request of the Academy: To discover a property that all 
infinite sets would have in common with the finite sets that would facilitate 
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their use in all branches of mat hematics. What comes to mind is Zermelo's well-
ordering principle. Needless to say that this principle and the manifold results 
and consequences in all branches of mathematics have had an enormous impact 
on the development of mathematics since its introduction. One may ask what 
has this to do with the topic at hand? It so happens that the existence of 
non-standard models depends essentially on it as well and consequently non­
standard analysis too. 

The construction of the real number system (linear continuum) by Cantor 
and Dedekind in 1872 and the Weierstrass e-5 technique gradually replaced 
the use of infinitesimals. Hilbert's characterization in 1899 of the real num­
ber system as a (Dedekind) complete field led to the discovery, in 1907, by 
H. Hahn, of non-archimedian totally ordered field extensions of the reals. This 
development brought about a renewed interest in the theory of infinitesimals. 
The resulting "calculus", certainly of interest by itself, lacked a process of defin­
ing extensions of the elementary and special functions, etc., of the objects of 
classical analysis. It is interesting that Cantor strongly rejected the existence 
of non-archimedian totally ordered fields. He expressed the view that no ac­
tual infinities could exist other than his transfinite cardinal numbers and that, 
other than 0, infinitesimals did not exist. He also offered a "proof" in which he 
actually assumed order completeness. 

It took one hundred and seventy-five years from the time of the deadline 
of the Berlin Academy contest to the publication of Robinson's paper "Non­
standard Analysis". As Robinson told us, his discovery did not come about as 
a result of his efforts to solve Leibniz' problem; far from it. Working on a paper 
on formal languages where the length of the sentences could be countable, it 
occurred to him to look up again the important paper by T. Skolem "Uber 
die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich oder abzahlbar 
unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fund. Math. 23 
(1934), 150-161*. 

Briefiy, Skolem showed in his paper the existence of models of Peano arith­
metic having "infinitely large numbers". Nevertheless in his models the prin­
ciple of induction holds only for subsets determined by admissible formulas 
from the chosen formal language used to describe Peano's axiom system. The 
non-empty set of the infinitely large numbers has no smallest element and so 
cannot be determined by a formula of the formal language and is called an 
external set; those that can were baptized as internal sets of the model. 

Robinson, rereading Skolem's paper, wondered what systems of numbers 
would emerge if he would apply Skolem's method to the axiom system of the 
real numbers. In doing so, Robinson immediately realized that the real number 

See also: T. Skolem "Peano's Axioms and Models of Arithmetic", in Symposium on the 
Mathematical Interpretation of Formal Systems, North-Holland, Amsterdam 1955, 1-14. 
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system was a non-archimedian totally ordered field extension of the reals whose 
structure satisfies all the properties of the reals, and that, in particular, the 
set of infinitesimals lacking a least upper bound was an external set. 

This is how it all started and the Academy would certainly award Robinson 
the gold medal. 

At the end of the fifties at Caltech (California Institute of Technology) 
Arthur Erdelyi FRS (1908-1977) conducted a lively seminar entitled "Gener­
alized Functions". It dealt with various areas of current research at that time 
in such fields as J. Mikusinski's rigorous foundation of the so-called Heaviside 
operational calculus and L. Schwartz' theory of distributions. In connection 
with Schwartz' distribution theory, Erdelyi urged us to read the just appeared 
papers by Laugwitz and Schmieden dealing with the representations of the 
Dirac-delta functions by sequences of point-functions converging to 0 point-
wise except at 0 where they run to infinity. Robinson's paper fully clarified 
this phenomenon. Reduced powers of M instead of ultrapowers, as in Robin­
son's paper, were at play here. In my 1962 Notes on Non-standard Analysis 
the ultrapower construction was used, but at that time without using explicitly 
the Transfer Principle. 

In 1967 the first International Symposium on Non-standard Analysis took 
place at Caltech with the support of the U.S. Office of Naval Research. At the 
time the use of non-standard models in other branches of mathematics started 
to blossom. This is the reason that the Proceedings of the Symposium carries 
the title: Applications of Model Theory to Algebra, Analysis and Probability. 

A little anecdote about the meeting. When I opened the newspaper one 
morning during the week of the meeting, I discovered to my surprise that it had 
attracted the attention of the Managing Editor of the Pasadena Star News; his 
daily "Conversation Piece" read: 

"A Stanford Professor spoke in Pasadena this week on the subject 
'Axiomatizations of Non-standard Analysis which are Conservative 
Extensions of Formal Systems for Standard Classical Analysis', a 
fact which I shall tuck away for reassurance on those days when I 
despair of communicating clearly." 

I may add here that from the beginning Robinson was very interested in 
the formulation of an axiom system catching his non-standard methodology. 

Unfortunately he did not live to see the solution of his problem by E. Nelson 
presented in the 1977 paper entitled "Internal Set Theory". A presentation by 
Nelson, "The virtue of Simplicity", can be found in this book. 

A final observation. During the last sixty years we have all seen come 
about the solutions of a number of outstanding problems and conjectures. 
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some centuries old, that have enriched mathematics. The century-old problem 
to create a rigorous theory of infinitesimals no doubt belongs in this category. 

It is somewhat surprising that the appreciation of Robinson's creation was 
slow in coming. Is it possible that the finding of the solution in model theory, 
a branch of mathematical logic, had something to do with that? 

The answer may perhaps have been given by Augustus de Morgan 
(1806-1871), who is well-known from De Morgan's Law, and who in collabo­
ration with George Boole (1805-1864) reestablished formal logic as a branch 
of exact science in the nineteenth century, when he wrote: 

"We know that mathematicians care no more for logic than logicians 
for mathematics. The two eyes of exact sciences are mathematics 
and logic: the mathematical sect puts out the logical eye, the logical 
sect puts out the mathematical eye; each believing that it can see 
better with one eye than with two." 

We owe Abraham Robinson a great deal for having taught us the use of 
both eyes. 

This book shows clearly that we have learned our lesson well. 
All the contributors are to be commended for the way they have made an 

effort to make their contributions that are based on the talks at the meeting 
"Nonstandard Mathematics 2004" as self-contained as can be expected. For 
further facilitating the readers, the editors have divided the papers in categories 
according to the subject. The whole presents a very rich assortment of the non­
standard approach to diverse areas of mathematical analysis. 

I wish it many readers. 

Wilhelmus A. J. Luxemburg 
Pasadena, California 
September 2006 
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Part I 

Foundations 



1 
The strength of nonstandard analysis 

H. Jerome Keisler 

Abstract 
A weak theory nonstandard analysis, with types at all finite levels over 
both the integers and hyperintegers, is developed as a possible framework 
for reverse mathematics. In this weak theory, we investigate the strength 
of standard part principles and saturation principles which are often used 
in practice along with first order reasoning about the hyperintegers to 
obtain second order conclusions about the integers. 

1.1 Introduction 

In this paper we revisit the work in [5] and [6], where the strength of 
nonstandard analysis is studied. In those papers it was shown that weak 
fragments of set theory become stronger when one adds saturation principles 
commonly used in nonstandard analysis. 

The purpose of this paper is to develop a framework for reverse mathe­
matics in nonstandard analysis. We will introduce a base theory, "weak non­
standard analysis" {WNA)^ which is proof theoretically weak but has types 
at all finite levels over both the integers and the hyperintegers. In WNA we 
study the strength of two principles that are prominent in nonstandard analy­
sis, the standard part principle in Section 1.6, and the saturation principle in 
Section 1.9. These principles are often used in practice along with first order 
reasoning about the hyperintegers to obtain second order conclusions about 
the integers, and for this reason they can lead to the discovery of new results. 

The standard part principle (STP) says that a function on the integers 
exists if and only if it is coded by a hyperinteger. Our main results show 
that in WNA^ STP implies the axiom of choice for quantifier-free formulas 
(Theorem 17), STP+saturation for quantifier-free formulas implies choice for 
arithmetical formulas (Theorem 23), and S'TP+saturation for formulas with 
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first order quantifiers imphes choice for formulas with second order quanti­
fiers (Theorem 25). The last result might be used to identify theorems that 
are proved using nonstandard analysis but cannot be proved by the methods 
commonly used in classical mathematics. 

The natural models of WNA will have a superstructure over the standard 
integers N, a superstructure over the hyperintegers *N, and an inclusion map 
j : N ^ *N. With the two superstructures, it makes sense to ask whether 
a higher order statement over the hyperintegers implies a higher order state­
ment over the integers. As is commonly done in the standard literature on 
weak theories in higher types, we use functional superstructures with types 
of functions rather than sets. The base theory WNA is neutral between the 
internal set theory approach and the superstructure approach to nonstandard 
analysis, and the standard part and saturation principles considered here arise 
in both approaches. For background in model theory, see [2, Section 4.4]. 

The theory WNA is related to the weak nonstandard theory NPRA^ of 
Avigad [1], and the base theory RCAQ for higher order reverse mathematics 
proposed by Kohlenbach [7]. The paper [1] shows that the theory NPRA^ is 
weak in the sense that it is conservative over primitive recursive arithmetic 
[PRA) for 112 sentences, but is still sufficient for the development of much of 
analysis. The theory WNA is also conservative over PR A for 112 sentences, 
but has more expressive power. In Sections 1.11 and 1.12 we will introduce 
a stronger, second order Standard Part Principle, and give some relationships 
between this principle and the theories NPRA^ and RCA^. 

1.2 The theory PRA^ 

Our starting point is the theory PRA of primitive recursive arithmetic, 
introduced by Skolem. It is a first order theory which has function symbols for 
each primitive recursive function (in finitely many variables), and the equality 
relation =. The axioms are the rules defining each primitive recursive function, 
and induction for quantifier-free formulas. This theory is much weaker than 
Peano arithmetic, which has induction for all first order formulas. 

An extension of PRA with all finite types was introduced by Godel [4], and 
several variations of this extension have been studied in the literature. Here 
we use the finite type theory PRA^ as defined in Avigad [1]. 

There is a rich literature on constructive theories in intuitionistic logic that 
are very similar to PRA^ ^ such as the finite type theory HA^ over Heyting 
arithmetic (see, for example, [9]). However, in this paper we work exclusively 
in classical logic. 

We first introduce a formal object Â  and define a collection of formal 
objects called types over N. 
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(1) The base type over N is N. 

(2) If cr, T are types over N^ then cr ^ r is a type over A .̂ 

We now build the formal language L{PRA^). L{PRA^) is a many-sorted 
first order language with countably many variables of each type a over TV, and 
the equality symbol = at the base type N only. It has the usual rules of many-
sorted logic, including the rule 3f\/uf{u) = t{u^...) where n, / are variables 
of type a^a ^ N and t{u,...) is a term of type N in which / does not occur. 

We first describe the symbols and then the corresponding axioms. 
L{PRA^) has the following function symbols: 

• A function symbol for each primitive recursive function. 

• The primitive recursion operator which builds a term R{m, / , n) of type 
N from terms of type N^ N -^ N^ and N. 

• The definition by cases operator which builds a term c{n^ u^ v) of type a 
from terms of type N^ a^ and a. 

• The A operator which builds a term Xv.t of type a ^ r from a variable 
V of type a and a term t of type r . 

• The application operator which builds a term t{s) of type r from terms 
s of type a and t of type a ^ r. 

Given terms r, t and a variable v of the appropriate types, r{t/v) denotes 
the result of substituting tioivinr. Given two terms 5, t of type a, s = t will 
denote the infinite scheme of formulas r{s/v) = r(t/v) where i; is a variable 
of type (J and r{v) is an arbitrary term of type N. = is a substitute for the 
missing equality relations at higher types. 

The axioms for PRA^ are as follows. 

• Each axiom of PR A. 

• The induction scheme for quantifier-free formulas of L{PRA^). 

• Primitive recursion: R{m, / , 0) = m, R{m^ / , s{n)) = f{n, R{m, / , n)). 

• Cases: c(0,n,^') = u, c{s{m)^u,v) = v. 

• Lambda abstraction: {Xu.t){s) = t{s/u). 

The order relations <, < on type TV can be defined in the usual way by 
quantifier-free formulas. 

In [1] additional types cr x r , and term-building operations for pairing and 
projections with corresponding axioms were also included in the language, but 
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as explained in [1], these symbols are redundant and are often omitted in 
the literature. 

On the other hand, in [1] the symbols for primitive recursive functions are 
not included in the language. These symbols are redundant because they can 
be defined from the primitive recursive operator i?, but they are included here 
for convenience. 

We state a conservative extension result from [1], which shows that PRA^ 
is very weak. 

Proposition 1 PRA^ is a conservative extension of PRA, that is, PRA^ and 
PRA have the same consequences in L{PRA). 

The natural model of PRA^ is the full functional superstructure T^(N), 
which is defined as follows. N is the set of natural numbers. Define VA^(N) = N, 
and inductively define /̂̂ -̂̂ -̂(N) to be the set of all mappings from Vo-(N) into 
Vr{N). Finally, V{N) = [j^ K(N) . The superstructure V{N) becomes a model 
of PRA^ when each of the symbols of L(PRA^) is interpreted in the obvious 
way indicated by the axioms. In fact, V{N) is a model of much stronger 
theories than PRA'-^ ̂  since it satisfies full induction and higher order choice 
and comprehension principles. 

1.3 The theory NPRA^ 

In [1], Avigad introduced a weak nonstandard counterpart of PRA^ ^ called 
NPRA^. NPRA^ adds to PRA^ a new predicate symbol S'(-) for the standard 
integers (and S'-relativized quantifiers V*̂ , 3* )̂, and a constant H for an infinite 
integer, axioms saying that S'(-) is an initial segment not containing H and is 
closed under each primitive recursive function, and a transfer axiom scheme 
for universal formulas. In the following sections we will use a weakening of 
NPRA^ as a part of our base theory. 

In order to make NPRA^ fit better with the present paper, we will build the 
formal language L(NPRA^) with types over a new formal object W instead of 
over N. The base type over W is W, and if a^ r are types over W then a ^ r 
is a type over W. 

For each type a over A/", let V be the type over W built in the same way. 
For each function symbol u in L{PRA^) from types a to type r , L{NPRA^) 
has a corresponding function symbol *ix from types *(j to type *T. L{NPRA^) 

also has the equality relation = for the base type W, and the extra constant 
symbol H and the standardness predicate symbol S of type W. 

We will use the following conventions throughout this paper. When we 
write a formula A{v)^ it is understood that iTis a tuple of variables that contains 
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all the free variables of A. If we want to allow additional free variables we write 
A{v^...). We will always let: 

• 771, n , . . . be variables of type TV, 

• X, y , . . . be variables of type W, 

• / , ^ , . . . be variables of type N ^ N. 

To describe the axioms of NPRA^ we introduce the star of a formula of 
L{PRA^). Given a formula A of L{PRA''), a s t a r of ^ is a formula *A of 
L{NPRA^) which is obtained from A by replacing each variable of type a in 
A by a variable of type V in a one to one fashion, and replacing each function 
symbol in A by its star. The order relations on W will be written <, < 
without stars. 

The axioms of NPRA^ are as follows: 

• The star of each axiom of PRA^. 

• S is an initial segment: -^S{H) A VxV^ [S{x) Ay < x ^ '^{v)]-

• S is closed under primitive recursion. 

• Transfer: \f^x *A(f) -^ Vx *A(f), A{m) quantifier-free in L{PRA^). 

It is shown in [1] that if A{m^n) is quantifier-free in L{PRA) and NPRA^ 
proves \J^x3y M(x, y), then PRA proves \lm3n A{rn^ n). It follows that NPRA^ 
is conservative over PRA for 112 sentences. 

The natural models of NPRA^ are the internal structures *F(N), which are 
proper elementary extensions of V{H) in the many-sorted sense, with additional 
symbols S for N and H for an element of *N \ N. 

1.4 The theory WNA 

We now introduce our base theory WNA^ weak nonstandard analysis. The 
idea is to combine the theory PRA^ with types over TV with a weakening of 
the theory NPRA^ with types over W, and form a link between the two by 
identifying the standardness predicate S of NPRA^ with the lowest type N of 
PRA^. In this setting, it will make sense to ask whether a formula with types 
over W implies a formula with types over TV. 

The language L( WNA) of WNA has both types over N and types over W. 
It has all of the symbols of L{PRA^), ah the symbols of L{NPRA^) except the 
primitive recursion operator *i?, and has one more function symbol j which 
goes from type N to type W. 
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We make the axioms of WNA as weak as we can so as to serve as a blank 
screen for viewing the relative strengths of additional statements which arise 
in nonstandard analysis. 

The axioms of WNA are as follows: 

• The axioms of PRA"". 

• The star of each axiom of PR A. 

• The stars of the Cases and Lambda abstraction axioms of PRA'^. 

• S' is an initial segment: ^S{H) A \/x\/y [S{x) Ay < x ^ '^{v)]-

• S is closed under primitive recursion. 

• j maps S onto N: \/x [S{x) ^^ 3mx = j{m)]. 

• Lifting: j{a{m)) = *a(j(m)) for each primitive recursive function a. 

The star of a quantifier-free formula of L{PRA)^ possibly with some vari­
ables replaced by H, will be called an internal quantifier-free formula. The 
stars of the axioms of PRA include the star of the defining rule for each prim­
itive recursive function, and the induction scheme for internal quantifier-free 
formulas (which we will call internal induction). 

The axioms of NPRA^ that are left out of WNA are the star of the Primitive 
Recursion scheme, the star of the quantifier-free induction scheme of PRA^^ 
and Transfer. These axioms are statements about the hyperintegers which 
involve terms of higher type. 

Note that WNA is noncommittal on whether the characteristic function 
of S exists in type W -^ W, while the quantifier-free induction scheme of 
NPRA^ precludes this possibility. 

In practice, nonstandard analysis uses very strong transfer axioms, and 
extends the mapping j to higher types. Strong axioms of this type will not be 
considered here. 

Theorem 2 WNA + NPRA^ is a conservative extension of NPRA^, that is, 
NPRA"^ and WNA + NPRA"^ have the same consequences in L{NPRA'^). 

Proof. Let M be a model of NPRA"^, and let M^ be the restriction of M to the 
standardness predicate S. Then M^ is a model of PRA. By Proposition 1, the 
complete theory of M^ is consistent with PRA^. Therefore PRA^ has a model 
K whose restriction K^ to type TV is elementarily equivalent to M^. By the 
compactness theorem for many-sorted logic, there is a model Mi elementarily 
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equivalent to M and a model Ki elementarily equivalent to K with an iso­
morphism j : Mf ^ K f , such that {Ki.MiJ) is a model of WNA + NPRA^. 
Thus every complete extension of NPRA^ is consistent with WNA + NPRA^, 
and the theorem follows. D 

Corollary 3 WNA is a conservative extension of PRA for 112 formulas. That 
is, if A{m,n) is quantifier-free in L{PRA) and WNA h \/m3nA{m,n), then 
PRA h \/m3n A{m^ n). 

Proof. Suppose WNA h \J'w3nA{m^n). By the Lifting Axiom, WNA h 
M^x^^y *A(x,^). By Theorem 2, NPRA"" h \J^x3^y *A(x,7/). Then PRA h 
^m3nA{m^n) by Corollary 2.3 in [1]. D 

Each model of WNA has a V{H) part formed by restricting to the objects 
with types over N^ and a F(*N) part formed by restricting to the objects with 
types over W. Intuitively, the 1/(N) and y(*N) parts of WNA are completely 
independent of each other, except for the inclusion map j at the zeroth level. 
The standard part principles introduced later in this paper will provide links 
between types N ^ N and {N ^ N) ^ N in the V{N) part and types W 
and W -^ W in the V{*N) part. 

WNA has two natural models, the "internal model" (F(N), *F(N), j ) 
which contains the natural model *T/(N) of NPRA"^, and the "full model" 
(F(N),1/(*N), j ) which contains the fuh superstructure y(*N) over *N. In 
both models, j is the inclusion map from N into *N. The full natural model 
(y(N), l / (*N), i ) of WNA does not satisfy the axioms NPRA"^. In particular, 
the star of quantifier-free induction fails in this model, because the character­
istic function of S exists as an object of type ^N ^ ""N. 

1.5 Bounded minima and overspill 

In this section we prove some useful consequences of the WNA axioms. 
Given a formula A{x^...) of L( WW^), the bounded minimum operator 

is defined by 

u = (/ix < y) A{x,...) ^ [u<y/\ (Vx < u)^A{x,...) A [A{u,.. .)\/ u = y]\, 

where n is a new variable. By this we mean that the expression to the left 
of the ^^ symbol is an abbreviation for the formula to the right of the ^^ 
symbol. In particular, if z does not occur in A, [fiz < 1) A{...) is the (inverted) 
characteristic function of A, which has the value 0 when A is true and the 
value 1 when A is false. 

In PRA^ the bounded minimum operator is defined similarly. 
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Lemma 4 Let A^m, n) he a quantifier-free formula of L{PRA) and let a{p, n) 
be the primitive recursive function such that in PR A, 

a{p, n) = {fim < p) A{m^ n). 

Then 

(i) WNA h *a(7/, z) = {fix < y) *A(x, z). 

(a) In WNA, there is a quantifier-free formula B{p^...) such that 

(Vm < p) A{m,...) ^ Bip,...), (Vx < y) *A{x,...) ^ *B{y,...). 

Similarly for {3x < y) *A(x, . . . ) , and u = {fix < y) *A(x,.. .) . 

Proof, (i) By the axioms of WNA^ the defining rule for *a is the star of the 
defining rule for a. 

(ii) Apply (i) and observe that in WNA^ 

(Vx < y) *A(x,...) ^ y = {fix <y) ^*A(x,.. .)• • 

Let us write V^x A{x,...) for Vx [-^S{x) -^ A{x,...)] and 3 ^ x A{x,...) for 
3X[-^S{X)AA{X,...)]. 

Lemma 5 (Overspill) Let A{x,...) be an internal quantifier-free formula. 
In WNA, 

y^xA{x,...)^3'^xA{x,...) and 'i'^x A{x,...) ^ 3^x A{x,...). 

Proof. Work in WNA. If A{H,...) we may take x = H. Assume \/^xA{x,...) 
and -iyl(i7,.. .). By Lemma 4 (ii) we may take u = {fix < H) -iyl(x,. . .) . Then 
^S{u). Let X = u — 1. We have x < n, so A(x , . . . ) . Since S is closed under 
the successor function, ^S{x). D 

We now give a consequence of WNA in the language of PRA which is similar 
to Proposition 4.3 in [1] for NPRA^. Ei-collection in L{PRA) is the scheme 

(VTTT. < p)3nB{m^n,f) -^ 3k{'im < p){3n < k)B{m^n^r) 

where 5 is a formula of L{PRA) of the form 3gC, C quantifier-free. 

Proposition 6 T^i-collection in L{PRA) is provable in WNA. 
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Proof. We work in WNA. By pairing existential quantifiers, we may assume 
that B{m^n^r) is quantifier-free. Assume (Vm < p)3nB{m^n,f). Let *B 
be the formula obtained by starring each function symbol in B and replacing 
variables of type N by variables of type W. 

By the Lifting Axiom and the axiom that S is an initial segment, 

(Vx<p)3S*5(x,^,i(r)). 

Then 
y'^wiyx < p){3y < w) *5(x,^, j ( r ) ) . 

By Lemma 4 and Overspill, 

3^w{yx < p){3y < w) *5(x,y, j ( f )) . 

By the Lifting Axiom again, 

3k{\/m < p){3n < k) B{m^n,r). D 

1.6 Standard parts 

This section introduces a standard part notion which formalizes a construc­
tion commonly used in nonstandard analysis, and provides a link between the 
type N ^ N and the type W. 

In type N let (n)^ be the power of the fc-th prime in n, and in type W 
let {x)y be the power of the y-th. prime in x. The function (n, k) \-^ {n)k is 
primitive recursive, and its star is the function (x,?/) i-̂  {'^)y 

Hereafter, when it is clear from the context, we will write t instead of j{t) 
in formulas of L{ WNA). 

Intuitively, we identify j{t) with t, but officially, they are different because 
t has type N while j{t) has type W. This will make formulas easier to read. 
When a term t of type N appears in a place of type W, it really is j{t). 

In the theory WNA^ we say that x is near-standard, in symbols ns{x)^ if 
y^zS{{x)z)' Note that this is equivalent to Vn5'((x)n)- We employ the usual 
convention for relativized quantifiers, so that \/'^^xB means \/x[ns{x) -^ B] 
and 3'^^xB means 3x [ns{x) A B]. We write 

X ^ y a ns(x) A V*̂ ^ {x)z = {y)z' 

This is equivalent to ns{x) /\\/n{x)n = {y)n- We write / = ^x, and say / is 
the standard part of x and x is a lifting of / , if 

ns{x) A\/nf{n) = (x)^. 
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Note that the operation x \-^ ^x goes from type W to type N ^ N. In 
nonstandard analysis, this often allows one to obtain results about functions 
of type N ^ N hy reasoning about hyperintegers of type W. 

Lemma 7 In WNA, suppose that x is near-standard. Then 

(i) If X ^ y then ns{y) and y ^ x. 

(a) {3y < II)x^y. 

Proof, (i) Suppose x ^ y. If S{z) then S{{x)z) and {y)z = (x)^, so S{{y)z)-
Therefore ns{y)^ and y ^ x follows trivially. 

(ii) Let f3 be the primitive recursive function f3{m^n) = Ui^mPi • By 
Lifting and defining rules for (3 and */3, ̂ x\lu\/z [z < u ^ {x)z = (*^('u,x))^]. 
Therefore y'^u^^z{x)z = (*/3(î , x))^, and hence V^ixa: ^ *P{u,x). We have 
\/^w w^ < i / , and by Overspill, there exists w with -^S{w) A w'^ < H. Since 
X is near-standard, M^u [u <,w f\ i^z < u)pz < w\. By Overspill, 

3 ^ ^ [u<w ^{\/z < u)pf^' < w\. 

Let y = ''f3{u, x). Then x ^ y. By internal induction, 

yu [{yz < u)pf^' <w-^ */3(^,x) < w""]. 

Then y<w'^<w'^<H. D 

We now state the Standard Part Principle, which says that every near-
standard X has a standard part and every / has a lifting. 

Standard Part Principle (STP): 

V^^x3/ / = ^x A V/3x / = ^x. 

The following corollary is an easy consequence of Lemma 7. 

Corollary 8 In WNA, STP is equivalent to 

(V^^x < H)3f / = ^x A V/(3x <H)f = ^x. 

The Weak Koenig Lemma is the statement that every infinite binary 
tree has an infinite branch. The work in reverse mathematics shows that many 
classical mathematical statements are equivalent to the Weak Koenig Lemma. 

Theorem 9 The Weak Koenig Lemma is provable in WNA + STP. 


