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Foreword 

This book brings together two streams of research in mathematics and com
puting tha t were begun in the nineteenth century and made possible through 
results brought to fruition in the twentieth century. 

Methods for indefinite integration have been important ever since the in
vention of the calculus in the 1700s. In the 1800s Abel and Liouville began the 
earliest mathematical research on algorithmic methods on integration in finite 
terms leading to what might be considered today as an early mathematical 
vision of a complete algorithmic solution for integrating elementary functions. 
In an 1842 publication Lady Ada Augusta, Countess of Lovelace, describing 
the capabilities of Babbage's analytical engine put forth the vision tha t com
putat ional devices could do algebraic as well as numerical calculations when 
she said tha t "[Babbage's Analytical Engine] can arrange and combine its nu
merical quantities exactly as if they were letters or any other general symbols; 
and in fact it might bring out its results in algebraical notation were provi
sions made accordingly." Thus these two visions set the stage for a century 
and a half of research that partially culminates in this book. 

Progress in the mathematical realm continued through out the nineteenth 
and twentieth centuries. The Russian mathematician Mordukhai-Boltovskoi 
wrote the first two books on this subject in 1910 and 1913^ 

Wi th the invention of electronic computers in the late 1930s and early 
1940s, a new impetus was given to both the mathematical and computa
tional streams of work. In the meantime in the mathematical world important 
progress had been made on algebraic methods of research. Ritt began to ap
ply the new algebraic techniques to the problem of integration in finite terms, 
an approach that has proven crucially important . In 1948 he published the 
results of his research in a little book. Integration in Finite Terms, The use of 
these algebraic ideas were brought to further fruition by Kolchin, Rosenlicht, 
and, particularly for problems of symbolic integration, by three of Rosenlicht's 
Ph .D. students — Risch, Singer, and Bronstein^. 

On the Integration in Finite Terms of Linear Differential Equations. Warsaw, 
1910 (in Russian) and On the Integration of Transcendental Functions. Warsaw, 
1913 (in Russian). 

Let me hasten to add that there have been important contributions by many 
others and it is not my intention to give a complete history of the field in this short 
paragraph, but to indicate some of main streams of work that have led to the current 
book. 



VI Foreword 

On the computational side, matters rested until 1953 when two early pro
grams were written, one by Kahrimanian at Temple University and another by 
Nolan at Massachusetts Institute of Technology, to do analytic differentiation 
— the inverse of indefinite integration. There was active research in the late 
1950s and early 1960s on list processing packages and languages that laid the 
implementation foundations for today's computer algebra systems. Slagle's 
1961 thesis was an early effort to write a program, in LiSP, to do symbolic 
integration. With the advent of general computer algebra systems, some kind 
of symbolic integration facility was implemented in most. These integration 
capabilities opened the eyes of many early users of symbolic mathematical 
computation to the amazing potential of this form of computation. But yet 
none of the systems had a complete implementation of the full algorithm that 
Risch had announced in barest outline in 1970. There were a number of rea
sons for this. First and foremost, no one had worked out the many aspects of 
the problem that Risch's announcement left incomplete. 

Starting with his Ph.D. dissertation and continuing in a series of beautiful 
and important papers, Bronstein set out to fill in the missing components 
of Risch's 1970 announcement. Meanwhile working at the IBM T. J. Wat
son Research Center, he carried out an almost complete implementation of 
the integration algorithms for elementary functions. It is the most complete 
implementation of symbolic integration algorithms to date. 

In this book, Bronstein brings these mathematical and computational 
streams of research together in a highly effective manner. He presents the algo
rithmic details in pseudo-code that is easy to implement in most of the general 
computer algebra systems. Indeed, my students and I have implemented and 
tested many of the algorithms in MAPLE and MACSYMA. Bronstein's style 
and appropriate level of detail makes this a straightforward task, and I ex
pect this book to be the standard starting place for future implementers of 
symbolic integration algorithms. Along with the algorithms, he presents the 
mathematics necessary to show that the algorithms work correctly. This is a 
very interesting story in its own right and Bronstein tells it well. Nonetheless, 
for those primarily interested in the algorithms, much of the mathematics can 
be skipped at least in a first study. But the full beauty of the subject is to be 
most appreciated by studying both aspects. 

The full treatment of the subject is a long one and it is not finished in 
this volume. The longer and more difficult part involving the integration of 
algebraic functions must await a second volume. This volume serves as a good 
foundation to the topic of symbolic integration and as a nice introduction to 
the literature for integration of algebraic functions and for other aspects such 
as integration involving non-elementary functions. Study, learn, implement, 
and enjoy! 

B. F. Caviness 



Preface to the Second Edition 

I have taken the opportunity of this second edition to add a chapter on parallel 
integration, a method that is used by several computer algebra systems, either 
before or in place of the complete integration algorithm. I have also added new-
references and exercises that expand on topics such as obtaining continuous 
integrals or the relations between special polynomials, Darboux polynomials 
and constants in monomial extensions. 

I would like to thank all the readers of the first edition who have sent me 
various corrections and suggestions. While I have tried to incorporate all of 
them in this edition, I remain responsible for the remaining errors. 

Sophia Antipolis, June 2004 M. Bronstein 



Preface to the First Edition 

The integration problem, which is as old as calculus and differentiation, can be 
informally stated very concisely: given a formula for a function / (x) , determine 
whether there is a formula for a differentiable function F{x) satisfying 

and compute such an F(x), which is called an antiderivative of f{x) and is 
denoted 

F{x) = j f{x)da 

if it exists. Yet, while symbolic differentiation is a rather simple mechanical 
process, suitable as an exercise in a first course in analysis or computer pro
gramming, the inverse problem has been challenging scientists since the time of 
Leibniz and Newton, and is still a challenge for mathematicians and computer 
scientists today. Despite the many great strides made since the 19*^ century 
in showing that integration is in essence a mechanical process, although quite 
more complicated than differentiation, most calculus and analysis textbooks 
give students the impression that integration is at best a mixture of art and 
science, with flair in choosing the right change of variable or approach being 
an essential ingredient, as well as a comprehensive table of integrals. 

The goal of this book is to show that computing symbolic antiderivatives 
is in fact an algorithmic process, and that the integration procedure for tran
scendental functions can be carried out by anyone with some familiarity with 
polynomial arithmetic. The integration procedure we describe is also capa
ble of deciding when antiderivatives are not elementary, and proving it as a 
byproduct of its calculations. For example the following classical nonelemen-
tary integrals 

S^'^'^^ /biM' / 
sm{x)dx 

X 

can be proven nonelementary with minimal calculations. 
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The algorithmic approach, pioneered by Abel and Liouville in the past 
century, eventually succeeded in producing a mechanical procedure for decid
ing whether an elementary function has an elementary antiderivative, and for 
computing one if so. This procedure, which Risch described in a series of re
ports [73, 74, 75, 76], unfortunately not all of them published, forms the basis 
of most of the symbolic integration algorithms of the past 20 years, all of them 
loosely grouped under the appellation Risch algorithm. The procedure which 
we describe in this book also has its roots in the original Risch algorithm [75] 
and its improvements, our main sources besides Risch being [12, 13, 83, 89]. 

We have tried to keep the presentation as elementary as possible, with 
the minimal background for understanding the algorithm being an introduc
tory course in algebra, where the topics rings and fields, polynomial greatest 
common divisors, irreducible polynomials and resultants are covered"^. Some 
additional background in field theory, essentially algebraic and transcendental 
extensions, is occasionally used in the proofs associated with the algorithm. 
The reader willing to accept the algorithm without proof can skip those sec
tions while learning the algorithm. 

We have also generalized and extended the original Risch algorithm to a 
wider class of functions, thereby offering the following features, some of them 
new, to the reader already familiar with symbolic integration: 

® The algorithms in this book use only rational operations, avoiding factor
ization of polynomials into irreducibles. 

® Extensions by tangents and arc-tangents are treated directly, thereby real 
trigonometric functions are integrated without introducing complex expo
nentials and logarithms in the computations. 

® Antiderivatives in elementary extensions can still be computed when ar
bitrary primitives are allowed in the integrand, e.g. Erf(x), rather than 
logarithms. 

® Several subalgorithms are applicable to a large class of non-Liouvillian 
extensions, thereby allowing integrals to be computed for such functions. 

The material in this book has been used in several courses for advanced 
undergraduates in mathematics or computer science at the Swiss Federal In
stitute of Technology in Zurich: 

® In a one-semester course on symbolic integration, emphasizing the algo
rithmic and implementation aspects. This course covers Chap. 2 in depth, 
Chap. 3 and 4 superficially, then concentrates on Chap. 5, 6, 7 and 8. 

• In the first part of a one-semester course on differential algebra. This 
course covers Chap. 3, 4 and 5 in depth, turning after Liouville's Theorem 
to other topics (e.g. differential Galois theory). 

® In the last part of a one-semester introductory course in computer algebra, 
where some algorithms from Chap. 2 and 5 are presented, usually without 
proofs. 

^Those topics are reviewed in Chap. 1. 
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In all those courses, the material of Chap. 1 is covered as and when needed, 
depending on the background of the students. Chap. 9 contains complete 
proofs of several structure theorems and can be presented independently of 
the rest of this book. 

By presenting the algorithm in pseudocode in various "algorithm boxes" 
throughout the text, we also hope to make this book useful for programmers 
implementing symbolic integrators: by following the pseudocode, they should 
be able to write an integrator without studying in detail the associated theory. 

The reader will notice that several topics in symbolic integration are miss
ing from this book, the main one being the integration of algebraic func
tions. Including algorithms for integrating algebraic and mixed algebraic-
transcendental functions would however easily double the size of this book, as 
well as increase the mathematical prerequisites, since those algorithms re
quire prior famiharity with algebraic curves and functions. We have thus 
decided to cover algebraic functions in a second volume, which will hope
fully appear in the near future. In the meantime, this book is an adequate 
preparation to the extensive literature on the integration of algebraic func
tions [8, 9, 11, 14, 29, 73, 74, 76, 91]. Another related topic is integration 
in nonelementary terms, i.e. with new special functions allowed in the an-
tiderivatives. Here also, the reader should have no difficulty moving on to the 
research literature [5, 6, 21, 22, 52, 53, 70, 94] after completing this book. 

Acknowledgements 
I am thankful to several colleagues and students who have read and cor
rected many early drafts of this book. I am particularly grateful to Bob Cavi-
ness. Thorn Mulders and Paul Zimmermann, who corrected many errors in 
the final text and suggested several improvements. Sergei Abramov, Cedric 
Bächler, Johannes Grabmeier, David Stoutemyer, Jacques-Arthur Weil and 
Clifton Williamson have also helped a great deal with their corrections and 
suggestions. Of course, I am fully responsible for any error that may remain. 

Finally, I wish to thank Dr. Martin Peters and his staff at Springer-Verlag 
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Algebraic Prelimmaries 

We review in this chapter the basic algebraic structures and algorithms that 
will be used throughout this book. This chapter is not intended to be a re
placement for an introductory course in abstract algebra, and we expect the 
reader to have already encountered the definitions and fundamental proper
ties of rings, fields and polynomials. We only recall those definitions here and 
describe some algorithms on polynomials that are not always covered in intro
ductory algebra courses. Since they are well-known algorithms in computer 
algebra, we do not reprove their correctness here, but give references instead. 
For a comprehensive introduction to constructive algebra and algebraic algo
rithms, including more efficient alternatives for computing greatest common 
divisors of polynomials, we recommend consulting introductory computer al
gebra textbooks [2, 28, 39, 64, 97]. Readers with some background in algebra 
can skip this chapter and come back to it later as needed. 

1,1 Groups, Rings and Fields 

An algebraic structure is usually a set together with one or more operations 
on it, operations that satisfy some computation rules called axioms. In order 
not to always list all the satisfied axioms for a given structure, short names 
have been given to the most common structures. Groups, rings and fields are 
such structures, and we recall their definitions in this section. 

Definition 1.1.1. A group (G,o) is a nonempty set G, together with an op
eration o : G X G —^ G satisfying the following axioms: 

(i) (Associativity) Va, 6, c G Ĝ , a o (6 o c) = (a o 6) o c. 
(a) (Identity element) 3e G G such that Va€ G^eo a = ao e = a. 
(Hi) (Inverses) Va € G^ 3a~-̂  G G such that a o a~^ — a~^ o a = e. 

In addition, o is called commutative (or Abelian^ ifaob = boa for all a^b £ G, 
and (G, o) is called a commutative group (or Abelian groupj if it is a group 
and o is commutative. 



2 1 Algebraic Preliminaries 

Example 1.1.1. Let G = GL{Q,2) be the set of all the 2 by 2 matrices with 
rational number coefficients and nonzero determinant, and let o denote the 
usual matrix multiplication. (C, o) is then a group: associativity can easily 
be checked, the identity element is the identity matrix, and the inverse of a 
matrix in G is given by 

a b\ 1 f d -
c dj ad-bc\-c a 

which is in G since the determinant of any element of G is nonzero. Note that 
(G, o) is not a commutative group since 

1 1 \ / 0 1 \ / l l 

^oij°(,ioJ = ^io 
and 

Example 1.1.2. Let G = A^2,2(Q) be the set of all the 2 by 2 matrices with 
rational number coefficients, and let o denote the usual matrix addition. It 
can easily be checked that (G, o) is a commutative group with the zero matrix 
as identity element. 

Definition 1.1.2. A ring (fi,+,•) -̂̂  ^ ^^^ Ft, together with two operations 
-i- : R X R ^ R and - : R x R -^ R such that: 

(i) (i?, +) is a commutative group. 
(ii) (Associativity) \/a^b,c ^ R^a • {h • c) = {a - b) • c. 
(Hi) (Multiplicative identity) 3i G R such that \/a E R^i • a = a • i = a. 
(iv) (Distributivity) 

Va, b, c G R^ a • {b -\- c) = {a • b) + {a • c) and {a -i- b) - c = (a - c) -{- {b • c). 

(i?, +, •) is called a commutative ring if it is a ring and • is commutative. In 
addition, we define the characteristic of R to be 0 if ni ^ e for any positive 
integer n, the smallest positive integer m such that mi = e otherwise. Let R 
and S be rings. A map (j) : R -^ S is a ring-homomorphism if (i){eR) = es, 
4'{'^R) = T^s, and <j){a^b) — (f){a)-j-(j){b) and (t){ab) = (t){a) • (j){b) for any a^b G R. 
A ring-isomorphism is a bijective ring-homomorphism. 

In the rest of this book, whenever (fi,+, •) is a ring, we write 0 for the 
identity element of R with respect to +, 1 for the identity element of R with 
respect to -, and for a^b E R^ we write ab instead of a • b. 

Example 1.1.3. Let R = A42,2(Q) be the set of all the 2 by 2 matrices with 
rational number coefficients, and let + denote matrix addition and • denote 
matrix multiplication. {R, +, •) is then a ring, but not a commutative ring (see 
example LLl) . Since 
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1 0 \ (n 0^ 
0 \) \\) n 

is nonzero for any positive integer n, R has characteristic 0. 

Example 1.1.4- Let R — IJQ (the integers modulo 6) with + and • being the 
addition and multiplication of integers modulo 6. (i?, +, •) is then a commu
tative ring, and the map (/> : Z ^ Ze defined by (/)(n) = n (mod 6) is a 
ring-homomorphism. Since 1 + 1 + 1 + 1 + 1 + 1 = 0 i n Z 6 , and nl j^ 0 for 
0 < n < 6, ZQ has characteristic 6. Note that 2 • 3 = 0 in Ze, while 2 7̂  0 and 
3 7̂  0, so we cannot in general deduce from an equation ab = 0 that either a 
or b must be 0. Commutative rings where we can make this simplification are 
very useful and common, so they receive a special name. 

Definition 1.1,3. An integral domain ( ß , + , •) is a commutative ring where 
0 7̂  1 and 

\/a,be R,a-b = 0=^ a = 0 or 5 = 0. 

Example 1.1.5. Let R = Z[-\/—b] = {a+6^—5; a, 6 E Z} with + and • denoting 
complex addition and multipHcation. (i?, +, •) is then an integral domain. 

We now come to the problem of factoring, i.e. writing elements of an 
integral domain as a product of other elements. 

Definition 1.1.4. Let (ß ,+,•) be an integral domain, and x,y ^ R. We say 
that X divides y, and write x \ y, if y — xt for some t £ R. An element 
X £ R is called a unit if x \ 1. The set of all the units of R is written R*. 
We say that z E R is a greatest common divisor (gcd) of x i , . . . , x^ and write 
z = gcd{xi,...,Xn) if: 

(i) z I Xi for 1 < i < n, 
(ii) yt G R,t \ Xi for 1 < i < n => t \ z. 

In addition, we say that x and y are coprime if there exists a unit u E R*, 
which is a gcd of x and y. 

Example 1.1.6. Let R = Z [A/—5j as in example 1.1.5, x = 6 and y = 2 + 
2 \ / ^ . A norm argument shows that x and y have no gcd in R. Let N : R -^ Z 
be the map given by N{a + 5\A-5) = a^ + 56^ for a, 6 G Z. It can easily be 
checked that N{uv) = N{u)N{v) for any u^v £ R^ so u \ v in R implies that 
N{u) I N{v) in Z. Suppose that z E R is a greatest common divisor of x and 
y, and let n = N{z) > 0. Then, n \ N{x) = 36 and n \ N{y) = 24, so n | 12 in 
Z. We have 2 | x and 2 | y in fi, so 4 = iV(2) | n in Z. In addition, 1 + v ^ | y 
in i?, and 

6 = 2 • 3 = (1 + V^){1 - V^) (1.1) 

so 1 + \ / ^ \ x in R, hence 6 = N{1 + \ / ^ ) | n in Z. Thus, 12 | n in 
Z, so n == 12. Writing z = a + 6 ^ / ^ for some a, 6 G Z, this implies that 
N{z) = a? -\- 56^ — 12, hence that a^ = 2 (mod 5). But the squares in Z5 
are 0,1 and 4, so this equation has no solution, implying that x and y have 
no gcd in R. 
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Although gcd's do not always exist, whenever they exist, they are unique 
up to multiplication by units. 

T h e o r e m 1.1.1 . Let (jR,+,•) be an integral domain, and x^y E R. If z and 
t are both gcd^s of x and y, then z = ut and t = vz for some u^v G R*. 

Proof Suppose tha t both z and t are gcd's of x and y. Then, t \ z since t \ x, 
t I y, and z — gcd(x,y) . Thus, z = ut for some u e R. Similarly, z | t, so 
t = vz for some v e R. Hence z = ut = uvz^ so (1 — uv)z = 0. If z / 0, then 
1 = uv^ so u^v E R*. If z = 0, then t = vz = 0,soz = lt and t = Iz. D 

D e f i n i t i o n 1.1.5. Let R be an integral domain. A nonzero element p E R\R* 
is called prime if for any a^b £ R, p\ ab =^ P \ ct or p \ b. A nonzero element 
p E R\ R* is called irreducible if for any a^b E R, p = ab = ^ a E R"^ or b E 
R\ 

Example 1.1.7. Let R = Z [\/---5] as in example 1.1.5, and check tha t 2, 3,1 + 
A / ^ and 1 — ^/^ are all irreducible elements of R. Equation (1.1) then 
shows tha t the same element can have several different factorizations into 
irreducibles. Therefore, integral domains where such a factorization is unique 
receive a special name. 

D e f i n i t i o n 1.1.6. A unique factorization domain (UFD) ( ß , + , • ) -̂̂  «̂ ^ 'in
tegral domain where for any nonzero x E R\ R*, there are u E R*, co-
prime irreducibles p i , . . . ,_pŷ  E R and positive integers e i , . . . , e^ such that 
X = upl^ • • -p^"'. Furthermore, this factorization is unique up to multiplica
tion of u and the pi 's by units and up to permutation of the indices. 

Example 1.1.8. Let R = Q[X, Y] be the set of all the polynomials in the 
variables X and Y and with rational number coefficients. It is a classical re
sult ([54] Chap. V §6, [92] §5.4) tha t (Ä, + , •) is a unique factorization domain 
where + and • denote polynomial addition and multiplication respectively. 

In any integral domain, a prime is always irreducible. The converse is 
not always true, but it holds in unique factorization domains. Thus, we can 
use interchangeably "prime" or "irreducible" whenever we are in a unique 
factorization domain, so, "the prime factorization of x" and "the irreducible 
factorization of x" have the same meaning. 

T h e o r e m 1.1.2 ([54] Chap. II §4). Let ( i ? ,+ , •) be an integral domain. Then 
every prime p E R is irreducible. If R is a unique factorization domain, then 
every irreducible p E R is prime. 

In addition, gcd's always exist in UFD's , and can be obtained from the 
irreducible factorizations. 

T h e o r e m 1.1.3. If R is a UFD, then any x^y E R have a gcd in R. 
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Proof. Let x^y G R^ and suppose first that x = 0. Then y \ y, y \ 0^ and any 
t e R that divides x and y must divide y, so y is a gcd of x and y. Similarly, 
a: is a gcd of x and y if y = 0, so suppose now that x ^ 0 and y 7̂  0, and 
let X = uflpE^P^^ ^^^ y ~ ^YlpeyP^^ ^^ ^^^ irreducible factorizations of 
X and y, where /¥ and 3̂  are finite sets of irreducibles. We choose the units u 
and V so that any irreducible dividing both x and y is in X oy. Let then 

^ ^ n p™̂""̂'"̂^̂  e R. (1.2) 

We have 

pexny peP(:\y 

so 2; I X. A similar formula shows that z \ y. Suppose that t \ x and t \ y for 
some t E R^ and let t = it; HOGT^^^ ^^ ^̂ ^ irreducible factorization where T is 
a finite set of irreducibles. For p G T, we have x = tb = p^^ab for some a, 6 E ß , 
so sp e ^ for some 5 G i?*. Replacing t(; by t(;5~^p, we can assume that p G Af, 
and Cp < Up by the unicity of the irreducible factorization. Similarly, we get 
p G y and e^ < nip since t | y. Hence, T C ^ n 3̂  and e^ < min(np, rup) for 
any p E T. Thus, 

Z — tw~^ T T pmm(np,mp)-ep TT mm(np,mp) 

pGT pG{xny)\T 

which means that t | z, hence that z = gcd(x, y). D 

It is a classical result due to Gauss that polynomials can be factored 
uniquely into irreducibles. 

Theorem 1.1.4 ([54] Chap. V §6, [92] §5.4). If R is a UFD, then the polyno-
mial ring JR[XI, . . . , X^] is a UFD, 

Definition 1.1.7. Let (G, o) be a group with identity element e. We say that 
H C G is a subgroup of (G^o) if: 

(i) eeH. 
(a) \/a,b e H\aob £ H. 
(iii)ya G H,a~'^ G H. 

In practice, given a subset iJ of a group G, it is equivalent to check the 
above properties (i), (ii) and (iii), or that H is not empty and that aob"^ G H 
for any a,b e H. 

Example 1.1.9. Let G = GL{Q^ 2) as in example 1.1.1 with o denoting matrix 
multiplication, and let H = SL{Q, 2) be the subset of G consisting of all the 
matrices whose determinant is equal to 1. The identity matrix is in iJ, so i7 is 
not empty, and for any a,b E H^ the determinant of a o 6~-̂  is the quotient of 
the determinant of a by the determinant of 6, which is 1, so i^ is a subgroup 
of G. 
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Def in i t ion 1.1.8. Let ( Ä , + , • ) be a commutative ring. A subset I of R is 
called an ideal if ( / , + ) is a subgroup of ( ß , + ) and xa £ I for any x in R 
and a in I. Let x i , . . . , x^ G R. The ideal generated by { x i , . . . , x^} is the 
smallest ideal of R containing { x i , . . . ^Xn}, and is denoted ( x i , . . . , x ^ ) . An 
ideal I C R is called principal if I = (x) for some x E R. 

In fact, the ideal generated by { x i , . . . , x „ } is just the set of all the linear 
combinations of the x^'s with coefficients in R. 

T h e o r e m 1.1.5. Let ( A , + , • ) be a commutative ring, and x i , . . . , x ^ E R. 
Then, 

(Xi, . . . , Xn) = {aiXi H h ünXn] tti, . . . , « ^ G R}. 

Proof Let / = {aiXi -|- •. • -|- a^Xn^ a i , . . . , a^ G R}. Then Xi £ I for any i. 

Let a = ^2^=1 ^i^i ^ -̂  ^^^ ^ = S i L i ^*^* ^ -̂ - ^ ® have a — h = Y^^=i{^i ~ 
bi)xi G / , so ( / , + ) is a subgroup of ( i ? ,+) . For any x G i?, we have xa = 
Yl7=ii^^i)^'i G I , so / is an ideal of R containing { x i , . . . , x ^ } . Let now J be 
any ideal of R containing { x i , . . . , x ^ } , and let a — YM=I ^i^i ^ ^- ^^^ each 
i, Xi G J , so üiXi G J since RJ C J , so a G J since (J, + ) is a group. Hence 
/ C J , so / = ( x i , . . . , x^) . D 

Example LLIO. Let ß = Q [ X , y ] as in example L L 8 , and let / = {X,Y). 
It can be checked tha t / is not principal, hence tha t not every ideal of jR is 
principal. Naturally, this means that integral domains where every ideal is 
principal receive a special name. 

Def in i t ion 1.1.9. A principal ideal domain (PID) ( ß , + , •) 5̂ an integral do
main where any ideal is principal. 

Example l.Lll. Let R = Q[X] be the set of all the univariate polynomials 
in X with rational number coefficients. (A, + , •) is then a principal ideal do
main ([54] Chap. V §4, [92] §3.7) where + and • denote polynomial addition 
and multiplication respectively. 

The last, and most useful, type of ring tha t we use in this book, is an 
integral domain in which Euclidean division can be carried out. 

Def in i t ion 1.1.10. A Euclidean domain (A ,+ , • ) is an integral domain to
gether with a map v : R\ {0} —> N such that: 

(i) Ma.beR \ {0}, u{ab) > u{a). 
(a) (Euclidean division) For any a^b G R, b j^ 0, there are q^r £ R such that 

a = bq + r and either r = 0 or ^{r) < y{b). 

The map u is called the size function of the Euclidean domain. 

Example LL12. The ring (Z, + , •) of the integers with the usual addition and 
multiphcation is a Euclidean domain with z/(a) = |a|, a fact tha t was known 
to Euchd, and which is the origin of the name. 



1.1 Groups, Rings and Fields 7 

Even though the notions of principal ideal domains and EucHdean domains 
are defined for an arbitrary integral domain, there is in fact a linear hierarchy 
of integral domains. 

Theorem 1.1.6 ([92] §3.7). Every Euclidean domain is a PID. 

Theorem 1.1.7 ([54] Chap. II §4, [92] §3.8). Every PID is a UFD. 

Since every PID is a UFD, and gcd's always exist in UFD's by Theo
rem 1.1.3, then gcd's always exist in PID's. We show that in PID's, the gcd 
of two elements generates the same ideal than them. 

Theorem 1.1.8. If R is a PID, then (x^y) = (gcd(a:,y)) for any x^y G R. 

Proof Let x^y e R and z £ R he a generator of the ideal (x,y), i.e. (z) = 
(x^y). Then, x G (2), so x = zu for some u G R^ which means that z \ x. 
Similarly, y G {z), so z \ y. In addition, z G {x,y)^ so z = ax -{- by for some 
a^b G R. Let t G R he such that t \ x and t \ y. Then x = ct and y = dt for 
some c^d G R. Hence, z = act + bdt = {ac + bd)t so t | z, which implies that 
z — gcd(ii,'u). D 

We finally recall some important definitions and results about fields. 

Definition 1.1.11. A field (F, H-, •) is a commutative ring where {F \ {0},-) 
is a group, i.e. every nonzero element is a unit (F* = F \ {0}). 

Example 1.1.13. Let F = Z5 (the integers modulo 5) with + and • being the 
addition and multiplication of integers modulo 5. (F, +, •) is then a field. 

Example 1.1.14- Let R he an integral domain and define the relation ~ on 
R X R\ {0} by (a, b) ~ (c, d) if ad = be. It can easily be checked that ~ is an 
equivalence relation on R x R\{0} and that the set of equivalence classes is 
a field with the usual operations 

a c ad-^bc a c ac 
b d bd b d bd 

where a/b denotes the equivalence class of (a, 6). This field is called the quo
tient field of R. For example, the quotient field of Z is Q and the quotient 
field of the polynomial ring D[x] is the rational function field D{x) when D 
is an integral domain. 

Definition 1.1.12. Let F C E be fields. An element a G E is called algebraic 
over F if p{a) = 0 for some nonzero polynomial p G F[X], transcendental 
over F otherwise. E is called an algebraic extension of F if all the elements 
of E are algebraic over F. 

Definition 1.1.13. A field F is called algebraically closed if for every polyno
mial p G F[X]\F there exists a G F such thatp{a) = 0. ^ field E is called an 
algebraic closure of F if E is an algebraically closed algebraic extension of F. 
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Note tha t if JP is algebraically closed, then any p G K[X]\K factors linearly 
as p = c n r = i ( ^ ~ ^'^T'' ^^^^ -^' P ™ust have one root a in i^ by definition, 
and p/{X — a) factors linearly over F by induction. The fundamental result 
about algebraic closures is a result of E. Steinitz which states tha t they exist 
and are essentially unique. 

T h e o r e m 1.1.9 ([54] Chap. VII §2, [92] §10.1). Every field F has an algebraic 
closure, and any two algebraic closures of F are isomorphic. 

In view of the above theorem, we can refer to the algebraic closure of a field 
F , and we denote it F. The last result we mention in this section is Hilbert 's 
Nullstellensatz, which is not needed in the algorithm, but is needed in or
der to eliminate the possibility of new transcendental constants appearing in 
antiderivatives. We present it here in both its classical forms. 

T h e o r e m 1.1.10 ( W e a k N u l l s t e l l e n s a t z , [92] §16.5). Let F be an 
braically closed field, I an ideal of the polynomial ring F[Xi^..., X^] and V{I) 
be the subset of F'^ given by 

V{I) = { ( x i , . . . ,Xn) G F " s.t p{xu . . . , x , ) = 0 /o r allpe 1} . (1.3) 

Then, V{I) = (D 4=^ l e L 

T h e o r e m 1.1.11 ( N u l l s t e l l e n s a t z , [54] Chap. X §2, [92] §16.5). Let F be 
an algebraically closed field, I an ideal of the polynomial ring F[Xi^..., Xn] 
and V{I) be given by (1.3). For any p € F[Xi^... ,X^]^ if p(xi^... ,Xn) = 0 
for every ( x i , . . . , Xn) € y{I), then p^ £ I for some integer m > 0. 

1.2 Euclidean Division and Pseudo-Division 

Let K be a field and x be an indeterminate over K. We first describe the 
classical polynomial division algorithm ([92] §3.4), which, given A^B G K[x]^ 
B j^ 0^ produces unique Q,R G K[x] such tha t A = BQ + R and either R = 0 
or deg{R) < deg (ß ) . This shows tha t the polynomial ring K[x] is a Euclidean 
domain with the degree for size function when K is field. Q and R are called 
the quotient of A by B , and the remainder of A modulo B respectively. 

PolyDivide(A, B) (* Euclidean Polynomial Division *) 

(* Given a field K and A,B e K[x] with B j^ 0, 
that A = BQ + R and either R = 0 or deg{R) < 

Q i~~0, R<-A 
while Ä 7̂  0 and (5 ^ deg(i^) - deg{B) > 0 do 

T ^ | ^ x ^ Q^Qi-T,R^R-BT 
Tetnrn{Q,R) 

return Q 
deg{B). 

Re 
*) 

K[x] such 



1.2 Euclidean Division and Pseudo-Division 

Example 1.2.1. Here is the Euclidean division oi A — 3x*̂  -\- x^ + x -
E = 5 r r 2 - 3 j : + l in Q[x]\ 

5 by 

Q 

0 

^x 

5*^ ^ 25 

Ä 

3x^ + x̂  + x + 5 
fx^ + fx + S 

52^ 1 i n 
25"^ ^ 25 

(5 

1 

0 

- 1 

T 

gX 

14 
25 

Thus, 

- - • 1 - M / 5 2 111 

This algorithm requires the coefficients to be from a field because it makes 
the quotient in K of the two leading coefficients. If K is an integral domain, 
the leading coefficient of B does not always divide exactly the leading coef
ficient of A, so Euclidean division is not always possible. For example it is 
not possible in the above example to do a Euclidean division of 4̂ by ß in 
IJ[X\. But it is possible to apply P o l y D i v i d e to 2bA and B in Z[x] since all 
the divisions in Z will then be exact. In general, given an integral domain 
D and A,B £ D[x], applying P o l y D i v i d e to h^^^A and B where h = 1C(JB) 
and Ö — max(—l,deg(yl) — deg(jB)) only generates exact divisions in D , and 
the Q and R it returns are respectively called the pseudo-quotient of A by 
B and pseudo-remainder of A modulo B. They satisfy b^'^^A = BQ 4- R and 
either i? = 0 or deg(fi) < deg(-B). We write pquo{A,B) and p r e m ( ^ , ß ) for 
the pseudo-quotient and pseudo-remainder of A and B. It is more efficient 
in practice to multiply A hy b iteratively, as is done in the algorithm below, 
rather than once by 6^+^. 

PolyPseudoDivide(74, B) (* Euclidean Polynomial Pseudo-Division *) 

(* Given an integral domain D and A, B G D[x] with B ^ 0, return 
pquo(A,jB) and pYem.{A,B). *) 

b ^ lc(ß), N ^ deg(A) - deg{B) + l,Q^O, R^A 
while Ä / 0 and (5 ^ deg{R) - deg{B) > 0 do 

T ^ lc{R)x\ N ^N-l,Q<-bQ + T,R^bR-TB 
retnrn(b^ Q,b^R) 

Example 1.2.2. With A and B as in example 1.2.1, we get 6 = 5, Â  = 2, and 

Q 

0 

3x 

15^ + 14 

R 

3x^ + x^ + X + 5 

14x2 -f 2x + 25 

52X + 111 

Ö 

1 

0 

- 1 

T 

3x 

14 

N 

1 

0 

so 25^1 = 5 (15x + 14) + (52x + 111). 
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1.3 The Euclidean Algorithm 

Let D be a Euclidean domain and u : D \ {0} —> N its size function. The 
Euclidean division in D can be used to compute the greatest common divisor 
of any two elements of D. The basic idea, which goes back to Euclid who used 
it to compute the gcd of two integers, is that if a = 6g + r, then gcd(a, b) = 
gcd(6,r). Since gcd(j:, 0) = x for any x G -D, the last nonzero element in the 
sequence (a^)^>o defined by 

ao ai = 6, and {qi-,cii) = EuclideanDivision(ai_2 7 G^2-I) for 2 > 2 

is then a gcd of a and h. Since for â  ^ 0 and i > 1, either a^+i = 0 or v[aij^\) < 
z/(a^), that sequence can only have a finite number of nonzero elements. This 
yields an algorithm for computing gcd(a, b) by repeated Euclidean divisions. 

Euclidean(a, 

(* Given a 

b) (* EucHdean algorithm *) 

Euclidean domain D and a, 6 G D, 

while 6 7̂  0 do 
(g,r) —̂ EuclideanDivision(a, 6) 
a ^~ b 
b <— r 

r e t u r n a 

return gcd (a 

(* 

,6) . 

a = 

*) 

-bq-{- r *) 

Example 1.3.1. Applying the Euclidean algorithm to 

a = x'^ -2x^ ~ 6x^ + I2x + 15 and 

in D = Q[x] gives: 

x̂  + x^ ~ 4x - 4 

a 

x^ - 2x^ - 6x2 _̂  22x + 15 

x^ + x^ - 4x - 4 

x^ + 4x + 3 

5x-f 5 

b 

x^ -4- x^ - 4x - 4 

x^ + 4x + 3 

5x-h5 

0 

^ 

X — 3 

X — 3 

k + i 

r 

x^ -4- 4x + 3 

5x + 5 

0 

so 5x + 5 is a gcd of a and b in Q[x]. 

The Euclidean algorithm can be easily extended to return, not only a gcd 
of a and 6, but also elements s and HVLD such that sa^tb = gcd(a, 6). Such 
elements always exist since gcd (a, 6) belongs to the ideal generated by a and 
6 by Theorem 1.1.8. 
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ExtendedEucl idean(a ,6) (* Extended Euclidean algorithm *) 

(* Given a EucHdean domain D and a,b E D, return s,t,g G D such that 
g — gcd(a, b) and sa -\- tb — g. *) 

ai 4— 1, a2 ^- 0, 5i ^- 0, 62 ^ 1 
while 6 ŷ  0 do 

(g,r)^— EuclideanDivision(a, 6) 
a <— 6, 6 —̂ r 
n ^ ai - qbi, r2 ^ a2 - qb2 
ai —̂ 61, a2 —̂ 62, ^1 ^ r i , 62 ^~ r2 

r e tu rn (a i , a2 , a) 

(* a = 5g + r *) 

Example 1.3.2. Using the same a and b as in example 1.3.1: 

x 4 -

a 

- 2x3 __ 5^2 ^ ^2x + 15 

x^ + x^ - 4x - 4 

x^ + 4x + 3 

5x + 5 

6 

x^ + x^ -- 4x - 4 

x^ + 4x + 3 

5x + 5 

0 

Q 

X — 3 

X — 3 

i- + i 

r 

x^ + 4x + 3 

5x + 5 

0 

ai 

1 

0 

1 

- x + 3 

a2 

0 

1 

- x + 3 

x2 - 6x + 10 

bi 

0 

1 

- x + 3 
1^2 4 
5-^ 5 

b2 

1 

-~-x + 3 

x^ - 6x + 10 

- |x" '^ + | x 2 + | x -- 3 

Thus, 5x + 5 is a gcd of a and 6 in Q[x], and 

( -X + 3)a + (x^ - 6x + 10)6 = 5x + 5 . (L4) 

If only one of the coefficients 5 or t is needed, a variant of the extended 
Euclidean algorithm tha t computes only tha t coefficient can be used: 

Hal fExtendedEucl idean(a , b) (* Half extended Euchdean algorithm *) 

(* Given a Euclidean domain D and a 
g = gcd(a, 6) and sa = g (mod b). *) 

ai -̂ - 1, 61 '^- 0 
while 6 7̂  0 do 

(g,r) ^ EuclideanDivision(a 

n ^ ai - qbi, ai <— 61, 61 <- ri 

r e t u r n ( a i , a ) 

b) 

b€D, return 5 g £ D such that 

(^^ a = bq -\- r ^) 
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This "half" variant of the algorithm is also used as a more efficient alter
native to the extended Euclidean algorithm, since the second coefficient can 
be obtained from the first via 

a — sa 

where the division is always exact. 

ExtendedEuclidean(a, h) 
(* Extended Euclidean algorithm - "half/full" version *) 

(* Given a Euclidean domain D and a, 6 G D, return s, t, p G D such that 
g = gcd(a, h) and sa^th = g. *) 

{s,g) <— HalfExtendedEucIidean(a,6) (^ sa = g (mod b) *) 
(t, r) ^- EuclideanDivision(p — sa, b) (* r must be 0 *) 
return{s, t, g) 

Example 1.3.3. Recomputing the extended gcd of the a and b of example 1.3.1, 
we get: 

1. (5, g) •=• HalfExtendedEuclidean(a, 6) = (—x + 3,5a: + 5) 
2. g-sa = x^ - 5x^ + 30^^ - 16x 
3. (t, r) = PolyDivide(^ - sa, b) - (x^ - 6x -|-10,0) 

so we recover (1.4). 

The extended Euclidean algorithm can also be used to solve the diophan-
tine equation 

sa-^tb = c (1.5) 

where a^b^c E D are given and s^t E D are the unknowns. For (1.5) to have 
a solution, it is necessary and sufficient that c be in the ideal generated by 
a and 6, i.e. that c be a multiple of gcd(a, 6) in D. The extended Euclidean 
algorithm first solves the equation sa-i-tb — gcd (a, 6), and there remains only 
to multiply the solutions by c/gcd(a,6) to get a solution of (1.5). It should 
be noted that when c is in the ideal generated by a and 5, then (1.5) has as 
many solutions as the number of elements of D (when a and b are nonzero), 
since sa + tb = (s -i- bd)a + {t — ad)b for any d E D. Since there can be no 
confusion with the previous extended Euclidean algorithm, which has only two 
parameters, we also call this algorithm the "extended Euclidean algorithm". 
As before, a half-extended version exists when only one of the coefficients is 
needed. We remark that the versions of the algorithm that we present here, 
and use extensively in the sequel, all return a solution s or (s^t) such that 
either 5 = 0 or ^{s) < z/(6). An important consequence of this in polynomial 
rings (where u{p) = deg(p)) is that if deg(c) < deg(a) + deg(6), then we also 
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get either t = 0 or deg(t) < deg(a). Indeed, if we had (leg(s) < deg(6) and 
deg(t) > deg(a), then we would have deg(c) = deg(5a + tb) = deg{tb) = 
deg(t) + deg(6) > deg(a) + deg(6). 

ExtendedEucl idean(a , 6, c) 
(* Extended Euclidean algorithm - diophantine 

(* Given a Euclidean domain D and a,b,c 
s,t e D such that sa + tb = c and either s = 

{s,t,g)^- ExtendedEi ic l idean(a , 6) 
(g,r)<— EuclideanDivision(c, p) 
if r / 0 then e r ror "c is not in the ideal g< 
s '(^ qs, t ^^ qt 
if s 7̂  0 and i/(s) > iy(b) t h e n 

{q,r) ^— EuclideanDivision(5,6) 
s <— r, t -i^ t -\- qa 

re turn(s , t) 

version *) 

e D with c e {a 
-- 0 or ^{s) < v{b). 

9nerated by 

(^ g = 
(* c = 

,b), 
*) 

sa 

= gq 
a and 5" 

(* s -

return 

+ tb 
+ r 

=• bq + r 

*) 
*) 

*) 

Example 1.3.4- Suppose that we want to solve sa -j- tb = x"^ — 1 in Q[x] with 
the a and b of example 1.3.1. Applying ExtendedEucl idean we get: 

1. (5, t, g) = ExtendedEuclidean(a, b) — {~x + 3, :r̂  — 6a: + 10, 5x + 5) 
2. (g, r) = PolyDivide(x2 - 1, 5x + 5) = {{x ~ l)/5,0) 
3. s^qs = {-x^ -h 4x - 3)/5 
4.t^qt = {x^ - Ix^ H- 16x - 10)/5 

So we get the following solution: 

a + — — 6 = x^ - 1. (1.6) 

HalfExtendedEucl idean(a , 6, c) 
(* Half extended Euclidean algorithm - diophantine version 

(* Given a Euclidean domain D and a^b^c G D with c 
s E D such that sa = c (mod 6) and either s — 0 or i/( 

(s,g)^ HalfExtendedEucl idean(a , 6) 
(g,r) ^ EuclideanDivision(c, p) 
if r 7̂  0 t hen e r ror "c is not in the ideal 
5 <— gs 
if s 7̂  0 and z/(s) > 1/(6) t h e n 

{q,r) <r- EuclideanDivision(5,6) 

r e t u r n s 

(* sa 

generated by 

*) 

I G (a,^), return 
s) < uib). *) 

= f̂ (mod b) 
(* c = pg + r 

a and 6" 

(* s = 6g + r 

*) 

*) 
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As earlier, the "half" variant yields a more efficient alternative to the 
extended diophantine version, since the second coefficient can be obtained via 

c — sa 

where the division is always exact. 

ExtendedEi ic l idean(a , 6, c) 
(* Extended Euclidean algorithm - "half/full" diophantine version 

(* Given a Euclidean domain D and a,b,c 
s,t e D such that sa + tb = c and either 5 = 

s ^- HalfExtendedEucl idean(a , 6, c) 
(t, r) ^- EuclideanDivision(c — sa, h) 
re turn(5 , t) 

G D with c 
: 0 or 1/(5) < 

(* sa E 

(* 

e (a 
y{h). 

= C 

*) 

,b), 
*) 

(mc 

return 

d5) 
r must be 0 

*) 
*) 

Example 1.3.5. Solving sa ^ th = x^ — 1 in Q[x] with the a and h of exam
ple 1.3.1, we get 

1. s - HalfExtendedEuclidean(a, h, rr̂  - 1) = (-x^ -f 4x - 3)/5 
2. c - 5a = ^2 - 1 - sa = {x^ - 6x^ + 5x^ + 30x^ - 46^^ - 24x -f 40)/5 
3. (t, r) = PolyDivide(c - sa, h) = {{x^ - T:̂ ^ + 16x - 10)/5,0) 

so we recover (1.6). 

Since the extended Euclidean algorithm can be used to solve diophantine 
equations, it is also useful for computing partial fraction decompositions. Let 
d G D\ {0} and let d = di - •• dn be any factorization of d (not necessarily into 
irreducibles) where gcd((i^, dj) = I for i ^ j . Then, for any a e D \ {0}, there 
are ao, a i , . . . , a^ in D such that either â  = 0 or z/(a^) < iy{di) for i > 1, and 

n 
a a ir-^ üi 

Such a decomposition is called, the partial fraction decomposition of a/d with 
respect to the factorization d — HlLi ^ '̂ ^^^ computing it reduces to solving 
equations of the form (1.5), so to the extended Euclidean algorithm. Indeed, 
write first a = (iao + r by the Euchdean division, where either r = 0 or 
y(r) < u{d). If n = 1, then a/d = ao + r/d is already in the desired form. 
Otherwise, since gcd{di^dj) = 1 for i 7̂  j , we have gcd{di^d2 • • • d^) = 1, so 
by the extended Euclidean algorithm, we can find ai and 6 in Ü such that 

r = ai (^2 • • • dn) + bdi (1.7) 
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and either a i = 0 or z^(ai) < u(di). We can recursively find 5o, a 2 , . . . , a^ € D 
such tha t either a^ = 0 or i/(a^) < ^{di)^ and 

;r-V = ̂ ° + E7-
d2--'dn ^ d i 

Dividing (1.7) by d and adding ao, we get 

a r ai h / T x \~^ ^i 

•:7 = aoH--:}=ao + -T- + "1 J- = («0 + oo) + > ̂  -7- • 
a a d i 0(2 • • • ttn ~ ^ ^2 

2 = 1 

We note tha t in the case of polynomial rings, since deg(r) < deg((i) = 
deg((ii) + deg{d2 •' • dn) and deg(ai) < deg{di) in (1.7), then deg(6) < 
deg(ii2 • --c^n), so 60 = 0. 

Par t ia lFrac t ion(a , «ii,. . . ,dn) (* Partial fraction decomposition *) 

(* Given a Euclidean domain D, a positive integer n and a,di,... ,dn G 
D \ {0} with gcd{di^dj) = 1 for i 7̂  j , return ao, a i , . . . , an G -D such that 

• a o +ES di • • -dn . 1 - -

2 = 1 

and either at = 0 or z^(ai) < iy{di) for i > 1. *) 

(ao, r) <— EucIideanDivisioii(a, di • • - dn) {^ a = (di • • • dn)ao + r *) 
if n = 1 t h e e re turn(ao , r ) 
(a i , t ) ^- ExtendedEoclidean(cl2 • • •c^njC î,'̂ ) (* z^(ai) < i^{di) *) 
(5o, a 2 , . . . , ttn) ^- Par t ia lFract ion( t , c?2, • • •, <in) 
re turn(ao 4-60,01,02, •• • ,an) 

Example 1.3.6. We compute the partial fraction decomposition of 

„ a x^ + 3x 

with respect to the factorization d — [x ^ l ) (x^ — 2x -{- 1) = did2- Applying 
P a r t i a l P r a c t i o n to a, di and <i2 5 we get: 

1. (ao, r ) = P o l y D i v i d e ( a , d) = (0, x^ + 3x) 
2. 

(a i , t) = E x t e n d e d E i i c l i d e a n ( x ^ — 2x + l , x + l,a:^ + 3x) 

1 3x + r 
2 ' 2 
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3. {bo, as) = PartialPraction((3x -f l ) /2 , x^ -2x + l) = (0, (3x + l)/2) 

so the partial fraction decomposition of / is 

x^ + 3x __ - 1 / 2 (3x + l)/2 

X + 1 ^2 - 2x + 1 

We can combine this with the Euclidean division to get a refinement of 
the partial fraction decomposition: let ?7i > 1 and d £ D \ {0}. Then, for 
any a E D \ {0}, there are a o , a i , . . . , am ^ D such that either aj = 0 or 
i^{aj) < v{d) for j > 1, and 

771 

3 = 1 

Such a decomposition is called the d-adic expansion of a/d^. Write a = dq-\~ 
am by the Euclidean division, where either a^ = 0 or i'(am) < y{d). Then, 

a _ dq^ um _ q o^, 
^m ~ ßrn ~ ßrn-l ßrn " 

If ?Ti = 1, then the above is in the desired form with ÜQ — q. Otherwise, we 
recursively find ao ,a i , . . . ,am~\ € D such that either a^ = 0 or y(aj) < u{d) 
for J > 1, and 

Q 
m—l 

0̂ + E l -
Thus 

3 = 1 

a q , am . sr^ aj 

Let now d G D \ {0} and let d = d^^ • - • d^- be any factorization of (i, not 
necessarily into irreducibles, where gcd{di^dj) = 1 for i 7̂  j , and the e '̂s are 
positive integers. Then, for any a E D\ {0}, we can first compute the partial 
fraction decomposition of a/d with respect to d = bi •• - bn where bi = df'-: 

n n 
a IT—^ a^ Y A ai 

and then compute the (i^-adic expansion of each summand to get 

a --+Eti^ 
where ä £ D and either aij = 0 or ^{aij) < ^{di) for each i and j . This 
decomposition is called the complete partial fraction decomposition of a/d 
with respect to the factorization d = YTi=i ^T ^ or simply the complete partial 
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fraction decomposition of a/d when the factorization of d into irreducibles^ is 
used. 

Part ia lPract ion(a,c?i , . . . ,(in, e i , . . . , en) 
(* Complete partial fraction decomposition *) 

(* Given a Euclidean domain D, positive integ ers Ti, e i , . . . , e^ and 
a,<ii, . . . ,dn G D\ {0} with gcd{di^dj) = 1 for i j^ j , return 
ao, a i , i , . .. , ai,ei, • • • , an,i, •. . , Cin,e.n. ^ -Ĉ  such that 

aij 

d^^ • • • dn 

and either aij = 0 or i^{aij) < u(di). *) 

(ao ,a i , . . . ,an) <— PartialPractioii(a,<i2^,. . . .d"^) 
for i •(— 1 to n do 

for j •̂— Ci t o 1 s t ep —1 do 
{q^aij) ^- EuclideanDivision(ai,(ii) (* â  = d^g + a ĵ *) 

ao —̂ ao + ai 
re torn(ao,a i , i , . .. ,a i ,ei , . •. , an , i , . . . ,ttn,e,^) 

Example 1.3.7. We compute the complete partial fraction fraction decompo
sition of 

a x^ + 3a: 
d x"^ — x^ — X -\-l 

[x) 

with respect to the factorization d = {x -\- l){x ~ 1)'^ = did^. Applying Par™ 
t i a l F r a c t i o n to a, d i , ^2, and the exponents 1 and 2, we get: 

1 3x 4-1 
( a o , a i , . . . ,an) = P a r t i a i P r a c t i o n ( x ^ + 3x ,x + l , ( x - 1 ) ^ ) = (0, —-, — - — ) 

and then: 
i 

1 

2 

2 

J 

1 

2 

1 

ß i 

- 1 / 2 

(3x + l ) /2 

3/2 

di 

x + 1 
x - 1 

x-l 

q 

0 

3/2 

0 

aij 

- 1 / 2 

2 

3/2 

ao 

0 

0 

0 

so the complete partial fraction decomposition of / is 

x̂  + Sx -1/2 
+ • x^ — X + 1 x -\-l [x — 1) 

4-
3/2 

x - l 

We show in Sect. 2.7 how to compute that decomposition for linear factors 
without factoring d. 
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The algorithm for computing partial fraction decompositions tha t we pre
sented here dates back to Hermite in the 19*^ century. There are alterna
tive and faster approaches for rational functions tha t we do not detail here. 
See [1, 45] for other approaches and their complexities. 

1.4 Resultants and Subresultants 

We describe in this section the fundamental properties of the resultant of 
two polynomials. Although they originate from IQ^'^-century work on solving 
systems of nonlinear equations, resultants play a crucial role in integration. 
Throughout this section, let i? be a commutative ring and x be an indetermi
nate over R. 

Def in i t i on 1 .4 .1 . Let A,B G R[x] \ {0}. Write A = anx"^ H h aix + ao 
and B = b^x^ -j- . . . -f. hix + bo where a^ ^ 0, bm j^ 0 and at least one of n or 
m is nonzero. The Sylvester matrix of A and B is the n + m by n-\-m matrix 
defined by 

I On 

S{A,B) 

ai ao \ 

6i bo 
ai ao 

\ 

m rows 

bo J) 

} n rows 

where the A-rows are repeated m times and the B~rows are repeated n times. 
The resultant of A and B is the determinant of S{A^B). 

Example l.J^.l. Let i? = Z[t], A = S t x ^ - t ^ - ~ 4 € R[x], and ß = x^~\-t^x-~9 G 
R[x]. The Sylvester matr ix of A and B is 

S{A,B)--

3t 0 - t ^ - 4 
0 3t 0 
1 t^ - 9 

0 \ 

0 
/ 0 1 t^ - 9 

and the resultant of A and B is 

det{S{A, B)) = - 3 t ^ ° - 12t^ + t^ - 54t^ + 8t^ + 729^^ - 216t + 16 . 

The first useful property of the resultant of two polynomials is that it can 
be expressed in terms of their roots. 


