Peter C. Wille Sound Images of the Ocean in Research and Monitoring

Peter C. Wille

Sound Images of the Ocean

in Research and Monitoring

With contributions of more than 120 sound image authors and marine experts of 22 countries

With 452 Images

Author

Professor Dr. Peter C. Wille

Kitzeberger Straße 31 24226 Heikendorf Germany

Cover image: Seafloor relief of the *South Pacific Rise* near the *Wilkes Transform Fault*, a very fast spreading Mid Ocean Ridge (Sect. 5.2.4.1).

Image ©: J. R. Cochran, Lamont-Doherty Geological Observatory of Columbia University, Palisades, USA. Multibeam system: Atlas Elektronik, type *Hydrosweep DS*, 12 kHz.

Library of Congress Control Number: 2005920699

ISBN-10	3-540-24122-1 Spr	inger Berlin Heidelberg New York
ISBN-13	978-3-540-24122-5	Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner, Heidelberg Typesetting: Büro Stasch · Bayreuth (stasch@stasch.com) Production: Luisa Tonarelli Printing: Stürtz GmbH, Würzburg Binding: Stürtz GmbH, Würzburg

Printed on acid-free paper 30/2132/LT - 5 4 3 2 1 0

Foreword

A technical invention and its evolution during the last decades of the twentieth century, comparable to the invention of photography and X-ray imaging at the end of the nineteenth century, happened nearly unnoticed by the public. This evolution has created a special art of imaging considered impossible before: the ability to generate images of large areas of the ocean floor nearly as detailed as aerial photographs. These images are three-dimensional and generated by sound. Echosounding, invented already in the second decade of the last century, produced depth data along the ship's course but no images of the kind we are familiar with. Imaging requires covering a surface. The breakthrough of imaging the sea floor by threedimensional sampling of its surface along broad stripes instead of lines became possible only with the concurrence of three fundamental technologies: precise and worldwide *satellite navigation*, high speed *computers* with storage of huge amounts of data and the hard- and software of *multibeam echosounders* of up to a hundred sound beams and more in parallel.

It is a peerless maritime imaging technology in kind, accuracy and resolution, and it deals with a unique documentation. It is the history of the ocean floor, imprinted in its relief, visualized by sound imaging. The deep sea floor has preserved its geodynamic history over many millions of years; on the continents most of such traces have been lost due to erosion. Imaging the ocean floor is exemplary for the role of scientific imaging: *it is the visualisation of the reality that has guided research, brought forth discoveries, and confirmed or refuted theoretical presumptions.* This applies in particular to fields of high complexity like marine geo-science, exploring the specific and significantly different interacting processes of the vast variety of ocean areas. High resolution sound imaging provides also a guide for follow up research applying non acoustic methods such as magnetometry, gravimetry, close-up photography and bottom sampling and -coring. But advanced sound imagery has become itself an indispensable diagnostic tool to identify fundamental processes reshaping the floor of the ocean.

The sound images presented in this book comprehend examples of quite different areas and formations of the world's oceans provided by more than a hundred image authors from institutions of over 20 countries. The amazing progress is evident from the age of the images shown: the majority are a few years old at most. The progress encloses the development of further methods of sound imaging the sea, below, at, and above the sea floor. It has resulted in a broad and ever growing field of scientific, technical, economic, and governmental applications. These applications, their achievements and possibilities are definitely deserving of a survey. The fascination of the images, revealing widely unknown scenarios of the hidden side of our planet will inspire and raise interest of scientific neighbors and of non-experts. It will be a contribution to an interdisciplinary understanding of the subject of sound imaging the ocean which is in fact a common tool, connecting ocean research, utilization, and protection.

The understanding of the interaction between the hot interior of the Earth and its surface, the lithospheric plates causing volcanism and earthquakes, the rise of new sea floor at the mid ocean ridges and the processes of sea floor subduction at the opposite margins of the tectonic plates, is essentially based on acoustic imagery. This includes the outer relief as well as the internal structure. Comparable time spans of many million years of climate history are documented in the sediment stratification. It is part of the prehistoric diary of the Earth, resolved by advanced high resolution sub-bottom profilers, which also disclose sub-sediment morphologies and discover large deposits of hydrocarbons. Acoustic Doppler current profilers, together with other acoustic facilities and methods give us the features of ocean current systems, the Conveyor Belt of by far the largest amount of mobile heat energy on Earth, determining the climate of continents. It has been disclosed by acoustic means that current systems are guided by the sea floor relief far beyond the ridge crests. Marine acoustics quantifies also other processes of climate relevance like air intrusion into the sea. It has imaged coastal sediment motion like the migration of large dunes and various types of erosion and re-sedimentation up to past coastal slides of thousands of cubic kilometers with disastrous impact.

It is true: imaging the sea by sound has developed to an admirable degree of perfection but it cannot remove the fact that imaging of entire oceans is time consuming to say the least. It is realized with research- and hydrographic survey vessels proceeding not much faster than a bicycle as they cover the sea floor with a carpet of soundings, a few times the width of the water depth at most. Thus, only a minor part of the deep sea floor, in other words, of two thirds of the Earth's surface, is as yet known in as much detail as the surface of the moon.

The book compares the *slow but high resolution* acoustic imaging with another, *indirect* kind of ocean floor imaging: a *rapid but low resolution* method where satellite technology is the key requirement. Scanning the sea surface by satellite radar provides a coarse copy of the floor relief below by utilizing its varying local gravity. Undersea mass concentrations like large mountains attract the water above slightly more than the girdling abyssal plain, and deep valleys with their mass deficit correspondingly less, which causes bulges and dents respectively at the surface. This *gravity anomaly* method has revealed large scale structures of the ocean floor for the first time in their totality and in remote ocean areas. It has become an important guide to select sites of interest for detailed tectonic and geologic research relying on advanced ship-borne sound imagery. The overviews based on gravity anomaly, improved in resolution by blending with soundings are presented as global depictions and in comparison with high resolution acoustic imagery.

Limitation was necessary. Beyond scope are methods of acoustic underwater communication and remote control, in particular for offshore construction activities. Ocean surveillance and reconnaissance by Sonar in the framework of military defense is excluded as well – with the exception of acoustic sea mine hunting – although the navies also deal with acoustic imaging and naval underwater acoustic technology has often been the forerunner of ocean research applications. Nevertheless Naval officers, in particular Sonar-operators, need to familiarize themselves with the acoustic features of their environment, its various peculiarities and varying potential of natural camouflage, hiding or simulating targets of interest by acoustic similarities.

Some of the sea floor images of large areas with many details would require a much larger type area than a book can provide. These images are copied in addition for zooming on the CD attached to the book. The CD moreover contains several *Fledermaus*-versions of sea floor reliefs where choosing the preferred direction of view is essential. This is particularly necessary with the *Globe* containing the complete land and sea relief of our planet with a resolution of 5 arc minutes. The Fledermaus-Globe can be easily turned around the two axes with the PC-mouse and arbitrarily zoomed. Several virtual flight-animations through undersea land-scapes of recent high resolution relief imagery and a quick-motion movie of dune migration from a panorama-echosounder are included as well. Some examples of different sea floor material acquired by the respective acoustic backscatter can be visualized as genuine 3D-depictions with red-green binoculars.

The book, covering a wide variety of special subjects of international sound imaging application in the sea is necessarily a composite product. The main part consists of course of the sound images, many of them unpublished, and scientific information provided by the image authors and their institutions. Most of the section texts and image captions including the introduction to the basic facts are written by the author of the book. The image-related texts are based on the correspondence with the various experts and image authors and have been reviewed by them. The correspondence included thorough discussions as to how to explain complex relationships to non experts and to condense the results to the essence of the investigation, the "message". Two key sections are complete articles specially written for the book by the respective experts. They are indicated by the authors' names, as well as a few others which have been essentially written or rewritten by the respective experts.

The book respects the reader who is interested in key technologies and achievements of ocean research but does not want to be confused with highly specialized terminology or wearied by complicated theory. The book therefore relies heavily on the direct, nearly self-explanatory evidence of the product of ocean acoustics: the authentic, quantitative sound image. There is strong emphasis on practical results in order to outline what we can expect in reality in accordance with the limits set by physics and environment. Mathematics are replaced by verbal explanations. An appendix includes some formal relations and the literature indexes of the subject sections refer to the related textbooks and recent original papers.

Altogether this way of generating an interdisciplinary special book provides much of the authenticity and actuality of congress proceedings and also much of the homogeneity of a normal textbook. The contributors provided their voluntary and generous collegial support because they consider such a book useful, even necessary.

Hans Werner Schenke Alfred-Wegener-Institut für Polar- und Meeresforschung

Foreword by the Sponsor

n this book, Peter C. Wille opens the hidden world of seafloor landscapes, which until now were nearly accessible exclusively to specialists. The impressive images presented here were generated during recent years by means of advanced echosounder systems of various techniques. The beauty of these sound images and their almost self-explanatory message will also fascinate other scientists and a wider public. The images have been contributed by 120 experts from 22 countries engaged in geosciences, offshore industry, offshore economy, surveillance and even archaeology.

The comparison of sound images of the sea floor with its coarse copy by the sea surface relief deformed by mass attraction of the seamounts below and recorded by satellite radar is of particular interest. It underlines the peerless role of high resolution acoustics but also the necessity to complete our insufficient knowledge of the deep sea floor world which is disclosed in detail by only a few percent as yet. But the sound images also reveal the necessity for protection because the future of mankind will depend to a great extent on the resources to be taken from the ocean volume and the seafloor.

For many decades now, our company has been one of the major players on the scene of ocean acoustic system development and production. In particular multibeam systems and non-linear high resolution sediment echosounders facilitated the hydroacoustic examination of the seafloor. These activities encompass the whole range of hydroacoustic surveying equipment: from portable units for the survey of riverbeds and inland waterways to permanently installed systems for oceangoing research vessels. The acoustic data collected by research vessels have been processed in the images which are part of this book.

In the future, however, autonomous underwater vehicles (AUV) will increasingly be used for the research and inspection of the water volume, the seafloor and the structures built upon the seabed. These vessels will take over many of the tasks which until now could only be performed by complex and expensive research vessels. For these tasks, the AUV will have its own intelligence, very precise navigation systems, optical and acoustical sensors, communication and fuel cell energy and propulsion systems. The growing market of AUV will be expanded by products which can be summarized as *robotics*. In the years to come, not only the unmanned and autonomous exploration but also the automatic execution of manual functions will become possible in the "blue waters". Comparable developments can be seen in the military naval sector, where this trend is aptly described as *the sonars are leaving the ships*. Both markets are served by ATLAS ELEKTRONIK GmbH with products that are setting new trends as our multibeam echosounders did years ago. The further deployment of AUV will be analogous to the missions of space probes with the distinction that operations in the hydrosphere offer the benefit of repeated use.

Our commitment in the compilation of this book is characterized by our participation in the worldwide gathering of *Sound Images of the Ocean* through the provision of our multibeam- and sediment echosounders. Additionally, we realize that this largely unknown part of our blue planet, presented with this book, is worthy of appreciation by a wider audience.

ATLAS ELEKTRONIK GmbH Bremen, December 2004

Manfred Meyersieck Manfred Siegel

Preface

he particular fascination evoked by many of the sound images of the sea floor presented in this book has changed its al presented in this book has changed its character since the 26th December 2004. Formations of scientific and general interest, where large parts of the sea floor, the tectonic plates, are being subducted under adjacent tectonic plates have now become a frightening subject of another dimension. The mechanisms of destruction of human settlements by tectonic processes were known before: the majority of earthquakes and volcanism happen at or near plate margins. History reports of giant waves, propagating at enormous speed, which devastated coastal areas. The Japanese, overrun by the largest number of this kind of deluge, generated by a sudden uplift of the overriding tectonic plate, named them *Tsunami*. Through the last four centuries nearly two dozen giant Tsunamis have been recorded, each of which killed from more than 2000 up to 40000 people. The Sumatra Tsunami of December 2004, when presumably more than 300 000 died and millions became homeless, is unparalleled in history however: an apocalyptic catastrophe. The earthquake magnitude 9.0 is one of the highest ever recorded and corresponds to the energy of 32 000 Megatons TNT. The disaster, unimaginable before, has created an overwhelming response in charity worldwide, but has made us aware again that we are living on the cool but fragile skin of a glowing globe of which we still know only little. The need for a global Tsunami warning system has become strikingly evident. Though earthquakes cannot be predicted, they can be detected, localized and measured in magnitude, and the arrival of resulting Tsunamis, propagating oceanwide, can be made known in advance to save human lives.

The compilation and preparation of this book was completed before the date that shocked the world. However, the publisher has agreed to insert an image of the sea floor relief with the epicenter area in the Indian Ocean. This image, on short notice personally prepared and provided by the Director of the Center for Coastal and Ocean Mapping, L. Mayer, USA, is based on the Sandwell and Smith predicted topography data from NGDC, available prior to the Sumatra Tsunami. Scientific evaluation of actual seismic records in detail and subsequent mapping of the area in near future by high resolution sound imaging will throw light on the origin of this tragedy.

This book is the first attempt to publish a comprehensive overview of the wide variety of acoustic applications in the fields of research, of utilization, surveillance and protection of the ocean. This sound image collection covering a large number of subjects and sites of the world's oceans and coastal waters is both interdisciplinary and international. It has been enabled by the generous support of more than 120 experts and sound image authors from 22 countries. The images have been selected as representative of the work of the image authors and their subjects. These subjects range from the evidence of plate tectonics and continental shift and from methanehydrate deposits, containing more than twice the amount of all other carbon hydrates on Earth, to indications of ocean warming imaged by acoustic tomography; from submerged cities to historic ship wrecks; from large submarine canyons to huge landslides; from sea lane surveillance and biomass monitoring to images and sound tracks of whale echosounding and communication; from sub-polar ice imaging to steering of the Gulf stream by undersea topography; and from the Arctic Ocean to Antarctica. Unlike the continents and islands inhabited and shaped by man, the deep sea, much more than the continental shelf, is the exclusive territory of nature with marginal human impact hitherto, apart from relics of ship disasters and wars through the centuries and communication cables in the last few decades.

The book is not a high-resolution sound imaged atlas of the world's sea floor. Two-thirds of the globe is ocean, and only a low percentage of ocean floor has been sound imaged by advanced technology so far. Nevertheless, the book *does* provide a global atlas of the hidden side of the Earth, albeit in less detail. All available echosounder data - the sparse sounding lines in remote areas of the world as well as the denser measurements near coasts and sea lanes - has been merged with satellite radar data of the sea surface relief, providing a coarse copy of the sea floor beneath. The weak bulges and dents are generated by gravity anomalies which attract the sea volume above a submarine mountain slightly more than above a valley. The merger of these two independent data sets, combined to form a complete globe – a pioneering work by leading experts – is the best possible overview at present of the nearly infinite variety of sea floor formations. This overview has become indispensable as a guide for site selection of follow-on high resolution acoustic closeups of the outer relief and the structure below, to reveal the details of processes for further on-site research. The CD included with the book allows zooming and turning of the relief globe, as well as of very large sound images.

The book demonstrates the capability of the various technologies of sound imaging as *diagnostic tools* – similar to ultrasonics in medicine – but the aesthetic appearance of many of these images evokes appreciation beyond mere information. The book is intentionally written for the non-expert who may be a scientist from a neighboring faculty. All comments and textual documentation accompanying the image collection, as well as the introduction to the basic facts of ocean acoustic imaging, have been reviewed and supplemented by the respective experts. The intention is to raise and maintain interest in those formations and processes of the ocean which are beyond the access of photography – by far the majority.

Peter C. Wille April 2005

6

Acknowledgments

The generous support of the book project by the subsequent sound image authors and marine experts is cordially and respectfully appreciated. These experts contributed sound images typical of their respective fields of work as original, unabbreviated files, often prior to their own publications and provided the related scientific and technical information together with text reviews, supplements, and literature. The willingness and patience to discuss the formulation of the scientific message for non-expert readers deserves particular respect. The names of researchers who provided supplementary reviews and revisions of image comments in the field of their special expertise for images provided by colleagues are indicated by an asterisk. Book sections and box insets written by image authors and other experts carry the respective names.

Juan Acosta Yepes	Geology and Geophysics Dept., Instituto Español de
	Oceanografía, Madrid, Spain (Sect. 5.3.5, 5.6.1, 5.6.2)
Dr. Matina Alexandri	Dept. of Marine Geology & Geophysics, Institute of
	Oceanography, Hellenic Centre for Marine Research,
	HCMR, Athens, Greece (Sect. 5.6.4)
Tom Avsic	Leibniz Institut für Meereswissenschaften an der Uni-
	versität Kiel, Germany (Sect. 6.1.3)
Pietro Basciano	RESON MEDITERRANEAN SRL, Casalecchio di Reno,
	Italy (Sect. 5.2.6, 7.1.3, 7.3.1)
Andrea Bellettini	Nato Undersea Research Centre, La Spezia, Italy (Sect. 7.1.5)
George Bernardel	Law of the Sea Group, Geoscience Australia, Canberra,
	Commonwealth of Australia (Sect. 5.2.2)
Manfred Bersch	Institut für Meereskunde, Universität Hamburg, Ger-
	many (Sect. 6.1.2)
Dr. Eckhard Bethke	Bundesforschungsanstalt für Fischerei, Institut für
	Fischereitechnik und Fischqualität, Hamburg, Ger-
	many (Sect. 6.3.1)
Andreas Beyer	Alfred-Wegener-Institut für Polar- und Meeresfor-
	schung AWI, Bremerhaven, Germany (Sect. 5.3.4, 5.3.6)
Dr. Daniel Bideau	Institut français de recherche pour l'exploitation de la
	mer, Ifremer, Issy-les-Moulineaux Cedex, France
	(Sect. 5.2.3)

Dr. Halim Birkan	Turkish Navy Department of Navigation, Hydrogra- phy and Oceanography, Istanbul, Turkey (Sect. 5.6.5)
Prof. Dr. Dr. h.c. Leif Bjørnø	DIC, Department of Industrial Acoustics, Technical University of Denmark, Lyngby, Denmark (Sect. 7.3.5)
Prof. Dr. Antje Boetius	Max-Planck-Institute for Marine Microbiology, Bremen, Germany (Sect. 6.2.2)
Edoardo Bovio	Nato Undersea Research Centre, La Spezia, Italy (Sect. 5.6.3, 7.1.4)
Prof. Dr. David L. Bradley*	Applied Research Laboratory ARL, PennState Univer- sity. United States of America (Sect. 2.11)
Thomas Brüggemann	Bundesanstalt für Gewässerkunde, Koblenz, Germany (Sect. 7.1.1)
Dr. Neville Ching	Land Information New Zealand (LINZ), New Zealand (Sect. 5.5.4)
Robert A. Church	Marine Archaeology Section, C & C Technologies, Inc., Lafavette, United States of America (Sect. 7.4.1)
Dr. James R. Cochran	Lamont Doherty Earth Observatory Palisades, United States of America (Sect. 5.2.4)
Dr. Martin Dean	ADU, University of St Andrews, Fife, United Kingdom (Sect. 7.3.2, 7.3.3)
Thomas Dehling	Bundesamt für Seeschifffahrt und Hydrographie BSH, Rostock, Germany (Sect. 5.7.3, 7.1.1)
Kai-Martin Dührkop	RESON Niederlassung Kiel, Germany (Sect. 7.1.4, 7.3.2)
Czesław Dyrcz	Captain, Hydrographic Office of the Polish Navy, Po- land (Sect. 7.1.4)
Michael Emmerich	Niederzier, Germany (Sect. 7.3.3)
Dr. Rudolf Endler	Baltic Sea Research Institute, Rostock-Warnemuende, Germany (Sect. 5.7.6)
Dr. Neville Exon	Marine Regional Geology Group, Geoscience Australia, Canberra Commonwealth of Australia (Sect. 5.2.7.5.3.6)
Dr. Gordon B. J. Fader	Geological Survey of Canada (Atlantic), Bedford In- stitute of Oceanography, Dartmouth, Nova Scotia, Canada (Sect. 5.3.8, 5.3.9)
Prof. Dr. David M. Farmer	Graduate School of Oceanography, University of Rhode Island, United States of America (<i>Sect.</i> 6.2.3)
Dr. Volker Fiekas	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG, Kiel, Germany (Sect. 2.9)
Dr. Jürgen Fischer	Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Germany (Sect. 6.1.2)
Dr. Jörg Förster	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG. Kiel. Germany (Sect. 3.6.3)
Prof. Dr. André Freiwald	Institut für Paläontologie, Universität Erlangen, Erlan- gen Germany (Sect. 5.3.4)
Dr. Leonard Gajewski	Operational Oceanography Department, Maritime In- stitute, Gdańsk, Poland (Sect. 5.7.4)
Dr. James V. Gardner	Center for Coastal & Ocean Mapping CCOM, University of New Hampshire, Durham, United States of America (<i>Sect. 5.1.2, 5.2.5, 5.2.8</i>)

Dr. Cem Gazioğlu*	Istanbul University, Institute of Marine Sciences and Management, Istanbul, Turkey (Sect. 5.6.5)
Dr. Eberhard Götze	Bundesforschungsanstalt für Fischerei, Institut für Fischereitechnik und Fischqualität, Hamburg, Ger- many (Sect. 6.3.1)
Dr. Jens Greinert	Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Germany (Sect. 6.2.1)
Prof. Dr. Haflidi Haflidason	Department of Geology, University of Bergen, Norway (Sect. 5.3.1)
Andrew W. Hall	courtesy: The PAST Foundation, Ohio, United States of America (Sect. 7.4.1.3)
Prof. Dr. John K. Hall	Geological Survey of Israel, Jerusalem, Israel; on sab- batical: Center for Coastal and Ocean Mapping /Joint Hydrographic Center CCOM/JHC, University of New Hampshire, Durham, NH, United States of America (<i>Sect. 5.6, 5.6.7</i>)
Dr. Dieter Hartwig*	German Naval Association, Kiel, Germany (Sect. 7.1.4.4)
Dr. Jun Hashimoto	Faculty of Fishery, Nagasaki University, Japan (Sect. 5.2.2)
Dr. Jörn Hatzky	Bathymetrie und Geodäsie, Alfred-Wegener-Institut für Polar- und Meeresforschung AWI, Bremerhaven, Germany (<i>Sect. 5.2.6, 5.4.1, 5.5.2</i>)
Prof. Dr. Jean Pierre Henriet	Renard Centre of Marine Geology (RCMG), University of Ghent, Belgium (<i>Sect. 5.3.4, 5.3.5</i>)
Dr. Karl-Heinz Herwig	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG, Kiel, Germany (Sect. 6.2.3)
Richard Hill	Reson Offshore Ltd. (Sect. 7.2.3)
Prof. Dr. Karl Hinz*	Bundesanstalt für Geowissenschaften und Rohstoffe BGR, Hannover, Germany (Sect. 5.5.1)
Constanze Hohmann	Nicola Engineering GmbH, Hamburg, Germany (Sect. 5.5.3)
Egil Ingebretsen	Marine Surveys, Pipelines and Marine Operations, Norsk Hydro ASA, Norway (Sect. 5.3.7)
Prof. Dr. Martin Jakobsson	Center for Coastal and Ocean Mapping CCOM, Joint Hydrographic Center, University of New Hampshire, United States of America (<i>Sect. 5.1.1, 5.4.1</i>)
Dr. Wolfgang Jans	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG, Kiel, Germany (Sect. 4.3.5)
David Jepsen	Geoscience Australia, Commonwealth of Australia (Sect. 5.2.2)
Dr. Wilfried Jokat*	Alfred-Wegener-Institut für Polar- und Meeresfor- schung AWI, Bremerhaven, Germany (Sect. 5.5.1)
Dr. Kelsey Jordahl	Monterey Bay Aquarium Research Institute, Moss Landing, United States of America (Sect. 5.2.4)
Heiner Josenhans	Geological Survey of Canada (Atlantic), Bedford In- stitute of Oceanography, Canada (Sect. 5.3.9)
Ingo Junge	Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, ISERB, University of Hannover, Germany (<i>Sect. 7.1.2</i>)

Edward L. King	Geological Survey of Canada (Atlantic), Bedford In- stitute of Oceanography, Canada (Sect. 5.3.9)
Dr. Dirk Kläschen	Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Germany (Sect. 6.2.1)
Dr. Martin Klenke	Alfred-Wegener-Institut für Polar- und Meeresfor- schung AWI Bremerhaven Germany (Sect. 5.4.2)
Carol Kohl	National Topographic Hydrographic Authority, Land Information New Zealand, National Office, Wellington, New Zealand (Sect. 5.5.4)
Dr. Peter Kohr*	Universitätsklinikum Schleswig-Holstein, Radiologie, Kiel Germany (Sect. 2.5, 2.6)
Ralf Krocker	Alfred-Wegener-Institut für Polar- und Meeresforschung AWI, Bremerhaven, Germany (Sect. 2.7, 5.1.2, 5.5.1)
Fred Kroh	Geoscience Australia, Commonwealth of Australia (Sect. 5.2.2, 5.2.7, 5.3.6)
Dr. Hermann-Rudolf Kudrass	Bundesanstalt für Geowissenschaften und Rohstoffe BGR, Hannover, Germany (<i>Sect.</i> 5.3.2)
Dr. Thomas Kuhn*	Institut für Mineralogie der TU Bergakademie Freiberg, Germany (Sect. 5.2.6)
Dr. I. S. Laherg	University of Tromsø, Norway (Sect. 5.3.2)
Dr. Stefan Ladage	Bundesanstalt für Geowissenschaften und Rohstoffe
211 0109111 2111180	BGR Structural Geology Hannover Germany (Sect 5.2.1)
Dr. Douglas N. Lambert	Naval Research Laboratory, Stennis Space Center, United States of America (Sect. 6.2.2)
Mark Lawrence	Alcatel, Paris, France (Sect. 7.2.1)
Richard Lear	RESON Offshore Ltd., Aberdeen, Scotland, United
Dr. Wolfram Lemke*	Institut für Ostseeforschung IOW, an der Universität Rostock, Germany (<i>Sect. 5.7.3</i>)
Dr. Walter Lenz*	Institut für Meereskunde, Universität Hamburg, Ger- many (Sect. 2.11)
Dr. Michael Z. Li	Geological Survey of Canada (Atlantic), Bedford In- stitute of Oceanography, Canada (Sect. 5.3.9)
Prof. Dr. Char-Shine Liu	National Center for Ocean Research, Institute of Oceanography, National Taiwan University, Taipei, Tai- wan, Republic of China (Sect. 5.2.9)
Dr. Benoît Loubrieu	DRO Institut français de recherche pour l'exploitation de la mer, Ifremer, Bres, France (Sect. 5.6.6)
Dr. Jean Mascle*	Geosciences-Azur, Villefranche/Mer, France (Sect. 5.6.6)
Prof. Dr. Douglas G. Masson	Southampton Oceanography Centre, United Kingdom
	(Sect. 5.3.1)
Prof. Dr. Dr. h.c. Larry Mayer	Center for Coastal and Ocean Mapping CCOM/NOAA- UNH Joint Hydrographic Center, University of New Hampshire, Durham, United States of America (<i>Sect. 5.2.1</i> , <i>5.2.2</i> , <i>7.3.5</i>)
Dr. Lev Merklin	P. P. Shirshov Institute of Oceanology, Academy of Sciences of Russia, Moscow, Russian Federation (<i>Sect. 5.4.3, 5.7.7</i>)

Prof. Dr. Jürgen Mienert	Department of Geology, University of Tromsø, Norway (Sect. 5.3.5)
Dr. Doris Milkert	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG, Kiel, Germany (<i>Sect.</i> 5.3.3, 7.2.4, 7.3.4)
Dr. David C. Mosher	Natural Resources Canada, Geological Survey of Canada (Atlantic) Dartmouth, Nova Scotia, Canada (<i>Sect. 5.3.9</i>)
Dr. Sergey Muyakshin	IAP, RAS, Nizhny Novgorod, Russian Federation (Sect. 6.3.2)
Gijs Nieuwenhuijs	EGS Survey Pte Ltd (Sect. 7.2.3)
Bernd Nützel	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG, Kiel, Germany (Sect. 6.2.3)
Dr. Atle Nygård	Department of Earth Science, University of Bergen, Norway (Sect. 5.3.2)
Walter Offenborn	Marineamt Abt GeoInfoW – Geo 1, Rostock, Germany (Sect. 7.1.1)
Toshio Ohyagi	Nihon Zitan /Toyo Corporation, Japan (Sect. 7.2.3, 7.1.3.4)
Prof. Dr. Dimitrios	
Papanikolaou	Department of Marine Geology, University of Athens, Greece (Sect. 5.6.4)
Russell Parrott	Geological Survey of Canada, Natural Resources Canada, Dartmouth, Nova Scotia, Canada (<i>Sect. 5.3.9</i>)
Gianni Pavan	Centro Interdisciplinare di Bioacustica e Ricerche Ambientali Universita' degli Studi di Pavia, Pavia, Italy (<i>Sect. 6.3.3</i>)
Dr. Harald Peine	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG, Kiel, Germany (Sect. 7.1.5)
Herman Peters	Rijkswaterstaat, The Netherlands (Sect. 7.1.1, 7.2.2, 7.3.2)
Hartmut Pietrek	Bundesamt für Seeschifffahrt und Hydrographie BSH, Hamburg, Germany (<i>Sect. 5.7.3</i>)
Fernando Maia Pimentel	<i>Commander</i> , Hydrography Division, Instituto Hidro- gráfico, Portugal (<i>Sect. 5.3.6</i>)
Marc Pinto	Nato Undersea Research Centre, La Spezia, Italy (Sect. 7.1.5)
Dr. Katrin Premke	Alfred-Wegener-Institut für Polar- und Meeresfor- schung AWI, Bremerhaven, Germany (<i>Sect. 6.3.2</i>)
Dr. Cesar Ranero	Leibniz-Institut für Meereswissenschaften an der Universität Kiel, Germany (Sect. 5.1.2, 5.2.1, 5.2.3, 5.2.6)
Dr. Michael D. Richardson	Seafloor Sciences Branch, Marine Geosciences Divi- sion, Naval Research Laboratory, Stennis Space Cen- ter, United States of America (<i>Sect. 5.7.2, 6.2.2</i>)
Claudia Roedle	Wasser- und Schifffahrtsamt WSA, Hamburg-Wedel, Germany (Sect. 7.1.2)
Cris A. Sabo	RESON Inc., Goleta, United States of America (<i>Sect. 7.1.4</i> , <i>7.2.2</i>)
Dr. Eberhard Sauter	Alfred-Wegener-Institut für Polar- und Meeresfor- schung AWI, Bremerhaven, Germany (Sect. 6.2.2)

Dr. Hans Werner Schenke	Alfred-Wegener-Institut für Polar- und Meeresfor- schung AWI, Bremerhaven, Germany (Sect. 5.2.6, 5.3.4,
	5.3.6, 5.4.1, 5.4.2, 5.5.1, 5.5.2, 5.5.3)
Dr. Thomas Scholz	Forschungsanstalt der Bundeswehr für Wasserschall und Geophysik FWG, Kiel, Germany (Sect. 2.1)
Dieter Seefeldt	Strom- und Hafenbau, Hamburg, Germany (Sect. 7.1.3)
Dr. Torsten Seifert	Institut für Ostseeforschung IOW, an der Universität
	Rostock, Germany (Sect. 5.7.1, 5.7.2)
Prof. Dr. Uwe Send	Leibniz-Institut für Meereswissenschaften an der Uni-
	versität Kiel, Germany (Sect. 6.1.3)
Prof. Manfred Siegel*	Atlas Elektronik and Hochschule Bremen, Germany (Sect. 2.11)
Ionathan S. Smith	Geomatics, EP Technology, Shell International Explo-
,	ration and Production Inc., Ashford, Houston, United
	States of America (Sect. 7.4.1.2)
Dr. Dehorah K. Smith	Woods Hole Oceanographic Institution Woods Hole
Dr. Debbrun R. omith	United States of America (Sect. 5.2.3)
Dr. Dar Södarhang	EQL Stackholm Swadan (Sect. 5.7.5)
Dr. Fer Souerberg	Marine Technology/Environmental Dessarch Depart
Proj. Dr. volknara spless	Marine Technology/Environmental Research, Depart-
	ment of Earth Science, University of Bremen, Germany
	(Sect. 5.3.2)
Prof. Dr. Rudiger Stein	Alfred-Wegener-Institute for Polar- and Marine Re-
	search, Bremerhaven, Germany (Sect. 5.4.3)
Prof. Dr. Peter Stoffers	Institut für Geowissenschaften GPI, Universität Kiel,
	Germany (Sect. 5.2.4)
Dr. Siegfried Stolte	Lüneburg, Germany (Sect. 2.9)
Federico De Strobel*	Nato Undersea Research Centre, La Spezia, Italy (Sect. 2.11)
Prof. Dr. Erwin Suess*	Leibniz-Institut für Meereswissenschaften an der
	Universität Kiel, Germany (Sect. 6.2.1)
Dr. Franz Tauber	Institut für Ostseeforschung Warnemünde IOW an der
	Universität Rostock, Germany (Sect. 5.7.1, 5.7.2)
Dr. Jaroslaw Tegowski	Institute of Oceanology, Polish Academy of Science,
	Sopot, Poland (Sect. 5.7.2)
Alex Trangeled	Nato Undersea Research Centre, La Spezia, Italy
	(Sect. 6.3.4)
Juliusz Tuszyñski*	Hydrographic Office Polish Navy HOPN, Poland
	(Sect. 7.1.4.4)
Michael Unger	Forschungsanstalt der Bundeswehr für Wasserschall
-	und Geophysik FWG, Kiel, Germany (Sect. 3.2.2)
Heinz G. Urban*	Atlas Elektronik Bremen, Germany (Sect. 4.4.1–4.4.8)
Nat Usher	EPT GeoDrilling; technical guidance to GeoHazards,
	GeoPressure, Geodetics, BP America Inc. Houston,
	United States of America (Sect. 7.4.1)
Prof Dr Tore O Vorren	Dpt of Geology University of Tromsø Norway
1.101. 1010 0. 1011011	(Sect 537)
Prof Dr Peter Wadhams	Department of Applied Mathematics and Theoretical
1.10j. Di. 1 cici viuununis	Physics University of Cambridge United Kingdom
	(Sect 5 4 A)
	(0000. 0.7.7)

Donald J. Walter	Naval Research Laboratory, Stennis Space Center,
Danial I Warran	United States of America (Sect. 6.2.2)
Duniel j Wullen	Lafavette United States of America (Sect. 7.4.1)
Dr. Tieerd C. F. van Weering	Netherlands Institute for Sea Research (NIOZ) Tevel
Di. 1jeena O. L. van Weening	The Netherlands (Sect. 5.3.4)
Dr. Wilhelm Weinrebe	Leibniz-Institut für Meereswissenschaften an der
	Universität Kiel, Germany (Sect. 5.1.2, 5.2.1, 5.2.3, 5.2.6)
Stein Wendel	Norsk Hydro ASA, Ormen Lange Project, Aker Kværner,
	Lysaker, Oslo, Norway (Sect. 5.3.1, 7.4.2)
Prof. Dr. Gert Wendt	Institut für E-Technik der Universität Rostock, Germany
-	(Chap. 1–4, Sect. 6.2.2, 7.2.2)
Dr. Friedrich Werner	Kiel, Germany (Sect. 5.3.3)
Dr. Thomas Wever	Forschungsanstalt der Bundeswehr für Wasserschall
	und Geophysik FWG, Kiel, Germany (Sect. 6.2.2)
Roger Wiik	Fugro Survey AS, Oslo, Norway (Sect. 5.3.7)
Nico van Woerkom	NeSA B.V./ Thales GeoSolutions, The Netherlands
	(Sect. 7.1.3)
Dr. Tim J. Worthington*	Institut für Geowissenschaften GPI, Universität Kiel,
	Germany (Sect. 5.2.2, 5.2.4)
Dr. Sébastien Zaragosi	Département de Géologie et Océanographie, Université
	de Bordeaux I, France. (Sect. 5.3.2)
Dr. Manfred Zeiler	Bundesanstalt für Seeschifffahrt und Hydrographie
	BSH, Hamburg, Germany (Sect. 5.3.3, 7.1.1, 7.2.2)
Dr. Walter Zenk	Leibniz-Institut für Meereswissenschaften an der
	Universität Kiel, Germany (Sect. 6.1.1)
Prof. Dr. Günter Ziehm*	Passau, Germany (Sect. 2.11)

ATLAS ELEKTRONIK, Bremen, the company with the longest echosounder tradition and pioneering developments has kindly sponsored color prints throughout the book to enable the presentation of the original image versions. This generous support is particularly appreciated.

Particular Acknowledgments

I am indebted to *Prof. Dr. Lorenz Magaard*, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, USA, and *Mr. Chris Miller*, Ocean Acoustics Laboratory/Ocean Acoustic Observatory Point Sur, USA, for convincing friends to support the book project with rare, unpublished sound images.

Mrs. Heather Barrett-Pironti, former Directorate Secretary of the NATO Undersea Research Centre, deserves my most cordial and respectful gratitude for conducting the native speaker's review of the book texts with professional care and incessant patience. My sincere thanks go to Dr. Jens Greinert, Geomar, Kiel, who generously provided his professional assistance in image processing matters, and to Dr. Ivor Nissen, Forschungsanstalt der Bundeswehr, FWG, Kiel who designed and realised the appendix. Mrs. Susanne Lau, FWG, Kiel supported the project with graphics and image formatting work which is gratefully appreciated. Cordial thanks are also due to Mr. Kai Martin Dührkop and Mrs. Kelly Scott of Reson Germany and USA, as well as to *Mr.Karstein Vestgård*, Kongsberg Simrad, Norway, for outstanding help in providing information and user contacts. Further I wish to thank Mrs. Claudia Jew, The Mariners' Museum, USA, Mr. Martin Morgan, The National D-Day Museum, USA, and Mr. Robert Shindle, The Steamship Historical Society of America for their kind provision of image copyrights. *Dr. Heinz A. Gorges*, Melbourne, was a source of great encouragement, supporting the manuscript production with substantial comments and suggestions. Mrs. *Luisa Tonarelli*, Springer-Verlag, Geosciences, Germany has been exemplary in her sympathetic, encouraging and always immediate support on behalf of the publisher, which is particularly appreciated. *Mr. Armin Stasch* deserves grateful respect for his layout work.

Contents

	Part I The Basic Facts of Imaging the Ocean	1
	The basic facts of finaging the ocean	1
1	Preliminary Remarks	3
2	Alternatives to Imaging the Sea by Sound and First Acoustic Trials	7
2.1	Visible Light	8
2.2	Infrared	9
2.3	Microwaves	9
2.4	Ultra-Long Radio Waves	9
2.5	X-Rays	10
2.6	Gamma Radiation	10
2.7	Gravity Anomalies	10
2.8	Magnetic Anomalies	11
2.9	Hydrodynamic Effects	13
2.10	The Acoustic Solution	14
2.11	First Acoustic Trials	14
2.12	Four Lines of Evolution of Ocean Echosounding	18
2.13	Conclusion of Chapter 2	19
3	Acoustic Features of the Sea	21
3.1	The Speed of Sound, Determining Quantities	22
	3.1.1 Dependence on the Static Pressure	22
	3.1.2 Dependence on the Salinity	22
	3.1.3 Dependence on the Temperature	23
3.2	Sound Refraction in the Sea	23
	3.2.1 Snell's Law	23
	3.2.2 Sound Refraction and Ducted Propagation;	
	"Acoustic Superconductivity"	23
3.3	Sound Attenuation	27
	3.3.1 Absorption	27
	3.3.2 Spreading Loss	28
	3.3.3 Above and below the Ocean Volume; a Comparison	28
	3.3.4 The Wavelength Handicap	28
	3.3.5 The Optimum Compromise	29

3.4	Echo	Formation	29
	3.4.1	Acoustic Impedance	29
	3.4.2	Impedance Steps	30
	3.4.3	Colorless Sound Images	30
	3.4.4	The Minimum Object Size	30
	3.4.5	Echosounding under Slant Angles	31
	3.4.6	Restriction to Compressional Waves	31
3.5	Rever	beration	31
3.6	Noise		32
	3.6.1	Sources of Noise: The Ship Traffic	32
	3.6.2	Wind-Driven Noise	33
	3.6.3	Rain Noise	33
	3.6.4	Noise Fighting	34
	3.6.5	The Spatial Filter	34
	3.6.6	The Frequency Filter	35
	3.6.7	Tailoring the Filter	35
	3.6.8	Further Sources of Noise and Very Large Acoustic Events	36
	3.6.9	Marine Mammals and Noise	38
	3.6.10	Self Noise	38
3.7	Sonar	Equation	39
3.8	Concl	usion of Chapter 3	39
4	Techni	cal and Physical Characteristics of High Resolution Echosounders	41
4.1	Conve	rsion of Electrical and Acoustical Energy	42
	4.1.1	The Piezoelectric Effect	42
	4.1.1 4.1.2	The Piezoelectric Effect	42 42
	4.1.1 4.1.2 4.1.3	The Piezoelectric Effect	42 42 42
	4.1.1 4.1.2 4.1.3 4.1.4	The Piezoelectric Effect	42 42 42 42 42
	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance	42 42 42 42 42 43
	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit	42 42 42 42 42 43 43
	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7	The Piezoelectric Effect	42 42 42 42 42 43 43 44
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The Fi	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion	42 42 42 42 43 43 43
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder	42 42 42 42 43 43 44 44
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The Fi 4.2.1	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation	42 42 42 42 43 43 44 44 45
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The Fi 4.2.1 4.2.2	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation	42 42 42 42 43 43 43 44 44 45 45
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The Fi 4.2.1 4.2.2 4.2.3	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation	42 42 42 42 43 43 43 44 44 45 45 45 46
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The Fi 4.2.1 4.2.2 4.2.3 4.2.4	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution	42 42 42 42 43 43 43 44 44 45 45 45 46 46
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F: 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution	42 42 42 42 43 43 43 44 45 45 46 46 46
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The Find Find Find Find Find Find Find Find	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution	42 42 42 42 43 43 43 43 44 45 45 45 45 46 46 46 46
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling	42 42 42 43 43 43 43 44 44 45 45 45 46 46 46 47 47
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling Two Line Arrays Instead of a Matrix	42 42 42 43 43 43 43 44 45 45 45 45 46 46 46 47 47 47 47
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The Fi 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling Two Line Arrays Instead of a Matrix Motion Compensation	42 42 42 42 43 43 43 43 43 44 45 45 45 46 46 46 47 47 47 47
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F: 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling Two Line Arrays Instead of a Matrix Motion Compensation Conclusion	42 42 42 42 43 43 43 43 44 45 46 46 46 46 46 47 47 47 47 47 47
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F: 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 The Se	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling Two Line Arrays Instead of a Matrix Motion Compensation Conclusion econd Type of Sound Imaging: The Sidescan Echosounder	42 42 42 42 43 43 43 44 44 45 45 45 45 46 46 47 47 47 47 47 48 48 48 48
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 The S 4.3.1	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling Two Line Arrays Instead of a Matrix Motion Compensation Conclusion econd Type of Sound Imaging: The Sidescan Echosounder	42 42 42 42 43 43 43 44 44 45 45 45 46 46 46 47 47 47 47 48 48 48 49
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 The S 4.3.1 4.3.2	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling Two Line Arrays Instead of a Matrix Motion Compensation Conclusion econd Type of Sound Imaging: The Sidescan Echosounder Line by Line Sampling	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.2	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 The F 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 The So 4.3.1 4.3.2 4.3.3	The Piezoelectric Effect Quartz: The Prototype of Piezoelectricity Polarization of LZT LZT-Ceramics as Sound Source Transducers at Resonance The Cavitation Limit Conclusion irst Type of Sound Imaging: an- or Multibeam Echosounder Satellite Navigation Predecessors of Navigation The Fan Echosounder, Requirement for Motion Compensation Phased Array Beam- Forming; The Radar Solution The Fan Echosounder Solution Sampling of Lines and Rows Time Parallel Sampling Two Line Arrays Instead of a Matrix Motion Compensation Conclusion econd Type of Sound Imaging: The Sidescan Echosounder Line by Line Sampling Throwing Shadows The Towed Fish for Rail-like Motion	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	4.3.5	Focusing	50
	4.3.6	Limits of Focusing Advantages	51
	4.3.7	Multi-Aspect Sounding	52
	4.3.8	Long-Range Versions	52
	4.3.9	Conclusion	52
4.4	The Tł	hird Type of Sound Imaging:	
	The Se	ediment-Penetrating Echosounder	52
	4.4.1	The Resolution Dilemma	53
	4.4.2	The Parametric Echosounder	53
	4.4.3	Non-Linear Mixing	53
	4.4.4	Advantage of Depth Resolution	54
	4.4.5	Advantage of Beamwidth	54
	4.4.6	End-Fire Array	54
	4.4.7	Array Length and Beamwidth Relations	54
	4.4.8	The Receiving Mode	55
	4.4.9	Conventional Sediment Echosounders	55
	4.4.10	Seismic Sounding	55
	4.4.11	The Source	55
	4.4.12	The Receiver	55
	4.4.13	Conclusion	56
4.5	The Fo	ourth Type of Sound Imaging:	
	The Ac	coustic Doppler Current Profiler (ADCP)	56
	4.5.1	The Principle of Acoustic Current Measurement	56
	4.5.2	The ADCP-Concept	56
	4.5.3	Speed Components and Doppler Shift	57
	4.5.4	The Determination of the Current Vector	57
	4.5.5	Slow Speeds	58
	4.5.6	Speed Resolution	58
	4.5.7	The First Dilemma:	
		The Sampling Problem in a Varying Field	59
	4.5.8	The Second Dilemma:	
		Echosounders Cannot Measure Temperature	59
	4.5.9	The Need for Combined Concepts	59
	4.5.10	Acoustic Tracking	60
	4.5.11	Conclusion	60
	Part II		
	Applica	ations of Acoustic Imaging the Ocean	61
5	The Sea	a Floor – Natural Formations	63
5.1	Merge	r of Satellite Altimetry and Acoustic Bathymetry	64
	5.1.1	Globes of the Sea Floor Relief	66
		5.1.1.1 The Globe, Atlantic Ocean	69
		5.1.1.2 The Globe, Pacific Central	71
		5.1.1.3 The Globe, Pacific Australia	73
		5.1.1.4 The Globe, Indian Ocean	75
		5.1.1.5 The Globe, Arctic Ocean	77
		5.1.1.6 The Globe, Antarctica	79

	5.1.2	High Resolution Bathymetry Versus Satellite Altimetry	80
		5.1.2.1 Daikakuji, a Seamount on the Hawaiian	
		Emperor Chain Bend	80
		5.1.2.2 Freeden Seamount and Eltanin Impact Area	82
		5.1.2.3 The Sea Floor near the Volcano Island Kauai, Hawaii	84
5.2	Geody	namics of Tectonic Plates	85
	5.2.1	Chile-Type Margins of Convergent Tectonic Plates	85
	5.2.2	Marianas-Type Convergent Plate Margins	106
		5.2.2.1 The Mariana Trench and the Philippine Plate	107
		5.2.2.2 The Challenger Deep in the Marianas Trench:	
		The Deepest Place on the Earth's Surface	109
		5.2.2.3 Philippine Trench	110
		5.2.2.4 Java Trench Area	112
		5.2.2.5 Macquarie Ridge Complex (MRC)	115
	5.2.3	Mid-Oceanic Ridges, Slow Spreading Type	117
		5.2.3.1 Mid-Atlantic Ridge, Northern Hemisphere; Cut-out	
		Sections of a Slow Spreading Mid-Ocean Ridge;	
		Feature Comparison of Relief and Backscattering	119
		5.2.3.2 Mid-Atlantic Ridge, Southern Hemisphere;	
		Relief Details of a Fracture Zone	121
		5.2.3.3 Mid-Atlantic Ridge, Northern Hemisphere;	
		Combined Multibeam and Sidescan Image	
		of a Central Valley Segment with a Volcano	122
	5.2.4	Mid-Oceanic Ridges, Fast Spreading Type	123
		5.2.4.1 A Very Fast Spreading Mid-Ocean Ridge: The South	
		Pacific Rise near the Wilkes Transform Fault	123
		5.2.4.2 The Southern East Pacific Rise (EPR)	125
		5.2.4.3 Marquesas Fracture Zone, One of the Large Pacific	
		Fracture Zones, Relics of a Reorganized	
		Mid-Ocean Ridge	127
	5.2.5	Strike Slip Fault Plate Margin	129
	5.2.6	Volcanic Formations	131
		5.2.6.1 Ampère Seamount	131
		5.2.6.2 Unnamed Volcano near Juan De Fuca Ridge	133
		5.2.6.3 The Sea Floor around the Volcano Stromboli, Italy	133
	5.2.7	Prominent Seamounts:	
		The Tasmanian Seamounts, Marine Reserve	137
	5.2.8	Hot Spots Islands: The Hawaii Region	138
	5.2.9	Taiwan and the Tectonic Activities	
		at the Western Philippine Plate	140
5.3	Passive	e Continental Margins:	
	Examp	les of the Prevailing Formations and Processes on the Shelf	145
	5.3.1	Submarine Escarpment Slides	146
		5.3.1.1 Storegga Slide	148
		5.3.1.2 Trænadjupet Slide	151
		5.3.1.3 Landslide on Atlantic Islands; Canary Islands	153
	5.3.2	Sediment Fans; Flow and Strata	155

		5.3.2.1 Morphology of the Celtic Fan, Gulf of Biscay5.3.2.2 Glacigenic and Non-Glacigenic Debris Flows	155
		on the Upper North Sea Fan	156
		5.3.2.3 Bear Island Trough Mouth Fan (TMF)	
		and Glacigenic Debris Flows, Western Barents Sea	. 159
		5.3.2.4 The Largest Sediment Fan in the World Fed	
		by a Giant Shelf Canyon in the Bay of Bengal	161
		5.3.2.5 Sediments off Callao/Peru	166
	5.3.3	Sediment Bedforms	. 167
	5.3.4	Carbonate Mounds and Cold Water Corals	
	01011	on the West European Margin	171
		5.3.4.1 Carbonate Mounds in the Porcupine Bight	
		and Rockall Trough Margin	171
		5.3.4.2 Cold Water Corals on the West European Margin	176
	5.3.5	Mud Volcanoes and Diapirs	. 178
		5.3.5.1 Mud Volcanoes	178
		5.3.5.2 Diapirs	183
	5.3.6	Submarine Canvons, Channels	184
	5.3.7	Norwegian Fiords	188
	5.3.8	Redrock Structures	190
	5.3.9	Canadian Formations	192
	01015	5.3.9.1 Scotian Shelf, Canada	192
		5.3.9.2 West Coast of Canada, Giant Underwater Dunes	198
		5.3.9.3 Queen Charlotte Islands off British Columbia.	170
		Canada	200
5.4	Arctic	Ocean	202
	5.4.1	Arctic Ocean and Its Constituent Seas:	202
	01111	Bathymetry and Physiography	202
	5.4.2	The Fram Strait with the Deepest Depression in the Arctic	206
	5.4.3	Arctic Sediments	208
	5.4.4	Under Ice Sound Imaging in the Fram Strait	212
5.5	Antarc	tic Features	216
	5.5.1	Features of the Weddell Sea, Antarctica	
	5.5.2	The Orca Seamount Region, Antarctica	222
	5.5.3	Antarctic Iceberg Plough Scars	224
	5.5.4	Features of the Ross Sea, Antarctica	. 228
5.6	Medite	erranean Sea Formations, the Overview	
	5.6.1	Chella Bank, Western Mediterranean Sea	. 235
	5.6.2	Balearic Islands	236
	5.6.3	Tvrrhenjan Sea Floor Features	
	5.6.4	Features of the Aegean Sea	
	5.6.5	The Marmara Sea Trough	. 242
	5.6.6	The Deep Eastern Mediterranean Sea	
		and Its Tectonic Convergence	245
	5.6.7	Shelf Formations off Israel	248
5.7	Baltic	Sea Formations	251
	5.7.1	Relief Image of the Baltic Sea; Overview	252

	5.7.2	The Western Baltic Sea	. 255
	5.7.3	Kadetrinne, Baltic Sea	. 256
	5.7.4	Gulf of Gda´nsk, Baltic Sea	. 258
	5.7.5	Stockholm Archipelago, Bedrock Area	. 260
	5.7.6	Sedimentation in the Baltic Sea;	
		Examples of the Bight of Mecklenburg	. 261
	5.7.7	Gulf of Finland, Gaseous Sediment and Gas Plume	. 263
6	The Oc	ean Volume	265
6.1	Ocean	Water Mass Transport and Heat Content	266
011	6.1.1	Mid-Depth Circulation in the North Atlantic.	00
	01111	Large Scale Drifter Field Experiment	266
	6.1.2	Acoustic Measurements of Ocean Currents	
		by Doppler Profiling	. 269
	6.1.3	Acoustic Tomography	274
	01110	6.1.3.1 Acoustic Measurements of Heat Content	, 1
		across the Mediterranean Sea	277
		6.1.3.2 Acoustic Measurements of Heat Content	, ,
		of the Central Labrador Sea	279
		6.1.3.3 Monitoring the Outflow through	. 277
		the Strait of Gibraltar by Acoustic Tomography	281
6.2	Gas in	the Sea	. 282
	6.2.1	Methane Hydrate Deposits	. 282
	6.2.2	Methane in Shallow Sediments:	
		Acoustic Sea-Floor Classification	. 291
		6.2.2.1 Examples of Acoustic Features of Methane	
		in Shallow Sediments	. 293
		6.2.2.2 Application of the Acoustic Sea Floor	
		Classification System (ASCS) for Shallow Sediments	. 296
	6.2.3	Air Intrusion by Breaking Sea Waves	. 299
6.3	Subma	arine Fauna	. 306
	6.3.1	Estimation of Fish Stocks by Echosounding	. 307
		6.3.1.1 Monitoring of Fish Stocks,	
		South Eastern North Sea	. 309
		6.3.1.2 Monitoring of Fish Stocks, Baltic Sea	. 310
		6.3.1.3 Monitoring of Fish Stocks in Shallow Waters,	
		Western Baltic Sea	. 311
		6.3.1.4 Monitoring of Fish Stocks, North Atlantic,	
		Irminger Basin	. 312
	6.3.2	Finding Food in the Deep Sea	. 314
	6.3.3	Voice Sonograms of Marine Mammals	. 316
	6.3.4	Example of Marine Flora Sound Imaging	. 322
7	Man-m	ade Matter	. 325
7.1	Survei	llance and Maintenance of Coastal Sea Lanes	. 326
	7.1.1	Surveillance of Sea Lanes and Fairways	. 326
	7.1.2	Estuary Surveillance	. 335
		•	

		7.1.2.1 Floor Features of the Elbe Estuary	. 336
		7.1.2.2 Relief Changes of the Sea Floor	
		in the Bight of Meldorf	. 339
	7.1.3	Harbor Surveillance and Maintenance	. 340
		7.1.3.1 Hydroacoustic Spotlights of the Port of Hamburg	. 340
		7.1.3.2 Inspection of Canale Grande, Venice	. 343
		7.1.3.3 The Dock of London: A Dumping Area of Scrap Iron	. 344
		7.1.3.4 Seabed Surveys in the Hong Kong Area	. 346
	7.1.4	Survey of Wrecks in Coastal Waters	. 348
		7.1.4.1 Freighter Sunk in the Persian Gulf	. 348
		7.1.4.2 Two Shipwrecks on Plain Sandy Bottom	
		off Cinque Terre, Northern Italy	. 349
		7.1.4.3 Intact Wreck of a Sailing Ship	. 350
		7.1.4.4 The Wrecks of the German Refugee Ships	
		Wilhelm Gustloff, Goya, and General von Steuben,	
		Sunk in the Baltic Sea at the End of WW II	. 351
		7.1.4.5 Wreck of an Aircraft Sunk in a Lake at 50 m Depth	. 355
	7.1.5	Acoustic Search for Buried Objects and Sea Mines	. 355
7.2	Subma	arine Constructions	. 362
	7.2.1	Submarine Cables	. 362
	7.2.2	Submarine Pipelines	. 366
	7.2.3	Protection of Shores and Harbors	. 370
	7.2.4	Basement of the Off-Shore Research Platform Nordsee	. 372
7.3	Under	water Archaeology	. 374
	7.3.1	Sunken Roman City Complex	. 374
		7.3.1.1 City of Baia, Italy. Imaging of Urban Architecture	. 374
		7.3.1.2 The Submerged Porto Giulio, Italy.	
		Imaging of Port Architecture	. 378
	7.3.2	Historic Ship Wrecks and Wreck Sites	. 381
	7.3.3	Battleship Archaeology at Scapa Flow.	
	F A A	German War-Ship Wrecks of WWI	. 390
	7.3.4	Submerged Viking Dike Built around AD 740	. 396
7.4	/.3.5	D-Day: Documentation of the Relics	. 397
7.4	Close-	-Up Deep water imagery by Autonomous and	402
	Remot	Deep Water Sound Imaging of Shinymooka Waters of	. 402
	7.4.1	Two US Cargo Engiptions and a Cormon Submaning	
		Suph in the Culf of Movice during MMM II	402
		Sulik in the Guil of Mexico during WW II	. 405
		7.4.1.1 The Shiking of the Passenger Freighter	404
		7.4.1.2 Wreck of the Cargo Exciptor SS Alcoo Duvitor	. 404
		7.4.1.2 Wheck of the Cargo Freighter 55 Alcoa Puthan Sunk in the Calf of Maxico during WW II	405
		7.4.1.3 Wreck of the Only Cerman Submarine	. 405
		Sunk in the Gulf of Mexico in WW II	400
	742	The Ormen Lange Gas Field inside the Storegga Slide Area	. 109
	1.1.4	A Sea-Floor Relief Exploration for Pineline Route Planning	
		Imaging by Surface Vessels and Deep Diving AUV	41 <i>4</i>
		maging of our need tooloo und Deep Diving nov	

	Final Remarks	21
	Literature Index	23
Α	Appendix	43
A.3.1	The Speed of Sound, Determining Quantities 44	43
A.3.2	Sound Refraction in the Sea	43
	A.3.2.1 Snell's Law	43
	A.3.2.2 Sound Refraction and Ducted Propagation 44	44
A.3.3	Sound Attenuation 44	44
	A.3.3.1 Absorption	44
	A.3.4.1 Acoustic Impedance	46
A.3.5	Reverberation/Scattering Strength of the Sea Floor and Sea Volume 44	46
	A.3.5.1 Sea Floor	46
	A.3.5.2 Sea Volume	47
A.3.6	Noise	47
	A.3.6.5 The Spatial Filter	47
	A.3.6.6 The Frequency Filter 44	48
A.3.7	Sonar Equation	48
A.4.5	The Acoustic Doppler Current Profiler (ADCP)	50
	A.4.5.3 Speed Components and Doppler Shift 4	50
	CD Attachment Index	51
	Subject Index	53

\bigcirc

List of Images

lmage 1-1.	M. F. Maury, bathygraphic map of the North Atlantic, Italian edition of 1877	5
lmage 2.1-1.	Shallow area in the Baltic Sea with algae. Laser-bathymetry 8	3
lmage 2.1-2.	Penetration depths of electromagnetic waves and sound waves in the sea 9)
lmage 2.7-1.	Relief of the Eltanin Massif; acoustic multibeam bathymetry	
	and satellite radar altimetry 11	L
lmage 2.9-1.	Sea floor imaging by an hydrodynamic effect. Acoustics and radar 12	2
lmage 2.9-2.	Weak internal waves also influence the sea surface.	
	Acoustic current meter image 12	2
lmage 2.9-3.	Scylla and Charybdis in the Strait of Messina.	
	Large internal wave package and its copy on a radar screen	3
lmage 2.11-1.	Reginald Fessenden 14	ł
lmage 2.11-2.	Alexander Behm 15	5
lmage 2.11-3.	Hugo Lichte	5
lmage 2.11-4.	Fessenden Oscillator	5
Image 2.11-5.	The Meteor crossings of the South Atlantic of 1925–1927 17	7
Image 2.11-6.	The depth contours of the Meteor Expedition of 1925–1927 17	7
lmage 2.11-7.	The depth chart derived from the Meteor data	3
Image 3.2.2-1.	Scheme of the Sofar-Channel sound speed profile	
-	with corresponding undulating sound rays	ł
Image 3.2.2-2.	The global Sofar-Channel: the depth of the channel axis	5
Image 3.2.2-3.	The global Sofar-Channel: the speed of sound at the channel axis 26	5
Image 3.2.2-4.	Acoustic surveillance of the Comprehensive Test-Ban Treaty (CTBT)	
-	of the United Nations of nuclear weapons; global network	
	of seismic- and hydroacoustic monitoring stations	7
Image 3.6.3-1.	Underwater noise by raindrop impact. Laboratory experiment 34	ł
Image 3.6.8-1.	Sonogram of a submarine earthquake	5
Image 3.6.8-2.	Sonogram of a submarine volcano eruption	5
Image 3.6.8-3.	Sonogram of a submarine nuclear test	7
Image 4.2.8-1.	Multibeam echosounder transducer head	3
Image 4.3.1-1.	Scheme of sound irradiation by a hull mounted	
5	sidescan echosounder)
Image 4.3.3-1.	Example of a tow fish with the pair of sidescan echosounder	
	transducers)
Image 4.3.5-1.	Scheme of focusing)
Image 4.3.5-2.	Effect of focusing; sidescan image of sand ripples	L
Image 4.5.2-1.	Schematic depiction of an acoustic Doppler current profiler (ADCP) . 57	7

Image 5.1.1.1-1.	The Globe, Atlantic Ocean	69
Image 5.1.1.2-1.	The Globe, Pacific Central	71
Image 5.1.1.3-1.	The Globe, Pacific Australia	73
Image 5.1.1.4-1.	The Globe, Indian Ocean	75
Image 5.1.1.5-1.	The Globe, Arctic Ocean	77
Image 5.1.1.6-1.	The Globe, Antarctica	79
Image 5.1.2.1-1.	Schematic map of the Hawaiian Chain and the Emperor Chain	
	with Daikakuji at the bend	80
Image 5.1.2.1-2.	Altimetric relief of the seamount chain bend around Daikakuji	80
Image 5.1.2.1-3.	The Daikakuji Seamount. Multibeam relief image	81
Image 5.1.2.2-1.	The Eltanin Massif. Multi beam image and derived from satellite	
	altimetry/gravity anomaly	82
Image 5.1.2.2-2.	The central massif cut out of the Eltanin. Multibeam image	
	and altimetric counterpart	83
Image 5.1.2.3-1.	High resolution multibeam echo sounding from a surface vessel	84
Image 5.2-1.	Schematic world map of the plates and their margins	86
Image 5.2.1-1a,b.	Color coded bathymetry and elevation map along 600 km	
	of the Central American Trench along Costa Rica and Nicaragua.	
	Multibeam image	90
Image 5.2.1-2.	Perspective view of the bathymetry offshore from Central Costa Rica.	
	Multibeam image	91
Image 5.2.1-3.	Area of Image 5.2.1-2. Seismic profiles mounted	
	on the perspective relief	93
Image 5.2.1-4.	Perspective view of the sea-floor morphology offshore	
-	from central Chile. Multibeam image	95
lmage 5.2.1-4a.	Same as Image 5.2.1-4, but as slant view looking north.	
	Multibeam image	96
Image 5.2.1-4b.	Bathymetric and altimetric comparison of features.	
	Relief image derived from satellite altimetry	97
Image 5.2.1-4c.	Bathymetry of the Southern Chilean Margin. Multibeam image	99
Image 5.2.1-4d.	Oceanic Nazca Plate Margin. Multibeam image	99
Image 5.2.1-4e.	Chilean Margin with the Mocha Fracture Zone. Multibeam image 10	00
Image 5.2.1-4f.	Chilean continental slope and trench horizon.	0.1
Inc	Close up multibeam image	01
Image 5.2.1-5.	Perspective view of the sea-floor morphology offshore a segment	~ ~
Inc	of the Alaska continental slope. Multibeam image	03
Image 5.2.1-6.	Perspective view with a close-up of the central area of image 5.2.1-5	04
image 5.2.2. I-1.	overview of the Philippine Plate. Image derived from the combined	00
Imaga 5 2 2 2 1	Challenger Deep looking downward at 25°	00
iiiiaye 3.2.2.2 ⁻ 1.	Multibeem relief image	٥٥
Imago 5 2 2 2 2	Same as Image 5.2.2.2.1 but looking downwards at 40°	09
Image 5.2.2.2-2.	Same as Image 5.2.2.2-1, but looking downwards at 40°	10
Image 5.2.2.2 5.	Ground track of the research vessel RV Kairei during	10
muye 3.2.2.2-7.	the Kaiko survey along the Mariana Trench	10
Image 5,2.2.3-1	The trench area as a Fledermaus visualization ETOPO2 data	10
Image 5.2.2.4-1	The Java Trench, ETOPO2 data	12
Image 5.2.2.4-2	The area of the Giant Tsunami of December 2004 ETOPO2 data	14
Image 5.2.2.5-1	The Macquarie Ridge and Hiort Trench Overview of the relief	
	various data sources	15
Image 5.2.2.5-2.	The Hiort Trench and Ridge, Multibeam image	16
Image 5.2.3.1-1.	Northern segment with part of the Oceanographer Transform Fault.	2
	3D-multi-beam, shaded relief image	18
	. 0	

Image 5.2.3.1-2.	Same segment as of Image 5.2.3.1-1 but depiction of	
	echo strength of the sea floor	119
Image 5.2.3.1-3.	Southern segment with part of the Hayes Ridge Transform	
	Intersection. 3D-multibeam, shaded relief image	120
Image 5.2.3.1-4.	Same segment as of Image 5.2.3.1-3 but depiction of	
	echo strength of the sea floor	120
Image 5.2.3.2-1.	Cut out north of the Ascension Fracture Zone. Multibeam Image	121
Image 5.2.3.3-1.	The central valley of the Mid-Atlantic Ridge at 29° N.	
	3D-multibeam image draped with the sidescan image	122
Image 5.2.3.3-2.	Close ups of the southern volcano	123
Image 5.2.4.1-1.	A section of the South Pacific Rise near 9 degrees south.	
	Multibeam image	124
Image 5.2.4.2-1.	This southern EPR segment is about 250 km long	125
Image 5.2.4.2-2.	This section is a 3D-close up of the southern part	
	of the preceding image	126
Image 5.2.4.2-3.	The northern segment of the EPR	126
Image 5.2.4.2-4.	A close up of the preceding image	127
Image 5.2.4.3-1, 1a.	Section of the locked fault and close up.	
	Overlay of the bathymetric and altimetric relief	129
Image 5.2.5-1.	Cut out of the strike slip fault margin, Los Angeles area	
	off California. 3D-multibeam sound image	130
Image 5.2.6.1-1.	Ampère Seamount, Horseshoe Seamount Chain off Gibraltar.	
-	Multibeam echosounder image in red-green anaglyphic	
	stereo-depiction	131
Image 5.2.6.1-2.	Ampère Seamount. Multibeam echosounder image	
	in color coded 3D-depiction	132
Image 5.2.6.2-1.	Demonstration of coverage and resolution	
	by a single multibeam run	133
Image 5.2.6.3-1.	View of the volcano area with Stromboli on the left.	
	Multibeam image	134
Image 5.2.6.3-2.	View over the lower part of the volcano flank. Multibeam image	134
Image 5.2.6.3-3.	Gas ascending in the Eolian Volcanic Arc. Multibeam image	134
Image 5.2.6.3-4.	Lava on the sea floor near the island of Panarea. Multibeam image	135
Image 5.2.6.3-5.	Rock impact on the sea floor near the island of Panarea.	
	Multibeam image	136
Image 5.2.6.3-6.	Plume of steam from a lava clod impact near the island of Panarea.	
-	Photograph	136
Image 5.2.7-1.	Cut-out of the field of the Tasmanian Seamounts. Multibeam image .	137
Image 5.2.8-1.	Kahoolawe area; coral reef area between Hawaiian Islands.	
-	Multibeam image	138
Image 5.2.8-2.	Close-up cut-out of the coral reef between three Hawaiian Islands,	
	Kahoo-lawe area. Multibeam image	139
Image 5.2.9-1.	Overview of Taiwan and its offshore region. Multibeam image	140
Image 5.2.9-2.	In combination with Image 5.2.9-1: The Penghu Canyon	
	in the south-west. Multibeam image	142
Image 5.2.9-3.	The canyon system east of Taiwan. Multibeam image	143
Image 5.2.9-4.	A ridge enters a subduction trench. Multibeam image	144
Image 5.3.1.1-1.	Overview of the northern Storegga Slide escarpment.	
-	Sidescan mosaic image	148
Image 5.3.1.1-2.	Close-up of the northern Storegga Slide escarpment.	
	Sidescan mosaic image	149
Image 5.3.1.1-3.	Close-up of the northern Storegga Slide escarpment.	
	Western cut-out of the sidescan mosaic image	150

Image 5.3.1.2-1.	Overview of Trænadjupet Slide and Storegga Slide.	
	Composite relief image	151
Image 5.3.1.2-2.	Close up of the southern Trænadjupet Slide escarpment.	
-	Mid range sidescan mosaic image	152
Image 5.3.1.3-1.	Slant view from northwest onto the western Canary Islands.	
-	Multibeam sound image	153
Image 5.3.1.3-2.	The El Golfo-landslide of El Hierro, Multibeam image	154
Image 5.3.1.3-3.	North flank of Tenerife	154
Image 5.3.2.1-1.	Celtic deep-sea Fan relief. Multibeam image	155
Image 5.3.2.1-2.	Celtic Deep-sea Fan. Backscatter image	156
Image 5.3.2.2-1.	Glacigenic debris flow surface morphology. Sidescan mosaic image	157
Image 5.3.2.2-2.	Non-glacigenic debris flow, inner morphology.	
····· ·	Horizontal slice through a 3D-seismic record	158
Image 5.3.2.3-1.	Trough Mouth Fan (TMF) and debris flows. High resolution	
	seismic cross sections	161
Image 5.3.2.4-1.	The outer relief of the feeder canyon Multibeam image	162
Image 5.3.2.4-2.	Sediment structure along the axis of the canyon.	102
	Parametric sediment echosounder image	163
Image 5.3.2.4-3.	The transport channel in the middle Bengal Fan. Multibeam image	164
Image 5.3.2.4-4.	Sediment structure of the Bengal Fan across the transport channel.	
J	High resolution parametric sediment echosounder image	165
Image 5.3.2.5-1.	Bifurcation of sediment strata. Parametric echosounder image	166
Image 5.3.2.5-2.	Submarine channels. Parametric echosounder image	167
Image 5.3.3-1.	Boundary between sediment bed-forms. Sidescan image	168
Image 5.3.3-1a.	Example of several closely adjacent bedforms. Sidescan image	168
Image 5.3.3-2.	Sand dunes, superimposed by small scale ripples. Sidescan image	168
Image 5.3.3-3.	Large sand dunes superimposed by ripple fields. Sidescan image	169
Image 5.3.3-4.	Comet marks behind stones at high speed of flow. Sidescan image	169
Image 5.3.3-5.	Sickle-shaped dunes (barchans). Sidescan image	170
Image 5.3.3-6.	Sand ribbons. Sidescan image	170
Image 5.3.3-7.	Erosional furrows. Sidescan image	171
Image 5.3.3-8.	Erosional furrows. Sidescan image	171
Image 5.3.4.1-1.	Ensemble of carbonate mounds, Porcupine Bight.	
5	High resolution multibeam image	172
Image 5.3.4.1-2.	Cross section of carbonate mounds, northern Porcupine Bight.	
2	High resolution seismic image	173
Image 5.3.4.1-3.	Cross section of buried carbonate mounds,	
2	northern Porcupine Bight. High resolution seismic image	173
Image 5.3.4.1-4.	Internal relief of buried carbonate mounds,	
2	northern Porcupine Bight. High resolution 3D-seismic image	174
Image 5.3.4.1-5.	Giant carbonate mounds along the Rockall Trough margin.	
-	Seismic section	175
Image 5.3.4.2-1.	Deep cold water corals off Norway. Sidescan sonar image	176
Image 5.3.4.2-2.	Deep cold water corals of the main reef B, Sula Reef Complex,	
-	off Norway. Sidescan sonar image	177
Image 5.3.5.1-1.	The Al Idrisi mud volcano. Multibeam image	179
Image 5.3.5.1-2.	Interfingering of the mud volcano outflows. High resolution	
-	seismic profile	180
Image 5.3.5.1-3.	The Håkon Mosby Mud Volcano (HMMV). Low resolution	
-	sidescan images of the morphology	181
Image 5.3.5.1-3a.	The Håkon Mosby Mud Volcano HMMV. Mid range sidescan image .	181
Image 5.3.5.1-4.	The Håkon Mosby Mud Volcano HMMV. High resolution	
	seismic profile	182