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Preface

Trees are a fundamental object in graph theory and combinatorics as well as
a basic object for data structures and algorithms in computer science. During
the last years research related to (random) trees has been constantly increasing
and several asymptotic and probabilistic techniques have been developed in
order to describe characteristics of interest of large trees in different settings.

The purpose of this book is to provide a thorough introduction into various
aspects of trees in random settings and a systematic treatment of the involved
mathematical techniques. It should serve as a reference book as well as a basis
for future research. One major conceptual aspect is to connect combinatorial
and probabilistic methods that range from counting techniques (generating
functions, bijections) over asymptotic methods (singularity analysis, saddle
point techniques) to various sophisticated techniques in asymptotic probabil-
ity (convergence of stochastic processes, martingales). However, the reading
of the book requires just basic knowledge in combinatorics, complex analysis,
functional analysis and probability theory of master degree level. It is also
part of concept of the book to provide full proofs of the major results even if
they are technically involved and lengthy.

Due to the diversity of the topic of the book it is impossible to present an
exhaustive treatment of all known models of random trees and of all important
aspects that have been considered so far. For example, we do not deal with the
simulation of random trees. The choice of the topics reflects the author’s taste
and experience. It is slightly leaning on the combinatorial side and analytic
methods based on generating functions play a dominant role in most of the
parts of the book. Nevertheless, the general goal is to describe the limiting
behaviour of large trees in terms of continuous random objects. This ranges
from central (or other) limit theorems for simple tree statistics to functional
limit theorems for the shape of trees, for example, encoded by the horizontal
or vertical profile. The majority of the results that we present in this book is
very recent.

There are several excellent books and survey articles dealing with some
aspects on combinatorics on trees and graphs resp. with probabilistic meth-
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ods in these topics which complement the present book. One of the first ones
was Harary and Palmer book Graphical enumeration [98]. Around the same
time Knuth published the first three volumes of The Art of Computer Pro-
gramming [128, 129, 130] where several classes of trees related to algorithms
from computer science are systematically investigated. His books with Green
Mathematics for the analysis of algorithms [96] and the one with Graham and
Patashnik Concrete Mathematics [95] complement this programme. In parallel
asymptotic methods in combinatorics, many of them based on generating func-
tions, became more and more important. The articles by Bender Asymptotic
methods in enumeration [7] and Odlyzko Asymptotic enumeration methods
[165] are excellent surveys on this topic. This development is highlighted by
Flajolet and Sedgewick’s recent (monumental) monograph Analytic Combina-
torics [84]. Computer science and in particular the mathematical analysis of
algorithms was always a driving force for developing concepts for the asymp-
totic analysis of trees (see also the books by Kemp [122], Hofri [102], Sedgewick
and Flajolet [191], and by Szpankowski [197]). Moreover, several concepts of
random trees arose naturally in this scientific process (see for example Mah-
moud’s book Evolution of random search trees [146], and Pittel’s, Devroye’s
or Janson’s work).

However, combinatorics and problems of computer science, though impor-
tant, are not the only origin of random tree concepts. There was at least
a second (and almost independent) line of research concerning conditioned
Galton-Watson trees. Here one starts with a Galton-Watson branching process
and conditions on the size of the resulting trees. For example, Kolchin’s book
Random Mappings [132] summarises many results from the Russian school.
This work is complemented by the American school represented by Aldous
[3, 5] and Pitman [171] where stochastic processes related to the Brownian
motion play an important role. The invention of the continuum random tree
as well as the ISE (integrated super-Brownian excursion) by Aldous are break-
throughs. Actually these continuous limit objects are quite universal concepts.
It seems that they also appear as limit objects for several kinds of random
planar maps and other related discrete objects. There are even more general
settings where Lévy processes are used (see the recent survey articles Random
Trees and Applications [135] and Random Real Trees [136] by Le Gall and the
book Probability and Real Trees [75] by Evans). By the way, the study of ran-
dom graphs is completely different from that of random trees (compare with
the books by Bollobás [21], Janson, �Luczak and Ruciński [116], and Kolchin
[133]). Nevertheless, there is a very interesting paper The Birth of the Gi-
ant Component [115] which uses analytic methods that are very close to tree
methods.

This book is divided into nine chapters. The first two of them are providing
some background whereas the remaining chapters 3–9 are devoted to more
specific and (more or less) self contained topics on random trees and on related
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subjects. Of course, they will use basic notions from Chapter 1 and some of
the methods from Chapter 2.

In Chapter 1 we survey several classes of random trees that are considered
here: combinatorial tree classes like planted plane trees, Galton-Watson trees,
recursive trees, and search trees including binary search trees and digital trees.

Chapter 2 is a second introductory chapter. It collects some basic facts on
combinatorics with generating functions and provides an analytic treatment
of generating functions that satisfy a functional equation (or a system of
functional equations) leading to asymptotics and central limit theorems. It is
probably not necessary to study all parts of this chapter in a first reading but
to use it as a reference chapter.

The first purpose of Chapter 3 is tree counting, to obtain explicit for-
mulas for the numbers of trees of given size with possible and asymptotic
information on these numbers in those cases, where no or no simple explicit
formula is available. The analysis of several combinatorial classes of trees and
also of Galton-Watson trees is based on generating functions and their analytic
properties that are discussed in Chapter 2. The recursive structure of (rooted)
trees usually leads to a functional equation for the corresponding generating
functions. By extending these counting procedures with the help of bivariate
generating functions one can also study (so-called) additive statistics on these
tree classes like the number of nodes of given degree or more generally the
number of occurrences of a given pattern. In all these cases we derive a central
limit theorem.

The general topic of Chapters 4–7 is the limiting behaviour of the profile
and related statistics of different classes of random trees. Starting from a
natural (vertex) labelling on a discrete object, for example the distance to a
root vertex in a tree, the profile is the value distribution of the labels. More
precisely, if a random discrete object has size n then the profile (Xn,k) is
given by the numbers Xn,k of vertices with label k. The idea behind is that
the profile (Xn,k) describes the shape of the random object. It is therefore
natural to search for a proper limiting object of the profile after a proper
scaling.

In Chapter 4 we discuss the depth profile (induced by the distance to
the root) of Galton-Watson trees with bounded offspring variance which can
be approximated by the local time of the Brownian excursion of duration
1. This property is closely related to the convergence of normalised Galton-
Watson trees to the continuum random tree introduced by Aldous [2, 3, 4].
The proof method that we use here follows the same principles as those of
the previous chapters. We use multivariate generating functions and analytic
methods. Interestingly these methods can be applied to unlabelled rooted
trees, too, where we obtain the same approximation result. And the only
successful approach to the latter class of trees – also called Pólya trees – is
based on generating functions in combination with Pólya’s theory of counting.
Thus, Pólya trees look like Galton-Watson trees although they are definitely
not of that kind.
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Chapter 5 considers again Galton-Watson trees but a different kind of pro-
file that is induced by a random walk on the tree. We fix an integer valued
distribution η with zero mean. Then, given a tree T , every edge e of T is en-
dowed with an independent copy ηe of η. The label of a node is then defined
as the sum of ηe over all edges e on the path to the root. There are several
motivations to study such random models. For example, if η has only values
±1 or 0 and ±1 then the resulting trees are closely related to random trian-
gulations and quadrangulations. Furthermore, the random variables ηe can be
seen as random increments in an embedding of the tree in the space. This idea
is originally due to Aldous [5] and gave rise of the ISE, the integrated super-
Brownian excursion, which acts as the limiting occupation measure of the
induced label distribution. The final result is that the corresponding profile
can be approximated by the (random) density of the ISE. This result reaches
very far and is out of scope of this book but, nevertheless, there are special
cases which are of particular interest and capable for the framework of the
present book. By the use of explicit generating functions of unexpected form
the analysis recovers one-dimensional versions of the functional limit theorem
and also leads to integral representations for several parameters of the ISE.
These observations are due to Bousquet-Mélou [23].

Chapter 6 deals with recursive trees and their variants (plane oriented
recursive trees, binary and m-ary search trees). The interesting feature of
these kinds of trees is that they can be seen from different points of views:
They can be seen as a combinatorial object (where usual counting procedures
apply) as well as the result of a (stochastic) growth process. Interestingly their
asymptotic structure is completely different from that of Galton-Watson trees.
They are so-called logn trees which means that their expected height is of
order logn (in contrast to Galton-Watson trees with expected height of order√
n). We provide a unified approach to several basic statistics like the degree

distribution. However, the main focus is again the profile. Here one observes
that most vertices are concentrated around few levels so that a (possible)
limiting object of the normalised project is not related to some functional of
the Brownian motion. Nevertheless, the normalised profileXn,k/EXn,k can be
approximated by X(k/ logn), where X(t) is now a random analytic function.
We also deal with the height and its concentration properties.

Tries and digital search trees are two other classes of logn trees which are
discussed in Chapter 7. Their construction is based on digital keys and not
on the order structure of the keys as in the case of binary search trees. Again,
most vertices are concentrated around few levels of order logn but the profile
behaves differently. It is even more concentrated around its mean value than
the profile of binary search trees or recursive trees. The normalised profile
Xn,k/EXn,k (of tries) converges to 1 and we observe a central limit theorem.

Chapter 8 is devoted to the so-called contraction method which was devel-
oped to handle stochastic recurrence relations which naturally appear in the
stochastic analysis of recursive algorithms like Quicksort. Such recurrences
also appear in the analysis of the profile of recursive trees and binary search
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trees (and their variants). The idea is that after normalisation the recur-
rence relation stabilises to a (stochastic) fixed point equation that can be
solved uniquely by Banach’s fixed point theorem in a properly chosen Banach
space setting. Here we restrict ourselves to an L2 setting with the Wasser-
stein metric. We mainly follow the work by Rösler, Rüschendorf, Neininger
[158, 161, 162, 186, 187].

The final Chapter 9 deals with planar graphs. At first sight planar graphs
and trees have nothing in common but there are strong similarities in the com-
binatorial and asymptotic analysis. For example the 2-connected parts of a
connected (planar) graph have a tree structure which is reflected by the struc-
ture of the corresponding generating functions. In particular in the asymptotic
analysis one can use the same techniques from Chapter 2 as for combinatorial
tree classes in Chapter 3. Besides the asymptotic counting problem the ma-
jor goal of this chapter is to study the degree distribution of random planar
graphs or equivalently the expected number of vertices of given degree where
we can again use asymptotic tree counting techniques. This chapter is based
on recent work by Giménez, Noy and the author [63, 64].

Of course, such a book project cannot be completed without help and
support from many colleagues and friends. In particular I am grateful to
Mireille Bousquet-Mélou, Luc Devroye, Philippe Flajolet, Bernhard Gitten-
berger, Alexander Iksanov, Svante Janson, Christian Krattenthaler, Jean-
François Marckert, Marc Noy, Ralph Neininger, Alois Panholzer, and Wojciech
Szpankowski. I also thank Frank Emmert-Streib for helping me to design the
book cover.

Finally I want to thank Veronika Kraus, Johannes Morgenbesser, and
Christoph Strolz for their careful reading of the manuscript and for several
hints to improve the presentation and Barbara Doležal-Rainer for her support
in type setting. I also want to thank Stephen Soehnlen from Springer Verlag
for his constant support in this book project and his patience.

I am especially indebted to my family to whom this book is dedicated.

Vienna, November 2008 Michael Drmota
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1

Classes of Random Trees

In this first chapter we survey several types of random trees. We start with
basic notions on trees and the description of several concepts of tree counting
problems. In particular we distinguish between rooted and unrooted, plane
and non-plane, and labelled and unlabelled trees. It is also possible to modify
the counting procedure by putting certain weights on trees, for example, by
using the degree distribution.

We consider classical combinatorial tree classes like planted plane trees or
labelled rooted trees. Furthermore we discuss simply generated trees which
can be also considered as conditioned Galton-Watson trees and cover sev-
eral classes of the classical (rooted) trees. We introduce unlabelled trees (also
called Pólya trees) that do not fall into this class but behave similarly to
simply generated trees. Recursive trees (and more generally increasing trees)
are labelled rooted trees where each path starting at the root has increasing
labels. All these kinds of trees give rise to a natural probability distribution
based on combinatorics by assuming that every tree of size n (of a certain
class) is equally likely.

Trees occur also in the context of algorithms from computer science, for
example, as data structures. Here the structure of the tree is determined by
the input data of the algorithm. Prominent examples are binary search trees,
digital search trees or tries. From a combinatorial point of view these kinds of
trees are just binary trees. However, if we assume some probability distribution
on the input data this induces a probability distribution on the corresponding
trees. Moreover, one usually has a tree evolution process by inserting more
and more data.
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1.1 Basic Notions

Trees are defined as connected graphs without cycles, and their properties are
basics of graph theory. For example, a connected graph is a tree, if and only if
the number of edges equals the number of nodes minus 1. Furthermore, each
pair of nodes is connected by a unique path.

The degree d(v) of a node v in a tree is the number of nodes that are
adjacent to v or the number of neighbours of v.

Nodes of degree ≤ 1 are usually called leaves or external nodes and the
remaining ones internal nodes.

1.1.1 Rooted Versus Unrooted trees

r

r

Fig. 1.1. Tree and rooted tree

If we mark a specific node r in a tree T , which we denote the root of T , we
call the tree itself rooted tree. A rooted tree may be described easily in terms
of generations or levels. The root is the 0-th generation. The neighbours of
the root constitute the first generation, and in general the nodes at distance
k from the root form the k-th generation (or level). If a node of level k has
neighbours of level k+ 1 then these neighbours are also called successors. The
number of successors of a node v is also called the out-degree d+(v). For all
nodes v different from the root we have d(v) = d+(v) + 1.

Furthermore, if v is a node in a rooted tree T then v may be considered
as the root of a subtree Tv of T that consists of all iterated successors of v.
This means that rooted trees can be constructed in a recursive way. Due to
that property counting problems on rooted trees are usually easier than on
unrooted trees.

Remark 1.1 Rooted trees also have various applications in computer science.
They naturally appear as data structures, e.g. the recursive structure of folders
in any computer is just a rooted tree. Furthermore, fundamental algorithms
such as Quicksort or the Lempel-Ziv data compression algorithm are closely
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related to rooted trees, namely to binary and digital search trees which are also
used to store (and search for) data. Rooted trees even occur in information
theory. For example, prefix free codes on an alphabet of order m are encoded
as the set of leaves in m-ary trees.

1.1.2 Plane Versus Non-Plane trees

Trees are planar graphs since they can be embedded into the plane without
crossings. Nevertheless, a tree may have different embeddings (compare with
Figure 1.2). This makes a difference in counting problems. When we say that
we are counting planar trees we mean that we are counting all possible different
embeddings into the plane.

Fig. 1.2. Two different embeddings of a tree

In the context of rooted trees it is common to use the term plane tree
or ordered tree when successors of the root and recursively the successors of
each node are equipped with a left-to-right-order. Alternatively one can give
the successors a rank so that one can speak of the j-th successor (j ≥ 1). Of
course, this induces a natural embedding into the half-plane (compare with
Figure 1.3). Note that this notion is different from considering all embed-
dings into the plane, since it is not allowed to rotate the subtrees of the root
cyclically around the root.

1.1.3 Labelled Versus Unlabelled Trees

We also distinguish between labelled trees, where the nodes are labelled by
different numbers, and unlabelled trees, where nodes are indistinguishable.
This is particularly important for the counting problem. For example, there
is only one unlabelled tree with three nodes whereas there are three different
labelled trees of size 3 with labels 1, 2, 3 (see Figure 1.4).

There is much latitude in choosing labels on trees. The simplest model
is to assume that the nodes of a trees of size n are labelled by the numbers
1, 2, . . . , n, but there are many other ways to do so. For so-called embedded
trees one only assumes that the labels of adjacent vertices differ (at most) by
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r

1

1

1

1

2

2 23

3

Fig. 1.3. Plane rooted tree

1

3

2 1

3

2 1

3

2

Fig. 1.4. Unlabelled versus labelled trees

1. Another possibility is to put labels consistently with the structure of the
tree. For example, recursive trees have the property that the root is labelled
by 1 and the labels on all paths away from the root are strictly increasing.

1.2 Combinatorial Trees

Let T be a class of finite trees which is defined by a structural condition (for
example that the trees are binary). We then consider the subclasses Tn of T
that consist of trees of size n and introduce a probability model on Tn by
assuming that every tree T in Tn is equally likely. By this construction we get
special kinds of random trees. Moreover, every parameter on trees (such as
the number of leaves or the diameter) is then a random variable.

For simplicity we start with rooted trees since they have a recursive
description.
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1.2.1 Binary Trees

Binary trees are rooted trees, where each node is either a leaf (that is, it
has no successor) or it has two successors. Usually these two successors are
distinguishable: the left successor and the right successor, that is, we are
dealing with plane trees. The leaves of a binary tree are also called external
nodes and those nodes with two successors internal nodes. It is clear that a
binary tree with n internal nodes has n + 1 external nodes. Thus, the total
number of nodes is always odd.

Fig. 1.5. Binary tree

A very important issue is that binary trees (and many other kinds of rooted
trees) have a recursive structure. More precisely we can use the following
recursive definition of binary trees:

A binary tree B is either just an external node or an internal node
(the root) with two subtrees that are again binary trees.

Formally we can write this in the form

B = � + ◦ × B × B, (1.1)

where B denotes the system of binary trees; � represents an external and ◦
an internal node.

In fact, this recursive description is the key for the analysis of many proper-
ties of binary (and similarly defined) trees. In particular, this formal equation
has a direct translation into an equation for the corresponding generating
(or counting) function b(x) of the form b(x) = 1 + xb(x)2. We discuss this
translation in detail in Chapter 2.

A direct generalisation of binary trees is m-ary rooted trees, where m ≥ 2
is a fixed integer. As in the binary case (m = 2) we just take into account the
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number n of internal nodes. The number of leaves is then given by (m−1)n+1
and the total number of nodes by mn+ 1.

Interestingly it is relatively easy to find explicit formulas for the numbers

b
(m)
n of m-ary trees with n internal nodes:

b(m)
n =

1

(m− 1)n+ 1

(
mn

n

)
.

The set Tn of m-ary trees with n internal nodes then constitutes a set of
random trees if we assume that everym-ary tree in Tn is equally likely, namely

of probability 1/b
(m)
n .

Note that in the binary case the number of trees is precisely the n-th
Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

It is also possible to consider binary and more generallym-ary trees, where
the left-to-right-order of the successors is not taken into account. However,
the counting problem of these classes of trees is much more involved (compare
with Sections 1.2.5 and 3.1.5).

1.2.2 Planted Plane Trees

Another interesting class of trees are planted plane trees. Sometimes they are
also called Catalan trees. Planted plane trees are again rooted trees, where each
node has an arbitrary number of successors with a natural left-to-right-order
(this again means that we are considering plane trees). The term planted comes
from the interpretation that the root is connected (or planted) to an additional
phantom node that is not taken into account (see Figure 1.6). Usually we will
not even depict this additional node when we deal with planted trees. However,
it is quite useful to define the degree of the root r by d(r) = d+(r) + 1
which means that the additional (planted) node is considered a neighbour
node. This has the advantage that in this case all nodes have the property
d(v) = d+(v) + 1.

The numbers pn of planted plane trees with n ≥ 1 nodes are given by

pn =
1

n

(
2n− 2

n− 1

)
.

This is precisely the (n−1)-st Catalan number Cn−1 which explains the term
Catalan tree. By the way, the relation pn+1 = bn has a natural interpretation
(see Section 3.1.2).
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r

r

Fig. 1.6. Planted plane tree

1.2.3 Labelled Trees

We recall that a tree T of size n is labelled if the n nodes are labelled by
1, 2, . . . , n.1 The counting problem of labelled trees is different from that of
unlabelled trees. There is, however, an easy connection between rooted and un-
rooted labelled trees. There are exactly n different ways to make an unrooted
tree to a rooted one by choosing one of the labelled nodes. Thus, the number
of rooted labelled trees of size n equals the number of unrooted labelled trees
exactly n times. Consequently it is sufficient to consider rooted labelled trees
which has the advantage that one can use the recursive structure.

Note that if we do not care about the embedding in the plane or about
the left to right order of the successors, an unrooted labelled tree can be
interpreted as a spanning tree of the complete graphKn with nodes 1, 2, . . . , n
(see Figure 1.7).

1 2

3

4

1 2

3

4

Fig. 1.7. 2 of 16 possible spanning trees of K4

1 Other kinds of labelled trees like recursive trees or well-labelled trees will be
discussed in the sequel.
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It is a well known fact that the number of unrooted labelled trees of size n
equals nn−2 (usually called Cayley’s formula). Hence, there are nn−1 different
rooted labelled trees of size n. Sometimes these trees are called Cayley trees
(but this term is also used for infinite regular trees).

1.2.4 Labelled Plane Trees

It is also of interest to count the number of different planar embeddings of
labelled trees. There is even an explicit formula, namely for n ≥ 2 there are

(2n− 3)!

(n− 1)!

different planar embeddings of labelled trees of size n (and n(2n−3)!/(n−1)!
different planar embeddings of rooted labelled trees of size n). For example,
for n = 4 there are 42 = 16 different labelled trees but 5!/3! = 20 different
planar embeddings.

1.2.5 Unlabelled Trees

Let T̃ denote the set of unlabelled unrooted trees and T be the set of unla-
belled rooted trees. Here we do not care about the possible embeddings into
the plane. We just think of trees in the graph-theoretical sense.

These kinds of trees are relatively difficult to count. Let us denote by t̃n
and tn the corresponding numbers of those trees of size n, for example we
have

t̃1 = 1, t̃2 = 1, t̃3 = 1, t̃4 = 2 and t1 = 1, t2 = 1, t3 = 2, t4 = 4.

However, if there is no direct recursive relation one has to take into account
all symmetries. Nevertheless, this problem can be solved by using generating
functions and Pólya’s theory of counting [176] (see Section 3.1.5). For that
reason these trees are also called Pólya trees.

In order to give an impression of the kind of problems one has to face we
just state that the generating functions

t̃(x) =
∑
n≥1

t̃nx
n and t(x) =

∑
n≥1

tnx
n

satisfy the relations

t(x) = x exp

(
t(x) +

1

2
t(x2) +

1

3
t(x3) + · · ·

)
(1.2)

and

t̃(x) = t(x) − 1

2
t(x)2 +

1

2
t(x2). (1.3)

It seems that there is no proper explicit formula for tn and t̃n. However, there
are asymptotic expansions for them and by using extensions of the mentioned
counting procedure it is also possible to study several shape characteristics of
these kinds of trees.
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1.2.6 Unlabelled Plane Trees

We already mentioned that a tree usually has several different embeddings
into the plane. Planted plane trees are, in particular, designed to take into
account all possible planar embeddings of planted rooted trees.

It is, however, another non-trivial step to count all embeddings of unla-
belled rooted trees and all embeddings of unlabelled trees. Again we have
to take into account symmetries. Fortunately Pólya’s theory can be applied
here, too. As in the case of unlabelled trees we do not get explicit formulas
but asymptotic expansions (see Section 3.1.6).

1.2.7 Simply Generated Trees – Galton-Watson Trees

Simply generated trees are weighted versions of rooted trees and have been
introduced by Meir and Moon [151]. The idea is to put a weight to a rooted
tree according to its degree distribution.

Let φj , j ≥ 0, be a sequence of non-negative real numbers, called the
weight sequence. Usually one assumes that φ0 > 0 and φj > 0 for some j ≥ 2.
We then define the weight ω(T ) of a finite rooted ordered tree T by

ω(T ) =
∏

v∈V (T )

φd+(v) =
∏
j≥0

φ
Dj(T )
j ,

where d+(v) denotes the out-degree of the vertex v (or the number of succes-
sors) and Dj(T ) the number of nodes in T with j successors. The numbers

yn =
∑
|T |=n

ω(T )

are then the weighted numbers of trees of size n. It is natural to define a
probability distribution on the set Tn by

πn(T ) =
ω(T )

yn
(T ∈ Tn). (1.4)

It is convenient to introduce the generating series

Φ(x) = φ0 + φ1x+ φ2x
2 + · · · =

∑
j≥0

φjx
j .

In Section 3.1.4 we will show that the generating function y(x) =
∑

n≥1 ynx
n

satisfies the equation
y(x) = xΦ(y(x)).

This equation is the key for the asymptotic analysis of these kinds of trees.
If we replace φj by φ̃j = abjφj , which is the same as replacing Φ(x) by

Φ̃(x) = aΦ(bx) for two numbers a, b > 0, then ω(T ) is replaced by
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ω̃(T ) =
∏
j≥0

(
abjφj

)Dj(T )
= a|T |b|T |−1ω(T ).

Note that
∑

j jDj(T ) = |T | − 1. Hence, ỹn = anbn−1yn and the probability

distribution πn on Tn is the same for Φ̃(x) and Φ(x) (for every n). Usually
only these distributions are important, and we may then freely make this type
of modification of φj .

Simply generated trees generalise several of the above examples of combi-
natorial trees.

Example 1.2 If φj = 1 for all j ≥ 0, that is, Φ(x) = 1/(1 − x), then all
planted plane trees have weight ω(T ) = 1 and yn is the number of planted
plane trees. Thus, πn is the uniform distribution on planted plane trees of
size n.

Example 1.3 Binary trees (counted according to their internal nodes) are
also covered by this approach. If we set φ0 = 1, φ1 = 2, φ2 = 1, and φj = 0
for j ≥ 3, that is, Φ(x) = (1+x)2, then nodes with one successor get weight 2.
This takes into account that binary trees (where external nodes are disregarded)
have two kinds of nodes with one successor, namely those with a left branch
but no right branch and those with a right branch but no left branch. Thus,
πn is the uniform distribution on all binary trees with n internal nodes.

Similarly, m-ary trees are covered with the help of the weights φj =
(
m
j

)
or with Φ(x) = (1 + x)m.

Example 1.4 If φ0 = φ1 = φ2 = 1 and φj = 0 for j ≥ 3 or Φ(x) = 1+x+x2,
then we get so-called Motzkin trees. Here only rooted trees, where all nodes
have less than 3 successors, get (a non-zero) weight ω(T ) = 1: yn is the
number of Motzkin trees with n nodes and πn is the uniform distribution on
Motzkin trees of size n.

Example 1.5 If we set φj = 1/j! then

n! · yn = nn−1

denotes precisely the number of labelled rooted non-plane trees. The weight
φj = 1/j! disregards all possible orderings of the successors of a vertex of
out-degree j and the factor n! corresponds to all possible labellings of n nodes.
Hence, πn yields the uniform distribution on labelled rooted trees.

Interestingly there is an intimate relation to Galton-Watson branching pro-
cesses. Let ξ be a non-negative integer-valued random variable, the so-called
offspring distribution. The Galton-Watson branching process starts with a
single individual (generation 0); each individual has a number of children dis-
tributed as independent copies of ξ. If Zk denotes the size of the generation
k, then a formal description of the process (Zk)k≥0 is Z0 = 1, and for k ≥ 1
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Zk =

Zk−1∑
j=1

ξ
(k)
j ,

where the (ξ
(k)
j )k,j are i.i.d.2 random variables distributed as ξ.

It is clear that Galton-Watson branching processes can be represented by
ordered (finite or infinite) rooted trees T such that the sequence Zk is just the
number of nodes at level k and

∑
k≥0 Zk (which is called the total progeny)

is the number of nodes |T | of T . We denote by ν(T ) the probability that a
specific tree T occurs. If P{ξ = 0} = 0 then the total progeny is infinite with
probability 1. Thus we always assume that P{ξ = 0} > 0.

The generating function y(x) =
∑

n≥1 ynx
n of the numbers

yn = P{|T | = n} =
∑
|T |=n

ν(T )

satisfies the functional equation

y(x) = xΦ(y(x)),

where
Φ(t) = E tξ =

∑
j≥0

φjt
j

with φj = P{ξ = j}. Observe that

ν(T ) =
∏
j≥0

φ
Dj(T )
j = ω(T ).

The weight of T is now the probability of T .
If we condition the Galton-Watson tree T on |T | = n, we thus get the

probability distribution (1.4) on Tn. Hence, the conditioned Galton-Watson
trees are simply generated trees with φj = P{ξ = j} as above. We have
here Φ(1) =

∑
j φj = 1, but this is no real restriction. In fact, if (φj)j≥0

is any sequence of non-negative weights satisfying the very weak condition
Φ(x) =

∑
j≥0 φjx

j <∞ for some x > 0, then we can replace (as above) φj by

abjφj with b = x and a = 1/Φ(x) and thus the simply generated tree is the
same as the conditioned Galton-Watson tree with offspring distribution P{ξ =
j} = φjx

j/Φ(x). Consequently, for all practical purposes, simply generated
trees are the same as conditioned Galton-Watson trees.

The argument above also shows that the distribution of a conditioned
Galton-Watson tree is not changed if we replace the offspring distribution ξ
by ξ̃ with P{ξ̃ = j} = P{ξ = j} = τ j/Φ(τ) and thus Φ̃(x) = Φ(τx)/Φ(τ) for
any τ > 0 with Φ(τ) <∞. (Such modifications are called conjugate or tilted
distributions.)

2 The letters “i.i.d.” abbreviate “independent and identically distributed”.
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Note that
μ = Φ′(1) = E ξ

is the expected value of the offspring distribution. If μ < 1, the Galton-Watson
branching process is called sub-critical, if μ = 1, then it is critical, and if μ > 1,
then it is supercritical. From a combinatorial point of view we do not have
to distinguish between these three cases. Namely, if we replace the offspring
distribution by a conjugate distribution as above, the new expected value is

Φ̃′(1) =
τΦ′(τ)

Φ(τ)
.

We can thus always assume that the Galton-Watson process is critical, pro-
vided only that there exists τ > 0 with

τΦ′(τ) = Φ(τ) <∞,

a weak condition that is satisfied for all interesting classes of Galton-Watson
trees.

It is usually convenient to choose a critical version, which explains why
the equation τΦ′(τ) = Φ(τ) appears in most asymptotic results. A heuristic
reason is that the probability of the event |T | = n that we condition on
typically decays exponentially in the subcritical and supercritical cases but
only as n−1/2 in the critical case, and it seems advantageous to condition on
an event of not too small probability.

Example 1.6 For planted plane trees (as in Example 1.2) we start with
Φ(x) = 1/(1 − x). The equation τΦ′(τ) = Φ(τ) is τ(1 − τ)−2 = (1 − τ)−1,
which is solved by τ = 1

2 . Random planted plane trees are thus conditioned
Galton-Watson trees with the critical offspring distribution given by Φ(x) =
(1 − x/2)−1/2 = 1/(2 − x), or P{ξ = j} = 2−j−1 (for j ≥ 0), a geometric
distribution.

Example 1.7 Similarly random binary trees are obtained with a binomial
offspring distribution Bi(2, 1/2) with Φ(x) = (1 + x)2/4, and more generally
random m-ary trees are obtained with offspring law Bi(m, 1/m) with Φ(x) =
((m− 1 + x)/m)

m
.

Example 1.8 For Motzkin trees the critical offspring distribution ξ is uni-
form on {0, 1, 2} with Φ(x) = (1 + x+ x2)/3.

Example 1.9 For uniform rooted labelled trees the critical ξ has a Poisson
distribution Po(1) with Φ(x) = ex−1.

Finally we remark that for a critical offspring distribution ξ, its variance
is given by

σ2 = Var ξ = E ξ2 − 1 = E(ξ(ξ − 1)) = Φ′′(1).
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Starting with an arbitrary sequence (φj)j≥0 and modifying it as above the get
a critical probability distribution, we obtain the variance

σ2 = Φ̃′′(1) =
τ2Φ′′(τ)

Φ(τ)
,

where τ > 0 is such that τΦ′(τ) = Φ(τ) < ∞ (assuming this is possible). We
will see that this quantity appears in several asymptotic results.

1.3 Recursive Trees

Recursive trees are rooted labelled trees, where the root is labelled by 1 and
the labels of all successors of any node v are larger than the label of v (see
Figure 1.8).

1

2

3

4

5

6 7

Fig. 1.8. Recursive tree

1.3.1 Non-Plane Recursive Trees

Usually one does not take care of the possible embeddings of a recursive
tree into the plane. In this sense recursive trees can be seen as the result of
the following evolution process. Suppose that the process starts with a node
carrying the label 1. This node will be the root of the tree. Then attach a
node with label 2 to the root. The next step is to attach a node with label 3.
However, there are two possibilities: either to attach it to the root or to the
node with label 2. Similarly one proceeds further. After having attached the
nodes with labels 1, 2, . . . , k, attach the node with label k + 1 to one of the
existing nodes.

Obviously, every recursive tree of size n is obtained in a unique way. More-
over, the labels represent something like the history of the evolution process.
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Since there are exactly k ways to attach the node with label k + 1, there are
exactly (n− 1)! possible trees of size n.

The natural probability distribution on recursive trees of size n is to assume
that each of these (n− 1)! trees is equally likely. This probability distribution
is also obtained from the evolution process by attaching successively each new
node to one of the already existing nodes with equal probability.

Remark 1.10 Historically, recursive trees appear in various contexts. They
are used to model the spread of epidemics (see [155]) or to investigate and
construct family trees of preserved copies of ancient manuscripts (see [157]).
Other applications are the study of the schemes of chain letters or pyramid
games (see [88]).

1.3.2 Plane Oriented Recursive Trees

Note that the left-to-right-order of the successors of the nodes in a recursive
tree was not relevant in the above counting procedure. It is, however, relatively
easy to consider all possible embeddings as plane rooted trees. These kind of
trees are usually called plane oriented recursive trees (PORTs).

1

2

3

4

5

6 7

1

2

3

4

5

6 7

=

Fig. 1.9. Two different plane oriented trees

They can again be seen as the result of an evolution process, where the
left-to-right-order of the successors is taken into account. More precisely, if a
node v has out-degree d, then there are d + 1 possible ways to attach a new
node to v. Hence, the number of different plane oriented recursive trees with
n nodes equals

1 · 3 · . . . · (2n− 3) = (2n− 3)!! =
1

2n−1

(2(n− 1))!

(n− 1)!
.

As above, the natural probability distribution on plane oriented recursive
trees of size n is to assume that each of these (2n− 3)!! trees is equally likely.
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This probability distribution is also obtained from the evolution process by
attaching each node with probability proportional to the out-degree plus 1 to
the already existing nodes.

1.3.3 Increasing Trees

The probabilistic model of simply generated trees was to define a weight that
reflects the degree distribution of rooted trees. The same idea can be applied
to recursive and to plane oriented recursive trees. The resulting classes of
trees are called increasing trees. They have been first introduced by Bergeron,
Flajolet, and Salvy [12].

As above we define the weight ω(T ) of a recursive or a plane oriented
recursive tree T by

ω(T ) =
∏

v∈V (T )

φd+(v) =
∏
j≥0

φ
Dj(T )
j ,

where d+(v) denotes the out-degree of the vertex v (or the number of suc-
cessors) and Dj(T ) the number of nodes in T with j successors. Then we
set

yn =
∑

T∈Jn

ω(T ),

where Jn denotes the set of recursive or plane oriented recursive trees of size
n. The natural probability distribution on the set Jn of increasing trees is
then given by

πn(T ) =
ω(T )

yn
(T ∈ Jn).

As in the case of simply generated trees it is also possible to introduce
generating series. We set

Φ(x) = φ0 + φ1x+ φ2
x2

2!
+ φ2

x3

3!
+ · · ·

in the case of recursive trees and

Φ(x) = φ0 + φ1x+ φ2x
2 + φ3x

3 + · · ·

in the case of plane oriented recursive trees. The generating function

y(z) =
∑
n≥0

yn
zn

n!

satisfies the differential equation

y′(z) = Φ(y(z)), y(0) = 0.

In the interest of clarity we state how the general concept specialises.
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1. Recursive trees (that is, every non-planar recursive tree gets weight 1) are
given by Φ(x) = ex. Here yn = (n− 1)! and y(z) = log(1/(1− z)).

2. Plane oriented recursive trees are given by Φ(x) = 1/(1− x). This means
that every planar recursive tree gets weight 1. Here yn = (2n − 3)!! =
1 · 3 · 5 · · · (2n− 3) and y(z) = 1−

√
1− 2z.

3. Binary recursive trees are defined by Φ(x) = (1 + x)2. We have yn = n!
and y(z) = 1/(1 − z). The probability model that is induced by this
(planar) binary increasing trees is exactly the standard permutation model
of binary search trees that is discussed in Section 1.4.1.

Note that the probability distribution on Jn is not automatically given by
an evolution process as it is definitely the case for recursive trees and plane
oriented recursive trees. It is interesting that there are precisely three families
of increasing trees, where the probability distribution πn is also induced by a
(natural) tree evolution process.

1. Φ(x) = φ0e
φ1
φ0

x
with φ0 > 0, φ1 > 0.

2. Φ(x) = φ0

(
1− φ1

rφ0
x

)−r

for some r > 0 and φ0 > 0, φ1 > 0.

3. Φ(x) = φ0 (1 + (φ1/(dφ0))x)
d

for some d ∈ {2, 3, . . .} and φ0 > 0, φ1 > 0.

The corresponding tree evolution process runs as follows:3 The starting point
is (again) a node (the root) with label 1. Now assume that a tree T of size n is
present. We attach to every node v of T a local weight ρ(v) = (k+1)φk+1φ0/φk

when v has k successors and set ρ(T ) =
∑

v∈V (T ) ρ(v). Observe that in a

planar tree there are k + 1 different ways to attach a new (labelled) node
to an (already existing) node with k successors. Now choose a node v in T
according to the probability distribution ρ(v)/ρ(T ) and then independently
and uniformly one of the k+ 1 possibilities to attach a new node there (when
v has k successors). This construction ensures that in these three particular
cases a tree T of size n, which occurs with probability proportional to ω(T ),
generates a tree T ′ of size n + 1 with probability that is proportional to
ω(T )φk+1φ0/φk, which equals ω(T ′). Thus, this procedure induces the same
probability distribution on Jn as the one mentioned above, where a tree T ∈
Jn has probability ω(T )/yn.

Note that if we are only interested in the distributions πn, then we can
work (without loss of generality) with some special values for φ0 and φ1. It is
sufficient to consider the generating functions

1. Φ(x) = ex,
2. Φ(x) = (1− x)−r for some r > 0,
3. Φ(x) = (1 + x)d for some d ∈ {2, 3, . . .}.

The first class is just the class of recursive trees. The second class can be
interpreted as generalised plane oriented recursive trees, since the probability

3 In the interest of brevity we only discuss the plane version.


