Ecological Studies, Vol. 180

Analysis and Synthesis

Edited by

M.M. Caldwell, Logan, USA G. Heldmaier, Marburg, Germany R.B. Jackson, Durham, USA O.L. Lange, Würzburg, Germany H.A. Mooney, Stanford, USA E.-D. Schulze, Jena, Germany U. Sommer, Kiel, Germany

Ecological Studies

Volumes published since 2000 are listed at the end of this book.

Plant Ecology, Herbivory, and Human Impact in Nordic Mountain Birch Forests

With 69 Figures, 21 Tables, and CD-ROM

Volume editor

Professor Dr. Frans E. Wielgolaski University of Oslo Department of Biology P.O. Box 1045 Blindern 0316 Oslo, Norway

Editorial Board

Dr. P. Staffan Karlsson Uppsala University Department of Plant Ecology Ecolutionary Biology Centre Villavägen 14 75236 Uppsala, Sweden

Professor Dr. Seppo Neuvonen University of Turku Kevo Subarctic Research Institute 20014 Turku, Finland

Professor Dr. Dietbert Thannheiser University of Hamburg Department of Geography Bundesstr. 55 20146 Hamburg, Germany

Cover illustration: Scheme after an idea of F.E. Wielgolaski. Background phto by H. Bylund (see Fig. 12.1)

ISSN 0070-8356 ISBN 3-540-22909-4 Springer-Verlag Berlin Heidelberg New York

Library of Congress Control Number: 2004113135

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permissions for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springeronline.com

© Springer-Verlag Berlin Heidelberg 2005 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Editor: Dr. Dieter Czeschlik, Heidelberg, Germany Desk editor: Dr. Andrea Schlitzberger, Heidelberg, Germany Cover design: *design & production* GmbH, Heidelberg, Germany Typesetting and production: Friedmut Kröner, Heidelberg, Germany

31/3150 YK - 5 4 3 2 1 0 - Printed on acid free paper

Preface

In Fennoscandia and Iceland, large parts of particularly elevated areas are treeless. Below these areas there is often a belt of Nordic mountain birch trees, now often called *Betula pubescens* ssp. *czerepanovii*. In Fennoscandia, this plant is also common in a zone north of the coniferous trees and is found in small forests in the southwestern-most parts of Greenland and more locally in other parts of Europe.

Before the begin of the International Biological Programme (IBP) in the late 1960s and early 1970s, only minor fractions of these ecosystems had been studied. Therefore, alpine and subalpine systems were chosen as the main areas of study in this first, larger interdisciplinary and integrated project in natural science across national borders and, in this way, they made an important contribution to such research in the Nordic countries. In addition to an interdisciplinary steering committee in each country, a Nordic administration was also established for the so-called IBP "Tundra Biome" studies in the region (although permafrost is not common in most of the region). At the end of the IBP, many results from this research in alpine, subalpine and northern Fennoscandian mountain birch forests were published in two early volumes of the Ecological Studies Series (Wielgolaski 1975a, b).

As is common at the end of scientific projects, many questions were not really answered, and this was also the case after IBP. However, the project showed the good collaboration within the Nordic countries. Therefore, in the late 1970s, it was decided to establish a "Nordic Subalpine–Subarctic Ecology" network project (NSSE) across the national borders within the Nordic mountain birch ecosystem at a lower intensity level, as only very limited funding was available for this cooperation after the IBP. In Finland, after some years, this project was accepted as a Man and Biosphere (MAB) network, resulting in a better status of the project in that country than elsewhere. This made it also possible to obtain results from the joint Nordic mountain birch studies more than 20 years after the IBP published their findings in a volume in the UNESCO-MAB Series (Wielgolaski 2001). Within the EU, international scientific projects, including several European member countries and associated EU countries, are recognized as important to increase the knowledge and cooperation in Europe. Particularly important are natural science projects that also relate to man and socio-economy. Therefore, the 3-year project "Human Interactions with the Mountain Birch Ecosystem: Implications for Sustainable Development" (HIBECO) was funded by the EU from the year 2000. Here, results from new mountain birch studies in the Nordic countries including Greenland are added to older ones concerning both the growth of the birch itself, and the use and limitations of these forests by animals and man, with the objective of finding the best sustainable management for mankind in this ecosystem. Furthermore, Scotland was included in this project because of the good knowledge from earlier projects there on the influence of grazing, e.g. by sheep in their mountain birch regions. The results of this EU project are summarized in this volume.

What has changed in the Nordic mountain birch ecosystem in a long- or short-term perspective? In the short term, a possible increment of the forests in elevation by global climate change may be included, either induced by man or not. In Iceland, large areas of the original birch forests were cleared by man. Later, strong sheep grazing prevented resprouting of the trees and caused heavy erosion (Aradottir and Arnalds 2001). A similar development has, to some extent, taken place in the birch zone of southern Greenland. In addition, in Fennoscandia, the mountain birch forests have been suppressed in subalpine districts due to sheep grazing. In later years, however, this sheep-grazing pressure was lower in those areas. This may be another reason for the recent increased elevation of the upper birch tree line in the region, in addition to climate change. In northern Fennoscandia, the birch forests are strongly influenced by reindeer grazing and trampling, as reported in several chapters.

Modern infrastructure is also very important for development in the Nordic mountain birch region. A denser road net makes a larger fraction of the birch forests accessible for firewood cutting. Similarly, increased tourism after road building may increase the tree cutting and reduce the birch forests. At the same time, in some districts, less forest is used for firewood, because many inhabitants, also from the mountain birch region, are going over to heating by electricity and oil. This shows how sustainable use of mountain birch depends on the political decisions taken in a district.

The main objectives of the various chapters in this volume are to give examples from different sites (see Fig. 1) in the Nordic countries (and Scotland) of the influence of climate change and human decisions on growth of birch and the understorey. It has been discussed how climate change through time may be of importance for the adaptation of the trees in various regions and how such changes may cause variations in attacks, e.g. by insects. Shifts in the grazing pressure, e.g. by sheep and reindeer, will be important for the

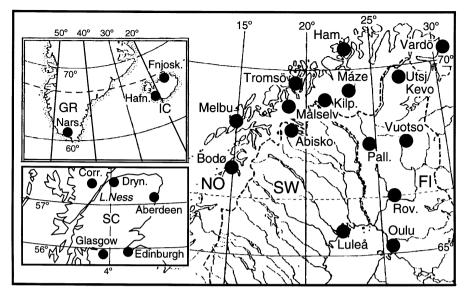


Fig. 1. Map of northern Fennoscandia (FI Finland, SW Sweden, NO Norway), Iceland (IC), southern Greenland (GR) and parts of Scotland (SC), showing sites used in connection with the HIBECO project and some towns in the regions (Rov Rovaniemi, Pall Palasjärvi, Kilp Kilpisjärvi, Utsj/Kevo Utsjoki/Kevo, Ham Hammerfest, Fnjosk Fnjoskadalur, Hafn Hafnarskogur, Nars Narssarssuaq, Dryn Drynachan, Corr Corrimony). Broken line at 66°33'N denotes Arctic Circle. Provenance sites used in phenology studies are given in the Fig. 7.1

Nordic mountain birch ecosystem in the future, but probably the greatest change in this system will be the degree of tourism permitted in the region, as influenced by the future infrastructure.

The possibilities for sustainable use of the Nordic mountain birch ecosystem are evaluated in various models presented in the volume, giving answers based on the scenarios chosen. However, it is NOT the aim of the volume to present a preferred future in the Nordic mountain birch ecosystem. That is up to the politicians and other decision-makers to determine, but the chapters in this volume have been planned to make it possible to choose the best solutions in various countries and districts. However, it is recommended that decisions should be made in cooperation with the local people in a district, and should not be made SOLELY by the central authorities in the various districts.

It is very valuable for the Nordic scientists working in the mountain birch regions to present various results from an interdisciplinary and integrated project, including social scientific subprojects, all together in a new volume of the series Ecological Studies as a sort of continuation of the results presented partly from the same region in the same series about 30 years ago. The editor thanks the publisher for making this possible and is very glad to have all these Nordic mountain birch data presented in one place.

October 2004 Oslo, Norway F. E. Wielgolaski

Acknowledgement. The HIBECO project was financed by EU 5th Framework Program.

References

- Aradottir AL, Arnalds O (2001) Ecosystem degradation and restoration of birch woodlands in Iceland. In: Wielgolaski FE (ed) Nordic mountain birch ecosystems. UNESCO, Paris and Parthenon, New York, pp 293–306
- Wielgolaski FE (ed) (1975a) Fennoscandian tundra ecosystems, part 1. Plants and microorganisms. Ecological studies 16. Springer, Berlin Heidelberg New York
- Wielgolaski FE (ed) (1975b) Fennoscandian tundra ecosystems, part 2. Animals and systems analysis. Ecological studies 17. Springer, Berlin Heidelberg New York
- Wielgolaski FE (ed) (2001) Nordic mountain birch ecosystems. MAB series 27. UNESCO, Paris and Parthenon, New York

Contents

Section 1 History, Environment and Plant Science

1	History and Environment of the Nordic Mountain Birch F.E. WIELGOLASKI	3
1.1	History-Zonation-Taxonomy-Distribution	3
1.2	Present Tree Line	4
1.3	Climate	7
1.4	Nutrient Conditions – Browsing	12
Refere	nces	15
2	Soils and Nutrients in Northern Birch Forests:	
	A Case Study from Finnmarksvidda, Northern Norway KD. Meier, D. Thannheiser, J. Wehberg and V. Eisenmann	19
2.1	Introduction	19
2.2	Study Area	20
2.3	Soil Classification	21
2.4	Soil Distribution	23
2.5	Soil Properties	28
2.6	Conclusions	31
Refere	nces	32
3	Vegetation of the Mountain Birch Forest in Northern Fennoscandia	35
3.1 3.2	J. WEHHERG, D. THANNHEISER and KD. MEIER Introduction	35 36

3.3	Dendrochronological Characteristics of the Northern	
	Mountain Birch Forests in the Máze-Kautokeino Area	36
3.4	Plant Sociological Studies	40
3.4.1	The Communities of the Mountain Birch Forest	
	on the Finnmarksvidda	41
3.4.1.1	The Crowberry Birch Forest:	
	<i>Empetro-Betuletum pubescentis</i> (Nordhagen 1943)	44
3.4.1.2	The Lingonberry Birch Forest:	
	Vaccinio vitis-idaeae-Betuletum (prov.)	45
3.4.1.3	The Bilberry Birch Forest:	
	Vaccinio myrtilli-Betuletum (prov.)	46
3.4.1.4	The Dwarf Cornel Birch Forest:	
	<i>Corno-Betuletum</i> (Aune 1973)	46
3.4.1.5	The Meadow Birch Forest: Geranio-Betuletum	
	(Nordhagen 1928, 1943 emend. Dierßen and Dierßen 1982)	47
3.4.1.6	The Cloudberry Birch Forest:	
	Rubo chamaemorei-Betuletum (prov.)	48
3.5	Mountain Birch Forests in Northern Fennoscandia	49
3.6	Conclusions	49
Referenc	es	51

4	Biomass and Production on a Landscape Level in the Northern Mountain Birch Forests H. Tømmervik, F.E. Wielgolaski, S. Neuvonen, B. Solberg and K.A. Høgda	53
4.1	Introduction	53
4.1.1	Live Aboveground Biomass Estimations	55
4.1.2	Biomass and Leaf Area Index at Individual Tree	
	or Stand Levels	56
4.1.3	Biomass on Landscape and Regional Level	
	Using Remote Sensing	57
4.2	Methods	58
4.3	Results	61
4.3.1	Change in the Biomass Production on a Regional Level	61
4.3.2	Biomass Estimations on a Landscape Level	62
4.4	Discussion	64
4.4.1	Biomass Changes	64
4.4.2	Remote Sensing Data – Are They Robust?	66
Reference	Ces	67

Х

5	Mountain Birch Growth in Relation to Climate and Herbivores	71
	P.S. Karlsson, M. Weih and C. Borg	/1
5.1	Introduction	71
5.2	Seedling Establishment and Growth	72
5.2.1	Abiotic and Biotic Environment During the Growing Season	72
5.2.2	Winter Conditions	74
5.2.3	Genetic Aspects	74
5.3	Sapling Growth	75
5.4	Mature Trees	76
5.4.1	Tree Growth and Climate	76
5.4.2	Effects of <i>Epirrita</i> Defoliation on Tree Growth	77
5.5.	Forest Structure, Stand Biomass and Productivity	79
5.6.	Effects of Changing Climate on Mountain Birch Growth	81
5.6.1	Empirical Evidence	81
5.6.2	Model Predictions	82
5.7	Conclusions	82
Referen	nces	83
6	Responses of Temperature Changes on Survival	
	and Growth in Mountain Birch Populations	87
	O. Skre, J. Nilsen, M. Naess, B. Igeland, K. Taulavuori,	
	E. TAULAVUORI and K. LAINE	
6.1	Introduction	87
6.2	Results and Discussion	89
6.2.1	Field and Greenhouse Experiments	
	at Different Temperatures	89
6.2.2	Winter Temperature and CO ₂ Experiments	93
6.2.3	Dormancy and Frost Hardiness in Mountain	
	Birch Provenances as Influenced by Winter Temperatures .	94
6.3	Conclusions	96
Referer	nces	96

7	Phenology and Performance of Mountain Birch Provenances in Transplant Gardens: Latitudinal,	
	Altitudinal and Oceanity–Continentality Gradients	99
	J. Ovaska, J. Nilsen, F.E. Wielgolaski, H. Kauhanen,	
	R. Partanen, S. Neuvonen, L. Kapari, O. Skre and K. Laine	
7.1	Introduction	99
7.2	Material and Methods	101
7.3	Results and Discussion	101
7.3.1	Transplantation Stress and Seedling Survival	101
7.3.2	Spring Phenology (Bud Burst)	103
7.3.3	Autumn Phenology	106
7.3.4	Growth Forms and Growth Rates	108
7.4	Conclusions and Future Prospects	113
Referenc	es	114
8	Synthesis Section 1: A Dynamic Forest in a Changing Environment	117
	P.S. Karlsson and F.E. Wielgolaski	117
Referenc	es	121

Section 2 Herbivory

9	Forest Defoliation Risks in Birch Forests by Insects	
	Under Different Climate and Land Use Scenarios	
	in Northern Europe	125
	S. Neuvonen, H. Bylund and H. Tømmervik	
9.1	Introduction	125
9.2	Geometrid Outbreaks on Birch in Fennoscandia	126
9.3	Monitoring (Detecting/Quantifying) Insect Outbreaks	
	in Mountain Birch Woodlands	127
9.4	Modelling the Outbreak/Defoliation Risks	129
9.4.1	Population Dynamics of Geometrid Moths	129
9.4.2	Modelling the Regional and Topographic Patterns	
	in Outbreaks Risks	131
9.5	Forest Defoliation Risks Under Different Climatic	
	Scenarios and Their Relationships to Land Use	134
Reference	ces	136

Contents

10	Birch Sapling Responses to Severity and Timing of Domestic Herbivore Browsing – Implications for Management A.J. Hester, K. Lempa, S. Neuvonen, K. Høegh, J. Feilberg, S. Arnthórsdóttir and G. Iason	139
10.1	Introduction	139
10.2 10.3	Case Studies and Experimental Designs Birch Responses to Timing and Severity	141
	of Browsing Damage	141
10.3.1	Severity of Browsing	142
10.3.2	Timing of Browsing	145
10.3.3 10.3.4	Locational Effects	145
10.4	Within Birch Areas of Northern EuropeTheory Versus Reality: Case-Study Example	146
	of Sheep Impacts in Greenland	147
10.4.1 10.5	Economics	150
	in Birch Forest Areas	151
10.6	Conclusions	152
Referen	ces	153
11	Effects of Reindeer Grazing on Pastures in a Mountain Birch Ecosystem	157
		1.5.7
11.1	Introduction	157
11.2	Climatic Variability	158
11.3	Trends and Patterns in Reindeer Population Densities in Northern Fennoscandia	159
11.4	Protection of Pastures in the Mountain Birch Zone	160
11.4.1	Analysis and Synthesis of the Effects of Reindeer Grazing on Different Vegetation Components	160
11.4.2	Northernmost Norway as a Case Study	160
Doform	of the Overall Effects of Reindeer Grazing on Vegetation	163
referen		1

12	Long-Term Influence of Herbivores on Northern Birch Forests	5
12.1	Introduction	5
12.2	Lake Torneträsk-Abisko Valley Area: A Case Study 160	6
12.2.1	Outbreak in a Heath Birch Forest 160	б
12.2.2	Outbreak in a Meadow Birch Forest 168	8
12.3	Northern Fennoscandia 169	9
12.3.1	Forest Age and Outbreaks 170	0
12.3.2	Forest Damage and Recovery 170	0
12.3.3	Interaction with Reindeer and Sheep 172	2
12.4	Generalization	3
12.4.1	A Conceptual Model 174	4
12.4.2	Forests Without Outbreaks 175	5
12.4.3	Mountain Birch Forest Regeneration Cycles	
	in a Warmer Future	6
Reference	es	8
13	Synthesis Section 2: Herbivory in Northern Birch Forests . 183 S. NEUVONEN and F.E. WIELGOLASKI	3
13.1	Introduction	3
13.2	Insect Outbreaks 185	5
13.3	Mammalian Herbivores	6
13.4	Implications for Sustainable Management 187	7
13.5	References	8

Section 3 Human Impact

14	Rates and Processes of Natural Regeneration	
	in Disturbed Habitats	193
	B.C. Forbes, A. Tolvanen, F.E. Wielgolaski and K. Laine	
14.1	Introduction	193
14.2	Processes of Regeneration	195
14.3	Rates of Regeneration	197
14.4	Conclusion	199
Reference	es	199

15	Recreation at the Tree Line and Interactions	
	with Other Land Use Activities	203
	A. TOLVANEN, B.C. FORBES, S. WALL and Y. NOROKORPI	
15.1	Introduction	203
15.2	Case Study Areas	205
15.3	Monitoring Studies on the Impact of Recreation	
	on the Environment in Lapland	207
15.4	Interaction of Recreation with Other Land-Use Activities	209
15.4.1	Recreation vs. Nature Conservation	210
15.4.2	Recreation vs. Forestry	211
15.4.3	Recreation vs. Traditional Livelihoods	211
15.4.4	Recreation vs. Recreation	213
15.5	Sustainable Tourism	213
Reference	es	214
16	Economic Limits and Possibilities for Sustainable Utilization of Northern Birch Forests	219 en
16.1	Introduction	219
16.2	Some Theoretical Aspects	219
16.2.1	Goals	220
16.2.2	Sustainable Utilization	220
16.2.3	Identify Utilization Alternatives	221
16.2.4	Select the Best Utilization (Management) Alternative	221
16.2.5	Implementation of the Best Alternatives	221
16.3	Empirical Results	222
16.3.1	Birch Area and Productivity	222
16.3.1.1	Máze	223
16.3.1.2	Målselv	225
16.3.1.3	Other Areas	225
16.3.2	Reindeer Husbandry	226
16.3.3	Other Limiting Factors	228
16.3.4	Profitability, Value Added and Markets	228
16.4	Conclusions	231
D . f	es	232

17	The Vegetation Changes and Recent Impact	
	on the Mountain Birch Forest During the Last 40 Years	235
	D. THANNHEISER, H. TØMMERVIK and J. WEHBERG	
17.1	Introduction	235
17.1.1	Research Areas	236
17.1.2	Methodological Considerations	236
17.2	Vegetation Changes in the Máze Region	237
17.2.1	The Lichen-Rich Empetrum (Crowberry)	
	Birch Forest (<i>Empetro-Betuletum pubescentis</i> ; see Chap. 3) .	237
17.2.2	The Moss-Rich Empetrum (Crowberry) Birch Forest	
	(Empetro-Betuletum pubescentis, see Chap. 3)	240
17.2.3	The Lichen-Rich Myrtillus (Bilberry) Birch Forest	
	(Vaccinio myrtilli-Betuletum; see Chap. 3)	240
17.2.4	The Moss-Rich Myrtillus (Bilberry) Birch Forest	
	(Vaccinio myrtilli-Betuletum; see Chap. 3)	241
17.2.5	The Cornus-Myrtillus (Dwarf Cornel-Bilberry)	
	Birch Forest (<i>Corno-Betuletum</i> ; see Chap. 3)	241
17.2.6	Monitoring Vegetation Change in the Máze Region	241
17.2.7	Monitoring Vegetation Change in Målselv	244
17.2.8	Discussion	246
17.3	Linear and Localized Development on the Finnmarksvidda	250
Referen	ces	252
18	Sámi Approaches to Mountain Birch Utilization	
10	in Northern Sápmi (Finland and Norway)	255
	M.S. AIKIO and L. MÜLLER-WILLE	233
18.1	Introduction: Control, Access and Sustainability	
	of Mountain Birch Forests	255
18.2	Human–Birch Relations: Holistic Approach	
	to the Environment	257
18.3	Knowledge and Values: The Meaning	
	and Use of Mountain Birch	259
18.3.1	Birch Firewood: Securing Heat and Warmth	260
18.3.2	The Proper Mountain Birch Wood for Art and Handicraft	262
18.4	The Human Factor: Future Management	
	of Mountain Birch Resources	264
18.5	Outlook: Prospects and Policy Recommendations	266
Referen	ces	268

19	Sustainable Reindeer Herding in the Mountain Birch Ecosystem	269
	К. Lempa, S. Neuvonen and H. Тøммervik	207
19.1	Introduction	269
19.2	History	269
19.3	Cultural Background	270
19.4	Social and Economical Factors	271
19.5	Suggestions	272
Reference	tes	273
20	Synthesis Section 3: Competition over Nature, Space, Resources, and Management in the Northern Mountain	275
	Birch Forest Ecosystem	275
	D. THANNHEISER, L. MÜLLER-WILLE, F.E. WIELGOLASKI and KD. MEIER	
	4 Modelling Dynamics of Mountain Birch Forests, ment and Future	
21	Landscape-Scale Model Relating the Nordic Mountain Birch Forest Spatio-temporal Dynamics to Various Anthropogenic Influences, Herbivory	
	and Climate Change	283
21.1	Introduction	283
21.2	Complexity Aspects in the Northern Birch Forest Ecosystem	284
21.2.1	Aspect 1: Challenges from Quantity of Interactions –	
	System Complexity	284
21.2.2	Aspect 2: Processes in Linear Superposition – Scale-Specific Spatio-Temporal Interactions	285
21.2.3	Aspect 3: Beyond Superposition –	
	Spatio-Temporal Effects from Non-Linear Responses	288
21.3	The HIBECO Model	289
21.3.1	The Model Arena	290
21.3.2	Implementation of Landscape Heterogeneity	291
21.3.3	Management Regimes and Perturbations	292
21.3.4	Climate Change Scenarios	293
21.4	Simulation Examples	295
21.5	Discussion and Conclusions	298
Reference	Ces	299

22	Scenarios for Future Development of the Mountain Birch Ecosystem	301
	A.O. Gautestad, F.E. Wielgolaski, B. Solberg and I. Mysterud	
22.1	Introduction	301
22.1	Logging Practices and the Shifting Forest Mosaic	302
22.2	Scenarios for Various Long-Term Management Practices	305
22.3	Discussion and Conclusion	310
Referen		311
23	Managing the Mountain Birch Ecosystem:	
	Local Communities and the State in Finland's Forestry L. Müller-Wille, M.S. Aikio and V. Luhta	313
23.1	Introduction: Resource for Wood and Energy	313
23.2	Forests and Wood: Issues of Power and Control	316
23.3	Current Practices and Perceptions of Mountain	
	Birch Utilization	317
23.3.1	Management and Production of Private Birch Woodlots	319
23.3.2	Management and Production of Public Birch Forests	320
23.3.3	Perception and Assessment of Mountain	
	Birch Forest Management	322
23.4	The Mountain Birch – A Resource in the Future?	324
Referen	ces	326
24	Policies and Developing Plans Towards Sustainability	
	of Mountain Birch Ecosystems in Scandinavia	327
	L. BÄCK, B. SOLBERG, H. TØMMERVIK and F.E. WIELGOLASKI	
24.1	Introduction	327
24.2	Suggestions for Sustainable Reindeer Management	328
24.3	The Mountain Birch Forest from a Multi-User Perspective .	329
24.4	The Human View on Mountain Nature	333
24.5	Visitor Frequency in Nature	334
25.6	Different Planning Strategies for Sustainable Development	
	in the Mountains	334
24.7	The Need for Scientific Pluralism	336
24.8	Suggestions for Sustainable Forest Management	338
Referen	ces	339

Contents

Section 5 Integration and Conclusion

25	The Nordic Mountain Birch Ecosystem-Challengesto Sustainable ManagementF.E. Wielgolaski, P.S. Karlsson, S. Neuvonen,D. THANNHEISER, H. TØMMERVIK and A.O. GAUTESTAD	343
25.1	Introduction	343
25.2	Man and Mountain Birch Forest Interactions	
	in the Perspective of a Changing Climate	345
25.3	Considerations for Sustainable Mountain	
	Birch Forest Management	347
25.4	Considerations for a Sustainable Reindeer Management	353
25.5	Final Remarks	354
Reference	28	355
Subject Iı	ndex	357

CD-ROM containing additional material to Chapters 2, 3, 7, 10, 11, 18, 21, and 22 enclosed at the end of the book

Contributors

Аікіо, M.S.

Suoma sámiid guovddášsearvi (Finnish Sámi Association), Suohpajávri – A 777 Ohcejohka, 99800 Ivalo/Avvil, Finland, e-mail: sofia.aikio@luukku.com

Arnthórsdóttir, S.

Icelandic Institute of Natural History, Akureyri Division, Hafnarstræti 97, P.O. Box 180 602, Akureyri, Iceland

Bäck, L.

Department of Social Sciences, Mid Sweden University, 83125 Östersund, Sweden, e-mail: lennart.back@mh.se

Borg, C.

Department of Plant Ecology, Evolutionary Biology Centre, Uppsala University, Villavägen 14, 75236 Uppsala, Sweden

Bylund, H.

Department of Entomology, Swedish University of Agricultural Sciences, P.O. Box 7044, 75007 Uppsala, Sweden, e-mail: helena.bylund@entom.slu.se

Eisenmann, V.

Institute of Soil Science, Hamburg University, Allende-Platz 2, 20146 Hamburg, Germany, e-mail: v.eisenmann@podsol.de

FEILBERG, J. Biomedia, Kastrupvej 8, 4100 Ringsted, Denmark

Forbes, B.C.

Arctic Centre, University of Lapland, P.O. Box 122, 96101, Rovaniemi, Finland, e-mail: bforbes@ulapland.fi

Gautestad, A.O.

Department of Biology, University of Oslo, P.O. Box 1050 Blindern, 0316 Oslo, Norway, e-mail: a.o.gautestad@bio.uio.no

HESTER, A.J. Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK, e-mail: a.hester@macaulay.ac.uk

Нøедн, К.

Greenland Agricultural Advisory Service, P.O. Box 153, 3920 Qaqortoq, Greenland, e-mail: savacon@greennet.gl

Høgda, K.A.

Earth Observation Group, Norut Information Technology, 9291 Tromsø, Norway, e-mail: kjell-arild.hogda@itek.norut.no

Iason, G.

Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK

Igeland, B.

Department of Biology, University of Tromsø, 9037 Tromsø, Norway

Kapari, L.

Kevo Subarctic Research Institute, University of Turku, 20014 Turku, Finland

KARLSSON, P.S.

Department of Plant Ecology, Evolutionary Biology Centre, Uppsala University, Villavägen 14, 75236 Uppsala, Sweden, e-mail: staffan.karlsson@ebc.uu.se

KAUHANEN, H.

Kolari Research Station, Finnish Forest Research Institute, 95900 Kolari, Finland, e-mail: heikki.kauhanen@metla.fi

LAINE, K.

Botanical Gardens, University of Oulu, P.O. Box 333, 90571 Oulu, Finland, e-mail: kari.laine@oulu.fi

Lempa, K.

Kevo Subarctic Research Institute, University of Turku, 20014 Turku, Finland and Departmentfo Applied Biology, University of Helsinki, 00014 Helsinki, Finland, e-mail: kyosti.lempa@pp.nic.fi

XXII

Contributors

LUHTA, V. P.O. Box 115, 99801 Ivalo, Finland

MEIER, K.-D. PPA 2, Otsontie 1, 95980 Ylläsjärvi, Finland

Müller-Wille, L.

Department of Geography, McGill University, Burnside Hall 705, 805, rue Sherbrooke Ouest, Montréal (Québec), H3A 2K6 Canada, e-mail: ludger.muller-wille@mcgill.ca

Mysterud, I.

Department of Biology, University of Oslo, P.O. Box 1050 Blindern, 0316 Oslo, Norway, e-mail: ivar.mysterud@bio.uio.no

NAESS, M. Interpro AS, Kokstadflaten 4b, 5061 Kokstad, Norway

NEUVONEN, S.

Kevo Subarctic Research Institute, University of Turku, 20014 Turku, Finland, e-mail: sepne@utu.fi

Nilsen, J.

Department of Biology, University of Tromsø, 9037 Tromsø, Norway, e-mail: jarle.nilsen@ibg.uit.no

NILSSEN, A.C. Tromsø Museum, University of Tromsø, 9037 Tromsø, Norway

Norokorpi, Y.

Finnish Forest and Park Service, Northern Lapland District, Pallaksentie 1961, 99300 Muonio, Finland, e-mail: yrjo.norokorpi@metsa.fi

Ovasкa, J.A. Kevo Subarctic Research Institute, University of Turku, 20014 Turku, Finland

Partanen, R.

Kilpisjärvi Biological Station, University of Helsinki, P.O. Box 17, 00014 Helsinki, Finland

SKRE, O. Skogforsk Bergen, 5244 Fana, Norway, e-mail: oddvar.skre@skogforsk.no

XXIV

Solberg, B.

Department of Ecology and Natural Resource Management, Agricultural University of Norway, P.O. Box 5003, 1432 Ås, Norway, e-mail: birger.solberg@ina.nlh.no

TAULAVUORI, E. Institute of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland

TAULAVUORI, K. Institute of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland

Tenow, O.

Department of Entomology, Swedish University of Agricultural Sciences, P.O. Box 7044, 75007 Uppsala, Sweden, e-mail: olle.tenow@swipnet.se

Thannheiser, D.

Department of Geography, Hamburg University, Bundesstr. 55, 20146 Hamburg, Germany, e-mail: thannheiser@geowiss.uni-hamburg.de

Tømmervik, H.

Norwegian Institute for Nature Research, Polarmiljøsenteret, 9296 Tromsø, Norway, e-mail: hans.tommervik@nina.no

Tolvanen, A.

Finnish Forest Research Institute, Muhos Research Station, Kirkkosaarentie 7, 91500 Muhos, Finland, e-mail: anne.tolvanen@metla.fi

WALL, S.

Department of Human Geography and European Tourism Research Institute (ETOUR), Mid Sweden University, 83125 Östersund, Sweden, e-mail: sandra.wall@mh.se

Wehberg, J.

Department of Geography, Hamburg University, Bundesstr. 55, 20146 Hamburg, Germany, e-mail: wehberg@geowiss.uni-hamburg.de

Weih, M.

Department of Short Rotation Forestry, Agricultural University of Sweden, P.O. Box 7016, 75007 Uppsala, Sweden, e-mail: martin.weih@lto.slu.se

Wielgolaski, F.E.

Department of Biology, University of Oslo, P.O. Box 1045 Blindern, 0316 Oslo, Norway, e-mail: f.e.wielgolaski@bio.nio.no

Section 1

History, Environment and Plant Science

1 History and Environment of the Nordic Mountain Birch

F.E. Wielgolaski

1.1 History-Zonation-Taxonomy-Distribution

Birch is an old inhabitant of the Nordic countries as shown both by palynology and radiocarbon dating of subfossil birch remnants. Woody vegetation, not very different from the present-day mountain birch trees/shrubs in subalpine and northern Fennoscandia, migrated rapidly into the region after the last glacial period, probably first into southwestern Norway 12,000 B.P. (Aas and Faarlund 2001), and to the northernmost part of the region (ca. 71°N) approximately 1000 years later (however, cf. Chap. 2).

The upper and northern tree line has varied with the climate through the centuries ever since. The historical highest tree line in southern Fennoscandia, about 500 m above today's limit, has been dated back to more than 10,000 B.P., using mega-fossil evidence and radiocarbon dating (Kullman and Kjällgren 2000), only about 1000 years after birch had reached northernmost Fennoscandia. In the boreal chronozone about 8500 B.P., birch also reached high elevations (Moe et al. 1978).

The Nordic tree line zone is mainly dominated by what we normally call the northern mountain birch today (Wielgolaski 2002), and generally covers the ecotone between the coniferous forest zone and the treeless areas in the Nordic countries. It is most often referred to as the subalpine zone, which also forms a substantial part of the northern boreal zone (Moen 1999). The zone was first described by Wahlenberg (1812) and includes both the area with birch towards the northern or arctic tree line and towards the maritime tree line mainly to the west, in addition to the tree line towards the alpine zone in the mainly N–S running mountain chain almost throughout the length of the Nordic countries. Similar limits for Nordic mountain birch forests apply today (Hämet-Ahti 1963), particularly in Finland, also called the upper oroboreal zone (Ahti et al. 1968; Haapasaari 1988). However, the delimitation of western and northern Fennoscandia is complicated in places by the local climatic diversity, due to greatly varying topography of the mountain areas and the

Ecological Studies, Vol. 180

F.E. Wielgolaski (Ed.), P.S. Karlsson, S. Neuvonen, D. Thannheiser (Ed. Board) Plant Ecology, Herbivory, and Human Impact in Nordic Mountain Birch Forests © Springer-Verlag Berlin Heidelberg 2005

fjords along the coast. Together with edaphic variations, these conditions are responsible for the often diffuse character of the limits of the Nordic birch zone (Haapasaari 1988).

The taxonomy of Nordic mountain birch is difficult and unclear. In its typical form this birch is dominant in the eastern Kola Peninsula and throughout subalpine regions of the Fennoscandian mountain chain. Genes from the dwarf shrub *Betula nana* L. are strongly involved in the Nordic mountain birch (Thórsson et al. 2001), and are sometimes visually shown by small leaves and bright red autumn colours (Nilsen and Wielgolaski 2001). Today, this often polycormic birch is treated as a subspecies of *B. pubescens* Ehrh. called ssp. *czerepanovii* (Orlova) Hämet-Ahti (often also called *B.p.* ssp. *tortuosa* auct. or even *B. tortuosa* Led., a name which today is usually limited to a birch growing in the Altai mountains).

Birch is the only native tree species commonly growing in Iceland. It is also treated as a Nordic mountain birch by most authors today, although it is clearly a specific ecotype compared to the Fennoscandian mountain birch (see e.g., Wielgolaski and Nilsen 2001). Väre (2001) reported that the birch in Iceland has appeared independently of the formation in Fennoscandia, but it is likely the mountain birch has a polytopic history in both regions with introgressive hybridization of *B. nana* where this flowers more or less simultaneously with the other.

The typical *B. pubescens*, often called ssp. *pubescens*, has few, if any, genes from *B. nana*. The subspecies is normally found in richer soil at lower elevation, e.g., in valley bottoms, and at lower latitudes, commonly with only one stem (monocormic). This is generally the type found in Scotland. Sometimes the closely related birch growing in southwestern Greenland is also treated as a Nordic mountain birch, although there is often strong hybridization with the American *B. glandulosa* Michx.

Birch is also found east of the Kola Peninsula, but the taxonomy is very unclear, and many taxa may be involved. Low temperature is suggested to reduce the genetic incompatibility between various birch taxa (Hagman 1971). In this volume, the mountain birch from Fennoscandia, Iceland, Greenland and Scotland is discussed. *B. pendula* Roth. is most common in the southern parts of the region and hybridizes with the Nordic mountain birch, however, it is not included in this project.

1.2 Present Tree Line

Today, the upper mountain birch tree line is above 1200 m a.s.l. in central southeastern Norway (Fig. 1.1), but it is lower in all directions moving away from that district, strongly lower towards the southwest coast of Norway (ca. 500 m a.s.l.), and eastwards in Sweden at similar latitudes (900–800 m a.s.l.).

Fig. 1.1. Map of the upper climatic tree line in Fennoscandia as given by hypsogrammetric curves in solid lines. (Aas and Faarlund 2001)

The birch tree line is also lower to the north, but in inner Scandinavia, at the Arctic Circle, it may still be 700–800 m a.s.l. (Aas and Faarlund 2001). Near the sea in the far north of Fennoscandia it descends dramatically, nearly to sea level at about 71°N, (however, cf. Chap. 2).

Presently, there are several indications for slowly increasing Nordic mountain birch tree lines in the region (Sonesson and Hoogesteger 1983; Kullman 2000, 2002), which are at least partly attributable to a general climate change, but also to human use of the mountain birch forests, particularly reduced grazing by domestic animals. In many places, it has been observed that the mountain birch forest near the forest line grows more vigorously than just a few decades ago (own unpubl. observ.). This is also the case above the height reached for browsing by animals. The tree crowns seem to be considerably denser than they were earlier. This could be a consequence of a better climate for birch tree growth (cf. Kullman 2000). It has also been noted that the extended birch forest towards the tree line is surprisingly even-aged. Could this be because seedlings suddenly were strong enough to survive in a better climate and could grow above the winter snow cover?

Both historically and more recently, man has strongly influenced the presence of birch by logging, e.g. for fuel and by strong animal grazing. On the Faroe Islands native birch has totally disappeared, probably due to the disturbance by man (Aas and Faarlund 2001). In Iceland there has been a strong degradation of birch forests due to anthropogenic influence (Aradottir and Arnalds 2001) since the Viking settlements late in the ninth century. It is, therefore, difficult to define the climatic tree line of Iceland today. Thorhallsdottir (1997) reported that it may be close to 300 m in coastal regions, but up to about 550 m elevation in inland areas, particularly in the northeast.

It has often been discussed why birch is the main tree line species in the Nordic countries (e.g. Oksanen 1995), while in most regions of the world the tree line is formed by coniferous species (e.g. Walter 1974). Ahti and Hämet-Ahti (1969) stressed that timberline forests dominated by birches and other mesomorphic deciduous trees are typical for high-latitude areas adjacent to ice-free oceans. This indicates that the degree of oceanity plays a role in why birch is the main tree line species in the Nordic countries. The author has found in phenology studies in western Norway that high humidity favours the time of leaf bud break more in birch than in most other deciduous trees studied (Wielgolaski 2003).

In the southeastern districts of the Caledonian mountain chain in Scandinavia, which are the most continental parts of the region, there are pockets of spruce at the tree line (own observ.). Again, this indicates humidity as one factor of importance for which tree species dominates the tree line. However, there is also a possibility that strong grazing has caused the upper birch tree line to be depressed. On the other hand, this should also favour coniferous trees at the tree line in more humid districts and in inner, relatively continental districts of northern Fennoscandia, which is generally not found (Oksanen 1995). The last author has presented various hypotheses for the development of certain species to be dominant at the tree line. He suggested that rain shadow areas relatively close to open oceans might be characterized by a mixture of oceanic and continental factors maximally disadvantageous for evergreens, leading to respiratory losses in winter and soil frost-induced drought stress in spring. However, he also followed the hypothesis by, e.g. Fægri (1950), that a dispersal barrier prevented spruce from reaching all areas that otherwise would have fitted the species, and that this is a possibility for the lack of spruce in some Fennoscandian mountain areas. Oksanen (1995) further mentioned the possibility that spruce may have problems defending positions obtained for instance in northernmost Fennoscandia during the historical hypsithermal period and expanding the range under current climatic conditions. On the other hand, elevationally increased tree lines are documented also for coniferous trees at increased temperature by global change (Hofgaard 1997; Kullman 2000, 2002).

1.3 Climate

The growth of Nordic mountain birch is thus, like most other plants species in temperate regions, strongly dependent on temperature and heat sums above certain basic or threshold temperatures in the growing season (Wielgolaski 1999). Odland (1996) found the best correlation with the upper Nordic mountain birch forest line to be with the average maximum temperature isotherm 13.2 °C of the four warmest summer months (tetratherm), although this is not a vital survival limit for birch. The survival of browsing insects, however, is dependent on the minimum winter temperatures (see Chaps. 9 and 12). Helland (1912) already calculated the mountain birch tree line to follow the 7.3 °C tetratherm for the mean diurnal temperature and the coniferous tree line the tetratherm of 8.3 °C. If we compare the present birch tree line with calculated temperature normals near the birch forest limit, e.g. at Kvamskogen, Haugastøl, Fokstua, Bjørnfjell and Kilpisjärvi (Table 1.1), it seems that the birch forest limit is closer to the 8 °C tetratherm. However, mean temperature limits decrease in relatively continental areas with high day temperatures during summer (Wielgolaski 1975) and may increase in more oceanic districts, e.g. Kvamskogen (Tables 1.1–1.2).

Kullman (2000) stressed that the tree height growth increased markedly in the period 1988–1999 with slightly higher (0.3 °C) summer temperatures than the preceding period 1951–1987. He also observed that individual trees, which had been suppressed during the low temperatures in the last-mentioned period, responded by serious winter dieback at the approx. 2.6 °C increase in mean winter temperatures combined with the higher summer temperatures in 1988–1999. In the most probable global change temperature scenarios, meteorologists have suggested that temperatures in Fennoscandia will continue to increase in the period up to 2050 by about 0.4 °C per decade in the north (Hanssen-Bauer et al. 2000).

Although temperature is the most important climatic factor for growth of the Nordic mountain birch, humidity, as mentioned before, also has an influence. The annual precipitation varies greatly in Fennoscandia, from about 300 mm east of the Scandes (Table 1.2) to considerably more than ten-fold in coastal mountains of southwestern Norway. Particularly high precipitation is observed at higher elevations just west of the highest mountain massifs because of the uplift and cooling of the mainly southwesterly winds and cyclonic movements in Fennoscandia. The precipitation is somewhat lower close to the sea in the west and decreases to the far north. Even at the northeasternmost coast of Norway it is often less than 400 mm/year (e.g. Ekkerøy Table 1.2), but fog and drizzle are common.

In precipitation scenarios, the precipitation is normally supposed to increase in the Nordic mountain birch region up to year 2050 (Hanssen-Bauer et al. 2001). This has been estimated particularly for the northwestern coast

Table 1.1. Normal temperatur	nal temperature	e (mean °C). (Kärenlampi 1972; Järvinen 1987; Alexandersson et al. 1991; Lippestad 2003)	npi 1972; Jä	rvinen 1987	7; Alexand	ersson et a	ıl. 1991; Lij	ppestad 2	(003		
Coordinates °N-S; °E-W	Height (m)	Site	Period March	April	May	June	July	Aug.	Sept.	Year	Mean June-Sept.
60.5; 5.5	408	Kvamskogen	-0.8	2.0	7.0	10.9	11.9	11.6	8.4	4.1	10.7
60.5; 8.0	988	Haugastøl	-6.8	-2.8	2.9	7.8	9.8	9.2	5.2	-0.2	8.0
62.1; 9.3	952	Fokstua	-7.0	-2.9	3.8	8.4	10.0	8.9	4.4	-0.7	7.9
62.5; 12.1	680	Fjällnäs	-6.7	-2.4	4.0	9.0	10.5	9.4	5.2	-0.4	8.5
63.2; 12.0	642	Storlien	-4.6	-1.3	4.6	9.3	10.7	10.0	6.0	1.1	9.0
65.5; 16.5	652	Danasjö	-6.9	-2.5	3.6	9.4	11.2	9.5	4.7	-0.6	8.5
66.5; 16.3	500	Vuoggatjolme	-8.7	-2.7	3.4	9.0	11.4	9.9	5.3	-1.7	8.9
67.1; 18.2	530	Aktse	-7.8	-2.6	3.6	9.4	11.6	9.7	4.5	-1.4	8.8
68.3; 18.8	388	Abisko	-8.0	-2.7	3.2	8.4	11.0	9.7	5.2	-0.8	8.3
68.4; 18.1	512	Bjørnfjell	-8.5	-4.0	1.8	7.0	10.5	9.2	4.2	-1.6	7.7
68.5; 14.5	10	Melbu (Bø)	-0.8	1.6	5.2	9.3	11.5	11.5	8.0	4.1	10.1
69.0; 20.8	500	Kilpisjärvi	-10.0	-4.9	1.3	7.2	10.6	9.1	4.4	-2.6	7.8
69.0; 23.2	330	Kautokeino	-10.6	-4.1	2.9	9.7	12.4	10.2	4.8	-2.5	9.3
69.7; 27.0	110	Kevo	-11.0	-3.4	2.8	9.2	11.8	10.2	5.4	-2.4	9.2
70.2; 30.1	6	Vardø (Ekkerøy)	-4.9	-1.1	3.1	7.3	10.4	10.5	6.8	1.4	8.7