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Preface

Double fertilization is hailed as a unique event in the life cycle of flowering plants. Defined as the union
of one sperm with the egg on the one hand, and of a second sperm with the diploid fusion nucleus on the
other, double fertilization sets in motion the chain of events that result in the formation of the embryo
and endosperm. Whereas recognition of the importance of these two fusion episodes in seed formation in
flowering plants is as old as the discovery of double fertilization itself, their central role in the development
of the embryo and endosperm in seeds and grains of crop plants used widely in human and animal nutri-
tion came to be recognized only in later years.

The study of the development of the embryo and endosperm from their single-celled beginnings under
the rubric of embryology has occupied an important position in the multifaceted investigations on the
reproductive biology of flowering plants undertaken during most of the past century. In recent years, de-
scriptive studies of embryo and endosperm development have been overshadowed by the increasing use of
genetic and molecular approaches to study flowering plant embryology, led by the work in the model plant
Arabidopsis thaliana. Although some of these studies have been reviewed periodically in multiauthored
volumes, my objective in writing this book is to provide an overview of past accomplishments in the field,
and a sense of the outstanding future problems as they relate to the products of double fertilization. Ad-
mittedly, molecular and genetic studies in conjunction with screening of mutants, isolation of genes, and
identification of their protein products, are emphasized to some extent at the expense of structural and
developmental studies. The main reason for this is that I have tried to write a book on investigations that
reflect a rethinking of the way that we have viewed embryogenesis and endosperm development as the end
product of a series of stereotypical divisions. In my opinion, these recent studies with molecular overtones
have brought us close to an understanding of the critical details that control the transformation of these
cellular domains of the ovule into mature tissues of the seed or grain.

The book begins with an account of the history of the discovery of double fertilization, which must
surely find a place in a volume dealing with that topic. The details of how body plans of eudicot and mono-
cot embryos are established occupy the next chapter, which sets the stage, in the following three chapters,
for a discussion of notable advances made in the identification of the genetic and molecular factors that
control the development of the embryo (Chaps. 3, 5) and suspensor (Chap. 4) during progressive embryo-
genesis. The last chapter to deal wholly with embryos (Chap. 6) describes their general strategies during
quiescence or dormancy. The main body of the book concludes with accounts of the developmental, ge-
netic, and molecular studies on the endosperm covered in Chaps. 7 and 8, and, in the final chapter, de-
scriptions of apomixis, somatic embryogenesis, and pollen embryogenesis illustrating embryogenesis and
partial endosperm development in the absence of double fertilization. The level of exposition of the topics
in the different chapters is considered suitable for graduate students who want get a coherent view of the
current perspectives on embryogenesis and endosperm development in flowering plants, and for research-
ers in the field who plan fresh attacks on unsolved problems on the topics covered.

In conclusion, I would like to thank the many publishers/authors who gave me permission to use il-
lustrations from published articles in my book. Besides myself, no one contributed more to the prepara-
tion of the final manuscript than Mr. Eduardo Acosta, Webmaster of my Department. He transformed
my rough pencil sketches into professional black and white drawings or into images in gorgeous colors,
and was also responsible for transferring all of the illustrations into their electronic versions suitable for
printing. It is my pleasure to acknowledge my indebtedness to Eduardo for this help. On the producing
side at Springer, Heidelberg, I appreciate the editorial advice and suggestions given from time to time by
Dr. Jutta Lindenborn, desk editor, and the professional expertise, critical judgments, and interest in the
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subject matter of the book that Dr. Helen Rothnie, copy editor, brought to the job. Last, but not least, I
thank my wife Lakshmi for her appreciation of my interests, which allowed me to spend long hours in my
office and laboratory where I felt comfortable to pursue scholarly activities. My daughter, Anita, was gener-
ous with her sense of good humor, often transmitted by remote control from London, England, during the
preparation of this book.

Columbus, Ohio V. Raghavan
August 2005
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CHAPTER 1

1 Double Fertilization -
A Defining Feature
of Flowering Plants

The expression fertilization may be used in an abstract or
a concrete sense. In the abstract it denotes the process by
which characters from two individuals are transmitted to
a single organism in the succeeding generation. This phe-
nomenon is almost universal throughout the animal and
vegetable kingdoms, and its effects have been observed by
many successive generations of breeders both of animals
and of plants. In this way a considerable body of evidence
has accumulated, and it has been found that certain laws
are universally true of organisms which thus spring from a
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double stock. Such an organism passes through its complete
life history, which may include more than one cycle of de-
velopment. It exhibits a combination of characters drawn
from both parents. The offspring of the same pair differ
from each other: some resemble one parent, some the other,
and those of mixed appearance may lean to either side. But
a balance is maintained in each generation between the
two stocks, so that neither parent has on the whole greater
weight than the other.

E. Sargant 1900

This book is about post-fertilization reproductive
development in the most evolutionarily successful
and wonderfully diverse group of plants on the face
of the earth: angiosperms or flowering plants. An-
giosperms, along with four different groups of living
representatives of gymnosperms, namely, cycads,
Ginkgoales (which includes the monotypic Ginkgo
biloba), conifers, and Gnetales, are also known as
seed plants. Seeds of angiosperms are enclosed
within a fruit instead of being produced as exposed
units on the surface of sporophylls or similar struc-
tures as they are in gymnosperms. Although study
of the reproductive biology of angiosperms has a
long history, sustained cellular and molecular in-
vestigations of this topic constitute a modern devel-
opment.

Fertilization, besides its obvious role in genetic
recombination, essentially denotes the fusion of
the egg and sperm to form a zygote and, as will
soon become clear, the word does not capture the
full scope of events that occur in flowering plants.
The traditional setting for fertilization in flower-
ing plants is the sanctum sanctorum of the female
gametophyte — more popularly known as the em-
bryo sac — which itself is wrapped in several layers
of cells of the nucellus and integuments constitut-
ing the ovule. A typical embryo sac initially has two
groups of four haploid nuclei embedded within it,
one at the micropylar end and the other at the op-
posite, chalazal end. The demarcation of groups of
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three nuclei at each end, each nucleus surrounded
by its own cytoplasmic domain as a distinct, com-
partmentalized, membrane-bound cell, is the pri-
mary determinant of form of the mature embryo
sac. The three cells at the micropylar pole are or-
ganized as the egg apparatus, consisting of a large
egg cell flanked on either side by a cellular synergid.
The three cells at the opposite pole become the an-
tipodals. The main body of the embryo sac remain-
ing after the egg apparatus and antipodals are cut
off is the central cell consisting of the two orphaned
nuclei from either pole, which may remain separate,
side-by-side, as unfused haploid nuclei, or fuse to
form a diploid polar fusion nucleus. The mature
embryo sac is thus a seven-celled, eight-nucleate su-
percell in which fertilization occurs (Fig. 1.1). This
type of embryo sac development, which is preva-
lent in about 70% of angiosperms, is known as the
normal’ type, and, because it was first described
in Polygonum divaricatum (Polygonaceae), it is
conventionally designated as the ‘Polygonum’ type
(Maheshwari 1950). In the context of fertilization,
the term female germ unit has been proposed for
the egg apparatus and the central cell (Dumas et al.
1984), but it is not widely used.

3

micropylar end

synergids

D

egg
8 polar nuclei
I ~— antipodals

chalazal end

Fig. 1.1 Diagram of a ‘Polygonum’ type of embryo sac show-
ing the disposition of cells

The process of fertilization in flowering plants, in-
cluding the encounter of the male and female gam-
etes and the actual fusion of gametic nuclei, presents
a degree of complexity not found in other groups of
plants. Pollination, resulting in the transfer of pol-
len grains from the anther to the stigmatic surface
of the appropriate flower type, is the beginning of
a cascade of events that delivers the male gamete
to the vicinity of the egg. Following germination
of pollen grains on the stigma, the resulting pollen
tubes carrying the two male gametes (produced by
a mitotic division of the generative cell of the pol-
len grain) navigate through the carbohydrate-rich
matrix of the stigma, style, and the ovular tissues,
and reach the vicinity of the embryo sac. Fusion of
the male and female gametes takes place when the
pollen tube enters the embryo sac and releases the
sperm. Hitherto partially or totally uncharacter-
ized extracellular matrix components of the stigma
and style spring into action to sustain pollen tube
growth, and the ever-present signaling molecules
generated by the diploid cells of the ovule or the
haploid cells of the embryo sac for pollen tube at-
traction contribute to successful fertilization (John-
son and Preuss 2002). Following fertilization, the
ovule develops into the seed enclosed in the ovary,
which becomes the fruit. Although these facts - the
bare bones of the reproductive biology of flowering
plants — have long been known, perspectives on the
molecular genetics of the individual phases involved
have come from recent cell biological studies and
analyses of female gametophytic mutants of Arabi-
dopsis thaliana (Brassicaceae; hereafter referred to
by genus name only). The purpose of this chapter is
to present an overview of the peripheral and central
events of fertilization in flowering plants with a fo-
cus on both old and new literature.

1.1
Discovery of Double Fertilization

Unambiguous proof of the actual fusion of the male
and female gametes embodied in fertilization in
flowering plants can be traced to a monographic
publication of Strasburger (1884). This work was
devoted mostly to the nuclear cytology of pollen
grains and pollen tubes of plants belonging to a
wide range of families, and to the fate of male gam-
etes delivered by pollen tubes in the embryo sacs
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Fig. 1.2a,b Discovery of double fertilization. a Cover page of the journal in which Nawaschin’s discovery of double fertili-
zation was first published. b First page of the article describing double fertilization

of Gloxinia hybrida (Gesneriaceae), Himantoglos-
sum hircinum, Orchis latifolia (Orchidaceae), and
Monotropa hypopitys (Pyrolaceae). The most com-
plete, illustrated details were provided on M. hy-
popitys, in which it was shown that one of the two
male gametes conveyed by the pollen tube fused
with the nucleus of the egg. At that time the male
gametes were known as generative nuclei and it was
uncertain whether these gametes were true cells or
naked nuclei. However, the observation that a male
gamete fused with the egg in the act of fertilization
was contrary to a previous puzzling finding that this
event was orchestrated by the diffusion of the cyto-
plasmic contents of the pollen tube (see Mahesh-
wari 1950). Although Strasburger’s work identified

the embryo as the resulting product of fertilization,
understanding of the fate of the second male gam-
ete discharged by the pollen tube, and the source
of origin of the endosperm (albumen), remained
major hurdles in gaining a complete insight into the
dynamics of fertilization in angiosperms.

1.1.1
Who Discovered Double Fertilization?

The breakthrough in the discovery of double fer-
tilization occurred when S. Nawaschin in Russia
showed that, in ovules of Lilium martagon and Frit-
illaria tenella (Liliaceae), both male gametes from
the pollen tube penetrated the embryo sac; whereas
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Fig. 1.3a-c Double fertilization in Lilium martagon. a Ma-
ture embryo sac showing the egg apparatus, consisting of
the egg and synergids, antipodals, upper polar nucleus, and
lower polar nucleus. b Mature embryo sac after discharge
of male gametes from the pollen tube. The nucleus of one
sperm has entered the egg and that of the second sperm is
in contact with the upper polar nucleus. The nucleus of one
of the synergids is disintegrating. ¢ Union of one sperm with
the egg nucleus and of the second sperm with the two po-
lar nuclei. an Antipodals, e egg cell, Ip lower polar nucleus,
pt pollen tube, sI sperm that fuses with the egg, s2 sperm
that fuses with the polar nucleus, sy synergid, up upper polar
nucleus. (Reprinted from Guignard 1899a)

one of them fused with the nucleus of the egg cell,
the other fused with the polar fusion nucleus (at that
time known as the definitive nucleus) floating in the
central cell, initiating a second fertilization event
(Nawaschin 1898, 1899). The results of this work
were presented orally on 24 August 1898 to the bo-
tanical section of the “Naturforscherversammlung”
held in Kiew, Russia (20-30 August 1898) and pub-
lished as an abstract in the following year (Nawas-
chin 1899); the full paper appeared a few months
after the meeting (Nawaschin 1898). Thus, reverent
credit is due to Nawaschin for this legendary dis-
covery of the two fusion events during fertilization
in flowering plants (Fig. 1.2a,b). The phenomenon
observed by Nawaschin was also independently
confirmed in L. martagon and Lilium pyrenaicum
by L. Guignard (1899a, 1899b) in France. The ac-
count of this investigation was communicated to
the Academy of Sciences in Paris on 4 April 1899
and was published soon afterwards in its Report

(“Comptes Rendus”) (Guignard 1899a). Exactly the
same paper, with a footnoted reference to the earlier
paper with volume number and a middle page num-
ber, was also published in another journal in the
same year (Guignard 1899b). The work described
in these two papers, which included a reference to
Nawaschin’s 1899 abstract, was accompanied by a
series of illustrations in the form of line drawings
showing the two fusion events (Fig. 1.3a-c). Guig-
nard’s description and figures portrayed a precise
two-step sequence of events involving the fusion
of the second sperm with the upper polar nucleus,
followed by integration of this fusion product into
the lower polar nucleus. Within a few months of the
publication of Guignard’s papers, full confirmation
of the startling discovery of fusion of the second
sperm with the polar fusion nucleus came from a
reexamination of previously prepared slides of fer-
tilized ovules of L. martagon by E. Sargant in Eng-
land (Sargant 1899). The coincident choice of ovules
of species of Lilium and Fritillaria by investigators
working in three European countries as the classic
experimental system in these pioneering studies is
not surprising because of the relatively large size of
the embryo sac and its equally conspicuous nuclei
as seen in microscopic preparations of ovules of
these two genera. Indeed, because of this and other
advantages, slides demonstrating embryo sac devel-
opment in various species of Lilium and Fritillaria
have been popular in the teaching of general plant
biology; species of these genera have also been fa-
vored systems of subsequent investigators because
embryo sac development in them appeared to be
a simplified version of a complex series of nuclear
fusions and divisions that did not have parallels in
other plants studied (Maheshwari 1950). To desig-
nate the two fertilization events that occur at the in-
ception of the sporophytic phase in flowering plants,
Guignard (1899a, 1899b), in a seemingly visionary
act, used the term ‘double copulation’ in the title of
the first two papers and ‘double fécondation’ in later
publications. Strasburger (1900) referred to the two
fertilization events as ‘doppelten Befruchtung’ in the
title of a paper, and nearly the same term [‘die dop-
pelte Befruchtung’ and ‘gBoiiHoe omnogorBopeHie’
(in Russian)] appeared in the text of two papers by
Nawaschin (1900a, 1900b). The term ‘double fer-
tilization’ now in universal use was first employed
in the title of a paper by Thomas (1900) and in the
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text of a paper by Sargant (1900). Putting to rest the
prevalent assumption that the endosperm was gen-
erated by fusion of the two polar nuclei, the above-
mentioned investigators also concluded correctly
that the product of fusion of the second sperm
with the polar fusion nucleus gives rise to the endo-
sperm, typically constituted of cells with chromo-
somes of biparental origin from the coalescence of
three nuclei. The discovery of double fertilization
in the liliaceous species, and the confirmation of its
occurrence in many other angiosperms, including
both monocotyledons (monocots) and dicotyle-
dons (eudicots), within a period of just over a year -
for example, additional species within the Liliaceae
such as Fritillaria meleagris, Scilla bifolia, Lilium
candidum, Tulipa celsiana, Tulipa gesneriana, and
Tulipa sylvestris (Guignard 1899¢, 1900a, 1900b),
Narcissus poeticus of the Amaryllidaceae (Guig-
nard 1900a), and Himantoglossum hircinum, Orchis
latifolia, Orchis maculata, and Orchis mascula of
the Orchidaceae (Strasburger 1900) (all monocots),
Erigeron philadelphicus, Erigeron strigosa, Guizotia
oleiflora, Helianthus annuus (sunflower), Heliopsis
patula, Rudbeckia grandiflora, Rudbeckia laciniata,
Rudbeckia speciosa, Silphium integrifolium, Silphium
laciniatum, Silphium terebinthinaceum, and Spilan-
thes oleracea of the Asteraceae (Guignard 1900a;
Land 1900; Nawaschin 1900a, 1900b), Hibiscus trio-
num of the Malvaceae (Guignard 1900a), Anemone
nemorosa, Caltha palustris, Clematis viticella, Del-
phinium elatum, Helleborus foetidus, Nigella sativa,
and Ranunculus flammula of the Ranunculaceae
(Guignard 1900a; Nawaschin 1900a, 1900b; Thomas
1900), Reseda lutea of the Resedaceae (Guignard
1900a), Juglans sp. of the Juglandaceae (Nawaschin
1900a, 1900b), and Monotropa hypopitys of the Py-
rolaceae (Strasburger 1900) (all eudicots) - may
be said to have ushered in twentieth century plant
embryology, paving the way for what will surely go
down as the golden age in the study of reproduc-
tive biology of flowering plants. Appropriately, the
centennial of this discovery has been marked by the
publication of several reviews on this topic (Jensen
1998; Erdelskd and Dubova 2000; Faure 2001; Koul
2001; Friedman 2001b; Raghavan 2003b). Besides
paying tribute to Nawaschin and Guignard, these
articles show how their discovery has driven the
field of plant embryology for more than a century,
including most current research in this field.

1.1.2
Universality of Double Fertilization
in Flowering Plants

The momentum created in the waning years of the
nineteenth century to establish double fertilization
as a ubiquitous feature in the reproductive biology
of flowering plants was followed by a sustained ef-
fort in the first 2 years of the twentieth century
leading to the discovery of this phenomenon in
additional members of the Ranunculaceae (Guig-
nard 1901c), Liliaceae (Ikeda 1902), Juglandaceae
(Karsten 1902), and Pyrolaceae (Shibata 1902), as
well as in plants belonging to Poaceae (Guignard
1901a), Najadaceae (Guignard 1901b), Solana-
ceae, Gentianaceae (Guignard 1901d), Asclepia-
daceae (Frye 1902), Brassicaceae (Guignard 1902),
and Ceratophyllaceae (Strasburger 1902). Guérin
(1904), in a monograph devoted entirely to the
topic of fertilization in seed-bearing plants, and
Coulter and Chamberlain (1912) in their classic
book on the Morphology of Angiosperms, refer to
16 families of angiosperms, encompassing about 40
genera and over 60 species definitely known to have
a second fertilization event; these two publications
surveyed the literature up to the end of 1902. From
that time onwards, along with the presence of a re-
duced female gametophyte and embryo-nourishing
endosperm, the occurrence of double fertilization
was accepted as a general feature of the reproduc-
tive biology of angiosperms. Indeed, under this as-
sumption, there were only occasional references to
double fertilization in the numerous publications
dating from the early 1900s to the present dealing
with the variability and diversity of reproductive
processes in flowering plants with special reference
to their embryogenesis and endosperm develop-
ment (Johansen 1950; Maheshwari 1950; Davis
1966; Johri et al. 1992). However, this period was
notable for providing the first glimpses of electron
microscopic details of double fertilization in several
plants, including cotton (Gossypium hirsutum; Mal-
vaceae; Jensen and Fisher 1967), maize ( Zea mays;
Poaceae; Diboll 1968; van Lammeren 1986), barley
(Hordeum vulgare; Poaceae; Cass and Jensen 1970;
Mogensen 1982, 1988), Linum catharticum (Lina-
ceae; d'Alascio Deschamps 1974), spinach (Spinacia
oleracea; Chenopodiaceae; Wilms 1981), Plumbago
zeylanica (Plumbaginaceae; Russell 1982, 1983),
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Fig.1.4 A diagrammatic representation of the time course of double fertilization in Torenia fournieri. The time is indicated
in hours after pollination (hap). Part of the carpel is shown on the right and the embryo sac of the apical ovule is on the left.
CC Central cell, DSY degenerating synergid, EC egg cell, ECN egg cell nucleus, FA filiform apparatus, PT pollen tube, SC
sperm cells, SN second polar nucleus, VN vegetative cell nucleus. (Reprinted from Higashiyama et al. 1997)

wheat (Triticum aestivum; Poaceae; You and Jensen
1985; Gao et al. 1992), Triticale (Poaceae; Hause and
Schroder 1987), Populus deltoides (Salicaceae; Rus-
sell et al. 1990), and tobacco (Nicotiana tabacums;
Solanaceae; Yu et al. 1994).

Almost all observations on double fertiliza-
tion were made using fixed and/or fixed and sec-
tioned materials. Over the years, complementary
powerful insights into isolated aspects of double
fertilization were provided by observations of liv-
ing material of Monotropa hypopitys (Strasburger
1900), Monotropa uniflora (Shibata 1902), Calanthe
veitchii, Cypripedium insigne, Dendrobium nobile
(Orchidaceae; Poddubnaya-Arnoldi 1960), Jasione
montana (Campanulaceae), Galanthus nivalis (Am-
aryllidaceae; Erdelska 1974, 1983), Torenia fournieri

(Scrophulariaceae; Higashiyama et al. 1997), and
Arabidopsis (Faure et al. 2002). It is believed that
in M. hypopitys the male gametes find their way to
the egg and the polar fusion nucleus by passively
navigating between the cytoplasmic strands that
criss-cross the embryo sac (Strasburger 1900). Cin-
ematographic observations of ovules of J. montana
and G. nivalis poised for double fertilization have
provided data on the timing of movements of the
two sperm in the central cell and on some hith-
erto unrecorded changes in size and shape of the
embryo sac elements (Erdelska 1983). Because the
naked embryo sac protrudes from the micropyle of
the ovule, T. fournieri has proved an especially use-
ful system for live monitoring of the fusion events
of fertilization unhindered by the presence of ovu-
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lar tissues (Fig. 1.4). Here the polar fusion nucleus
engages in two targeted movements in the embryo
sac. First is its slow migration from a region of the
embryo sac to one side of the egg apparatus to await
the arrival of the pollen tube with its cargo of male
gametes. Second, after fertilization this nucleus is
propelled from the vicinity of the egg apparatus to
another specific site in the embryo sac (Higashi-
yama et al. 1997). These nuclear movements have
raised wider questions about the involvement of
specific signaling molecules during double fertiliza-
tion, but their identity remains obscure. Using pol-
len grains from a transgenic line of Arabidopsis ex-
pressing the green fluorescent protein (GFP) fused
with a pollen-specific promoter in the vegetative
cell, Faure et al. (2002) have determined the pre-
cise time-course of the fertilization processes. Most
importantly, this work has opened up the potential
use of GFP, tagged to as yet unidentified sperm-
cell- and embryo-sac-specific promoters, to follow
labeled gametes during double fertilization in vivo
without invasive manipulations.

1.2
Seed Development
without Double Fertilization

One family of flowering plants whose members do
not indulge in double fertilization is the Podoste-
maceae. Kapil (1970), beginning with relatively
early studies, reviewed some of the problems in
the embryology of members of the Podostemaceae,
including the contradictory reports on the occur-
rence of double fertilization in members of this
family. Compared with most other flowering plants,
members of this family have a thalloid plant body
that resembles an alga, lichen, or a liverwort. This,
along with several other features in their vegetative
and reproductive life, makes the Podostemaceae an
extraordinary family of flowering plants (Mohan
Ram and Sehgal 2001). The final configuration of
the mature embryo sac in Podostemaceae studied
from time to time initially influenced the reasons
for attributing the absence of double fertilization to
this family. Typically, the organized embryo sac is
four-celled, consisting of a large egg cell and one or
two small synergids constituting the egg apparatus,
and a central cell harboring a polar nucleus or one
or two antipodals. In some species with two syner-
gids in the egg apparatus, the nucleus of the central

cell has been shown to degenerate either before the
pollen tube enters the embryo sac or before fertiliza-
tion, or to survive as an antipodal (Battaglia 1971;
Nagendran et al. 1976, 1980); in others in which the
egg is flanked by only one synergid, the remaining
two nuclei are designated as antipodals (Mukkada
1963, 1964; Arekal and Nagendran 1975). The im-
plication is that the absence of a true polar nucleus
in the embryo sac precludes fusion of the second
male gamete initiating another fertilization event
and formation of the endosperm. Understanding
the reasons for the absence of double fertilization
in this family is a real challenge because mechani-
cal factors such as failure of the pollen tube to dis-
charge the second sperm are probably also involved
(Chopra and Mukkada 1966; Mukkada 1969). As
double fertilization is a complex process requir-
ing coordinated action of the component cells of
the female gametophyte in concert with the male
gametes, it is difficult to reconcile some of these
observations with what may be actually happening,
and hence more studies are required to understand
the basis for the absence of double fertilization in
the Podostemaceae; a great deal will be revealed by
studying the widest possible selection of species.
Conclusive evidence of double fertilization is also
lacking in most of the primitive angiosperms so far
investigated. In spite of much research, views on the
origin and early evolution of angiosperms have re-
mained controversial, and it has not been possible
to identify the earliest angiosperms from classifi-
cations based on morphological and physiological
criteria and limited molecular systematic studies.
Over a period of time, these studies designated
groups such as Magnoliales, Ceratophyllaceae, and
Chloranthaceae as candidates for the earliest angio-
sperms. However, a series of recent and concurrent
investigations on angiosperm relationships inferred
from phylogenetic analyses of DNA sequences that
combined mitochondrial, chloroplast, ribosomal,
and phytochrome genes have shown persuasively
that the monotypic genus Amborella trichopoda
(Amborellaceae), Nymphaeales (Nymphaeaceae
and Cabombaceae), and the Illiciales-Trimeniaceae-
Austrobaileyaceae complex (together known as the
“ANITA” grade) are basal to the common ancestor of
monocots and eudicots (Mathews and Donoghue
1999; Soltis et al. 1999; Qiu et al. 1999; Parkinson et
al. 1999; The Angiosperm Phylogeny Group 2003).
This conclusion was soon reinforced by molecular
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comparisons of additional chloroplast genes (Gra-
ham and Olmstead 2000). The current contenders
for the earliest angiosperm lineages are Nympha-
eales and Austrobaileyales (Illiciaceae, Schisan-
draceae, Trimeniaceae, and Austrobaileyaceae;
Friedman et al. 2003). However, our knowledge of
fertilization processes has not kept pace with the
recognition of these new branches of angiosperm
evolution, and it has not been definitely established
that a representative selection of the earliest lin-
eages of flowering plants identified by molecular
phylogenetic analyses displays double fertilization.
The limited contributions to the reproductive biol-
ogy of basal angiosperms currently available per-
tain mostly to descriptive accounts of their floral
morphology and comparative embryology (Fried-
man 2001a; Friedman and Floyd 2001). The closest
that published studies in the comparative embryol-
ogy of some basal angiosperm lineages such as II-
licium anisatum (Illiciaceae; Hayashi 1963), Brase-
nia schreberei (Cabombaceae; Khanna 1965), and
Euryale ferox and Nymphaea stellata (Nymphaea-
ceae; Khanna 1964, 1967) have come is to assume
the existence of double fertilization and the forma-
tion of an endosperm, but without photographic or
other convincing documentation. An exception is
provided by studies showing that the embryo sac of
Nuphar polysepalum (Nymphaeaceae) is typically
four-celled, made up of an egg cell flanked by two
synergids and a uninucleate central cell (Williams
and Friedman 2002; Friedman and Williams 2003).
Besides providing striking fluorescent micrographs
of the fusion of the sperm nucleus with the haploid
central cell nucleus, the authors of these reports
have shown by DNA quantitation that the biparen-
tal endosperm generated by the second fusion event
is diploid (see Plate 1, Fig.a-d). Two additional
studies have followed the development of the endo-
sperm from its single-celled origin in A. trichopoda
and Illicium floridanum, but the ploidy level of the
tissue has not been determined (Floyd and Fried-
man 2000, 2001). An investigation of female game-
togenesis in Kadsura japonica (Schisandraceae) has
revealed the development of a four-celled embryo
sac, with a haploid central cell nucleus, with the
clear implication of the origin of a diploid primary
endosperm nucleus following double fertilization
(Friedman et al. 2003). It will obviously be of great
interest to establish unambiguously by refined mi-
croscopic methods the existence of double fertiliza-

tion in other basal angiosperms, and to ascertain the
ploidy level of the resulting endosperm to evaluate
the evolutionary significance of this process and the
origin of the embryo-nourishing tissue in flowering
plants.

Despite the well-known advantages of sexual
recombination in the transmission of hereditary
characters, plants have also evolved various mech-
anisms for propagation of the progeny while re-
maining innocent of sex. In the context of double
fertilization, the phenomenon known as apomixis
leads to the formation of seeds enclosing a fertiliza-
tion-independent embryo and, in some cases, an
autonomously developing endosperm. Apomictic
plants display prefertilization deviations from the
normal sexual developmental program by aberra-
tions in female meiosis to produce an unreduced
diploid embryo sac enclosing an egg and polar fu-
sion nucleus already endowed with a full comple-
ment of both male and female genomes (Ramach-
andran and Raghavan 1992; Koltunow et al. 2002).
Whereas attempts to unravel the genetic control of
apomixis in natural apomicts have not led to the
isolation of genes involved in the process, muta-
tional studies in the sexually reproducing Arabidop-
sis have provided new insights into the role of genes
controlling certain steps in the cascade leading to
an apomictic-type seed phenotype. Loss-of-func-
tion mutations in a cluster of genes now known
as FERTILIZATION-INDEPENDENT SEEDS2
(FIS2) (Chaudhury et al. 1997), FERTILIZATION-
INDEPENDENT ENDOSPERM (FIE, allelic to
FIS3) (Ohad et al. 1996, 1999; Luo et al. 1999), and
MEDEA (MEA, allelic to FIS1, F644) (Ohad et al.
1996, 1999; Grossniklaus et al. 1998; Kiyosue et al.
1999; Luo et al. 1999) have been shown to initiate
a substantial program of seed development result-
ing in the generation of a free-nuclear or a cellular
endosperm, seed coat formation, and even partial
embryogenesis in the absence of fertilization as in
the case of some apomicts. Because embryo and
endosperm development in the wild-type plants
typically follows double fertilization, these genes
have been justifiably assigned a role as suppressors
of autonomous divisions in the prefertilization egg
nucleus and polar fusion nucleus. As described in
Chaps. 5 and 8, in addition to their ability to initiate
partial embryo and endosperm developmental pro-
grams in the absence of fertilization, fis2, fie, and
mea mutants (referred to as fis class mutants; Gross-



