Progress in Botany 67

67 PROGRESS IN BOTANY

Genetics Physiology Systematics Ecology

Edited by

K. Esser, Bochum U. Lüttge, Darmstadt W. Beyschlag, Bielefeld J. Murata, Tokyo

With 57 Figures

ISSN 0340-4773 ISBN 3-540-27997-0 Springer-Verlag Berlin Heidelberg New York ISBN 03978-3-540-27997-6

The Library of Congress Card Number 33-15850

This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Sciences+Business Media springeronline.com

© Springer-Verlag Berlin Heidelberg 2006 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Design & Production, Heidelberg Typesetting: SPI Publisher Services 31/3150 - 5 4 3 2 1 0 - Printed on acid-free paper

Contents

Review

Fas Dit	cination with Chloroplasts and Chromosome Pairing	3
1	Biosynthesis of the photosynthetic membrane	2
r	Chromosome pairing mechanism of crossing over	5
L	and ganama analysis	า
3	Derspectives	23
5	An Apology and Special Thanks	у Л
Dof		+ 1
Rel		Ŧ

Genetics

Rec Cyt res Ret	comb toplas torat nate H	ination: smic male sterility and fertility ion in higher plants
1	Intro	oduction
2	Mecl	hanism of cytoplasmic male sterility
	2.1	Open reading frames identified as cause of male sterility 32
	2.2	CMS-specific proteins and possible functions
3	Mecl	hanism of fertility restoration
	3.1	Genetics and functions of fertility restorer genes
	3.2	PPR genes function as restorer genes
4	Cone	clusions
Ref	ferenc	ces

From genomics to functional markers in maize53Chun Shi, Gerhard Wenzel, Ursula Frei, Thomas Lübberstedt53Abbreviations531 Introduction542 Structural genomics in maize and rice553 Comparative genomics: synteny between maize and rice594 Functional genomics in maize615 Genomics and biodiversity: functional markers in maize656 Conclusions and outlook69References70Extranuclear inheritance:Gene transfer out of plastids75Ralph Bock11 Introduction: the evolutionary significance of gene transfer75
Chun Shi, Gerhard Wenzel, Ursula Frei, Thomas LübberstedtAbbreviationsAbbreviations1Introduction2Structural genomics in maize and rice3Comparative genomics: synteny between maize and rice594Functional genomics in maize56Conclusions and biodiversity: functional markers in maize6156Conclusions and outlook70Extranuclear inheritance:Gene transfer out of plastids75Ralph Bock11Introduction: the evolutionary significance of gene transfer
Abbreviations531Introduction542Structural genomics in maize and rice553Comparative genomics: synteny between maize and rice594Functional genomics in maize615Genomics and biodiversity: functional markers in maize656Conclusions and outlook69References70Extranuclear inheritance:Gene transfer out of plastids75Ralph Bock1Introduction: the evolutionary significance of gene transfer75
1Introduction542Structural genomics in maize and rice553Comparative genomics: synteny between maize and rice594Functional genomics in maize615Genomics and biodiversity: functional markers in maize656Conclusions and outlook69References70Extranuclear inheritance:Gene transfer out of plastids75Ralph Bock1Introduction: the evolutionary significance of gene transfer75
2Structural genomics in maize and rice553Comparative genomics: synteny between maize and rice594Functional genomics in maize615Genomics and biodiversity: functional markers in maize656Conclusions and outlook69References70Extranuclear inheritance:Gene transfer out of plastids75Ralph Bock1Introduction: the evolutionary significance of gene transfer75
3 Comparative genomics: synteny between maize and rice 59 4 Functional genomics in maize 61 5 Genomics and biodiversity: functional markers in maize 65 6 Conclusions and outlook 69 References 70 Extranuclear inheritance: 75 Gene transfer out of plastids 75 Ralph Bock 1 1 Introduction: the evolutionary significance of gene transfer 75
4 Functional genomics in maize 61 5 Genomics and biodiversity: functional markers in maize 65 6 Conclusions and outlook 69 References 70 Extranuclear inheritance: 70 Gene transfer out of plastids 75 Ralph Bock 75 1 Introduction: the evolutionary significance of gene transfer 75
5 Genomics and biodiversity: functional markers in maize 65 6 Conclusions and outlook 69 References 70 Extranuclear inheritance: 70 Gene transfer out of plastids 75 Ralph Bock 75 1 Introduction: the evolutionary significance of gene transfer 75
6 Conclusions and outlook 69 References 70 Extranuclear inheritance: Gene transfer out of plastids Gene transfer out of plastids 75 Ralph Bock 1 1 Introduction: the evolutionary significance of gene transfer
References 70 Extranuclear inheritance: Gene transfer out of plastids Gene transfer out of plastids 75 Ralph Bock 1 Introduction: the evolutionary significance of gene transfer 75
Extranuclear inheritance: Gene transfer out of plastids 75 Ralph Bock 1 Introduction: the evolutionary significance of gene transfer
1 Introduction: the evolutionary significance of gene transfer 75
7 8 8
2 Gene transfer from the plastid to the nuclear genome
2.1 Functional gene transfer from the plastid
to the nuclear genome
2.2 Non-functional gene transfer from the plastid to the
nuclear genome
3 Gene transfer from the plastid to the mitochondrial genome 80
3.1 Non-functional gene transfer from the plastid to the
mitochondrial genome
3.2 Functional gene transfer from the plastid to the
mitochondrial genome
4 Gene transfer from the mitochondrial
to the nuclear genome
5 Gene transfer from the nuclear to organellar genomes
6 Experimental approaches to investigate gene
transfer to the nucleus
7 Mechanisms of gene transfer from the plastid
to the nucleus
8 Implications for plastid biotechnology

Мо	lecul	ar cell l	biology:
Epi	gene	tic gene	e silencing in plants 101
Roi	man A	4. Volko	ov, Nataliya Y. Komarova,
Ulr	ike Z	entgraf	, Vera Hemleben
1	Intro	duction	n 101
2	Mole	cular n	nechanisms of gene silencing 107
2	2 1	Methy	lation of cytosine and DNA methyltransferases 102
	2.1	211	Cytosine methylation 102
		2.1.1	DNA methyltransferases 103
	22	L.1.2 Histor	pe modifications
	2.2	2 2 1	Histories as targets for post-translational
		2.2.1	modifications 105
		222	Acetulation of histories
		2.2.2	Methylation of histories 108
	23	2.2.3 Cross-	talk between DNA methylation and modifications
	2.5	of hist	
	24	Chron	patin remodeling 110
	2.4		ilencing 113
3	2.5 Cellu	ilar pro	cesses regulated via gene silencing/
5	chrou	matin r	remodeling 117
	3 1	Contro	a) of developmental processes 117
	3.2	Ribosc	and DNA transcriptional regulation
	5.2	and ni	icleolar dominance 119
	33	Silenci	ing of transposons
4	Cond	lusion	and perspectives 123
т Ref	erenc	~~c	123 and perspectives
ICI	cicite		
Gei	netics	s of phy	ztonathology:
Sec	onda	rv met	abolites as virulence determinants
off	unga	l plant	nathogens
Eck	chard	Thines	, Jesús Aguirre, Andrew J. Foster, Holger B. Deising
1	Intro	duction	n
2	Seco	ndary r	netabolism and its biochemical precursors
3	Fung	al seco:	ndary metabolites as phytotoxins
	and v	virulen	ce determinants
	3.1	Polyke	tides
		3.1.1	Cercosporin
		3.1.2	Zinniol144
		3.1.3	Pyriculol and pyriculariol144
		3.1.4	T-toxin145
		3.1.5	Non-toxic polyketides essential for pathogenicity 145

	3.2	Isopre	noids and terpenoids	
		3.2.1	Trichothecenes	147
		3.2.2	Ophiobolin A	148
		3.2.3	Colletotrichin	149
		3.2.4.	Fusicoccin	149
	3.3	Aroma	atic compounds and peptides	150
		3.3.1	Victorin	150
		3.3.2	HC-toxin	151
		3.3.3	Tentoxin	151
		3.3.4	Fusaric acid	152
4	Regu	lation o	of secondary metabolism during	
	path	ogenic	development	152
5	Cone	cluding	remarks	154
Re	ferenc	ces		155
Pla	nt Br	reeding		
M	ADS v	vays of	memorizing winter: vernalization	
in	weed	and wh	neat	162
Gü	nter 7	Гheißer	1	
Ab	brevi	ations		162
1	Intro	duction	n	102
2	Vern	alizatio	n in Arahidapsis	164
2	2 1	The m	ni ni muuuopsis	164
	2.1	The ce	entral role of FIC	165
	2.2	Comp	lex regulation of FLC expression	167
	2.5	Role o	f other FLC-like genes	168
3	Vern	alizatio	n in winter varieties of wheat	169
4	Fvol	ution of	f the vernalization requirement	170
5	Futu	re pros	nects	173
6	Con	-luding	remarks	174
Re	ferenc	res		174
I.C.				••••
Bio	otechi	nology:	:	
En	ginee	red ma	le sterility in plant hybrid breeding	178
Ke	rstin S	Stockm	ever and Frank Kempken	
1.0		-	eyer and Frank Reinpich	
1	Intro	duction	n	178
2	Natu	ral mal	le-sterility systems in plants	179
	2.1	Cytop	lasmic male sterility (CMS)	179
	2.2	Nuclea	ar male sterility	180

3	Metl	hods of producing male-sterile plants 181		
	3.1	Selective destruction of tissues important for the		
		production of functional pollen		
	3.2	Changing of levels of metabolites needed for the		
		production of viable pollen		
4	Strategies for the multiplication of male-sterile lines			
	4.1	Herbicide application for selection of male-sterile plants 183		
	4.2	Reversible male sterility		
	4.3	Use of maintainer lines		
5	Con	clusion		
Ref	feren	ces		

Physiology

Me Ulı	mbra ike H	n e turnover in plants	. 191
1	Intro	duction	. 191
2	Mem	brane turnover during polarized cell growth	. 191
	2.1	Regulation of exocytosis	. 192
	2.2	Endocytosis during tip growth	. 192
	2.3	Coupling between exo- and endocytosis	. 194
3	Guar	d cell functioning and tension modulated	
	exo-	and endocytosis	. 195
	3.1	Exo- and endocytosis during osmotically driven surface	
		area changes	. 196
	3.2	Surface area regulation and membrane tension	. 197
	3.3	Role of tension modulated exo- and endocytosis	. 198
4	Cons	stitutive exo- and endocytosis	. 200
	4.1	Constitutive turnover of K ⁺ channels	. 200
	4.2	Cycling of PIN proteins	. 200
Ref	ferenc	res	. 202
Bes	sides	water:	
Fu	nctio	ns of plant membrane intrinsic proteins	
ano Ral	d aqu f Kalo	aporins denhoff	. 206
1	Aqua	aporins in plants	. 206
2	Plant	aquaporins and water transport	. 207

	2.1	Chara	cterization of aquaporin function in	207
		Xenop	<i>us</i> oocytes	207
	2.2	Other	single cell systems	
2	2.3	Plant	protoplasts for functional analysis of aquaporins	209
3	Effe	cts of a	quaporin water conductivity in plants	209
4	Perr	neabilit	y to small non-ionic molecules	210
	4.1	Glycei	rol	210
	4.2	CO_2 .	•••••••••••••••••••••••••••••••••••••••	211
	4.3	NH ₃		214
	4.4	Boron	۱	215
Rei	feren	ces		215
Ne	w ins	sight in	to auxin perception, signal	210
			Deniel Cohenels Michael Bättern	
Die	iy Ch mka (ristian, Stoffono	Damei Schenck, Michael Douger,	
DIa	шка	sterrens	, martwig Luthen	
1	Gro	wth stir	nulation: the classical effect of auxin	219
2	Aux	in recep	ptors	219
	2.1	Auxin	binding protein 1 (ABP1)	220
		2.1.1	3-D structure of ABP1	221
		2.1.2	ABP1 mutants	223
		2.1.3	Indirect evidence for ABP1 as a growth relevant	
			receptor at the single cell level	224
	2.2	Other	receptor candidates	225
		2.2.1	ABP57	225
		2.2.2	Receptor-like kinases (RLKs)—novel players	
			in auxin perception?	226
3	Aux	in-indu	ced gene expression	226
	3.1	Transo	criptional regulators	227
	3.2	Protei	n degradation—an essential step in auxin signalling.	229
	3.3	How o	does auxin regulate gene expression?	232
4	Aux	in-upre	gulated genes and their functions	233
-	4.1	Plasm	a membrane ATPase	. 233
	4.2	K ⁺ -inv	ward channels	233
	4.3	Other	s	234
5	Pola	r auxin	transport	235
5	5 1	How	loes auxin efflux work?	236
	5.1	511	The PINs	250
		5.1.1 5.1.2	ABC transporters as efflux carrier candidates	250 720
	5 2	J.1.2 How	has auxin influx work?	200 220
	5.2 5.2		transport depends on V ⁺	238
	5.5	Auxin		

Ret	Prospects	0 0
Ne	w insights into abiotic stress signalling in plants	8
Ma	rgarete Baier, Andrea Kandlbinder, Karl-Josef Dietz, Dortje Golldack	
1	Light and elevated temperature24	8
	1.1 Saturating light intensities and moderate excess light24	9
	1.2 Excess high light 25	0
2	Perception, signalling and transcriptional regulation	
	in response to UV-B and ozone	3
	2.1 Ozone and UV-B induced gene expression 25	5
3	Signalling and transcriptional regulation in response	
	to drought, cold, and salt stress	7
	3.1 bZIP transcription factors responsive to abiotic	
	stress treatment	9
	3.2 Stress-induced regulation of NAC transcription factors	
	and zinc finger proteins	1
4	Heavy metal toxicity and tolerance	2
5	Perspectives	6
Ref	ferences	6
C .		
Ge	netically transformed root cultures – generation,	5
pro Inr	a N Kuzovkina and Bernd Schneider	5
1		_
1	Introduction	5
1 2	Introduction	5 6 7
1 2 3	Introduction 27 Some genetic and historical remarks 27 Transformation process and cultivation conditions 27 Normhole sized and abaviale sized energy 28	5 6 7
1 2 3 4	Introduction 27 Some genetic and historical remarks 27 Transformation process and cultivation conditions 27 Morphological and physiological aspects of hairy root cultures 28 Secondary matchedites from hairy root cultures 28	5 6 7 0
1 2 3 4 5	Introduction 27 Some genetic and historical remarks 27 Transformation process and cultivation conditions 27 Morphological and physiological aspects of hairy root cultures 28 Secondary metabolites from hairy root cultures 28 51 Secondary metabolites from hairy root cultures 28	5 6 7 0 2
1 2 3 4 5	Introduction 27 Some genetic and historical remarks 27 Transformation process and cultivation conditions 27 Morphological and physiological aspects of hairy root cultures 28 Secondary metabolites from hairy root cultures 28 5.1 Secondary products extracted from hairy root tissue 28 5.2 Secondary products in hairy root or ultures 28	5 6 7 2 2
1 2 3 4 5	Introduction 27 Some genetic and historical remarks 27 Transformation process and cultivation conditions 27 Morphological and physiological aspects of hairy root cultures 28 Secondary metabolites from hairy root cultures 28 5.1 Secondary products extracted from hairy root tissue 28 5.2 Secondary products in hairy root exudates 28 Lea of hairy root cultures in hiergenthatic and metabolic studies 28	56702 68
1 2 3 4 5	Introduction 27 Some genetic and historical remarks 27 Transformation process and cultivation conditions 27 Morphological and physiological aspects of hairy root cultures 28 Secondary metabolites from hairy root cultures 28 5.1 Secondary products extracted from hairy root tissue 28 5.2 Secondary products in hairy root exudates 28 Use of hairy root cultures in biosynthetic and metabolic studies 28 28 28 28 29 28 28 20 28 28 20 28 28 20 28 28 20 28 28 21 28 28 22 28 28 23 24 28 24 28 28 25 28 28 26 28 28 27 28 28 28 29 28 29 29 28 29 29 28 29 29	56702268
1 2 3 4 5 6	Introduction27Some genetic and historical remarks27Transformation process and cultivation conditions27Morphological and physiological aspects of hairy root cultures28Secondary metabolites from hairy root cultures285.1Secondary products extracted from hairy root tissue285.2Secondary products in hairy root exudates28Use of hairy root cultures in biosynthetic and metabolic studies286.1Biosynthesis282Secondary products in biosynthetic and metabolic studies28	5670226880
1 2 3 4 5 6	Introduction27Some genetic and historical remarks27Transformation process and cultivation conditions27Morphological and physiological aspects of hairy root cultures28Secondary metabolites from hairy root cultures285.1Secondary products extracted from hairy root tissue285.2Secondary products in hairy root exudates28Use of hairy root cultures in biosynthetic and metabolic studies286.1Biosynthesis286.2Biotransformation29Hairy roots for biotechnological production of29	5670226880
1 2 3 4 5 6 7	Introduction27Some genetic and historical remarks27Transformation process and cultivation conditions27Morphological and physiological aspects of hairy root cultures28Secondary metabolites from hairy root cultures285.1Secondary products extracted from hairy root tissue285.2Secondary products in hairy root exudates28Use of hairy root cultures in biosynthetic and metabolic studies286.1Biosynthesis286.2Biotransformation29Hairy roots for biotechnological production of29	5670226880
1 2 3 4 5 6 7	Introduction27Some genetic and historical remarks27Transformation process and cultivation conditions27Morphological and physiological aspects of hairy root cultures28Secondary metabolites from hairy root cultures285.1Secondary products extracted from hairy root tissue285.2Secondary products in hairy root exudates28Use of hairy root cultures in biosynthetic and metabolic studies286.1Biosynthesis286.2Biotransformation29Hairy roots for biotechnological production of297.1"Wild-type" hairy roots29	5670226880 11
1 2 3 4 5 6 7	Introduction27Some genetic and historical remarks27Transformation process and cultivation conditions27Morphological and physiological aspects of hairy root cultures28Secondary metabolites from hairy root cultures285.1Secondary products extracted from hairy root tissue285.2Secondary products in hairy root exudates28Use of hairy root cultures in biosynthetic and metabolic studies286.1Biosynthesis286.2Biotransformation29Hairy roots for biotechnological production of297.1"Wild-type" hairy roots297.2Conventional strategies to affect production of	5670226880 11
1 2 3 4 5 6 7	Introduction27Some genetic and historical remarks27Transformation process and cultivation conditions27Morphological and physiological aspects of hairy root cultures28Secondary metabolites from hairy root cultures285.1Secondary products extracted from hairy root tissue285.2Secondary products in hairy root exudates28Use of hairy root cultures in biosynthetic and metabolic studies286.1Biosynthesis286.2Biotransformation29Hairy roots for biotechnological production of297.1"Wild-type" hairy roots297.2Conventional strategies to affect production of29secondary metabolites297.2Conventional strategies to affect production of29	5670226880 11 2
1 2 3 4 5 6 7	Introduction 27 Some genetic and historical remarks 27 Transformation process and cultivation conditions 27 Morphological and physiological aspects of hairy root cultures 28 Secondary metabolites from hairy root cultures 28 5.1 Secondary products extracted from hairy root tissue 28 5.2 Secondary products in hairy root exudates 28 6.1 Biosynthesis 28 6.2 Biotransformation 29 Hairy roots for biotechnological production of 29 7.1 "Wild-type" hairy roots 29 7.2 Conventional strategies to affect production of 29 7.3 Genetic engineering of secondary metabolite biosynthesis 29	5670226880 11 25

0	University for constitution and cloud propagation 20	7
0		1/ >-
	8.1 Experimental systems) /
	8.2 Plant regeneration and clonal propagation	98
9	Proteins from hairy root cultures	00
10	Phytoremediation and environmental detoxification)1
11	Conclusions 30)2
Re	erences 3(03
I.C.		,,
М	lecular chaperones—holding and folding	15
Ch	ristoph Forreiter	15
OII		
1	Introduction	15
2	Molecular chaperones and other elements of the stress response 31	16
3	How do molecular chaperones work?	17
4	Structure and function of the different chaperone classes	20
	4.1 Hsp70 (DnaK) chaperone machine	20
	4.2 Hsp60 (GroE) chaperone system—the chaperonins	23
	4.3 The Hsp90 (HtpG) chaperone system	26
	4 4 Hsp 100 (Clp) family 3	20
	$4.5 \text{Hep20 (Ibp) family} \qquad \qquad$	21
) I) 4
	4.6 Other proteins with chaperone function	34
5	Résumé	36
Rei	erences	36

Systematics

Recent progress in floristic research in Korea		
ong-Wook Park		
Introduction	345	
Taxonomic diversity and endemism	346	
Floristic affinities	348	
Historical background of floristic research	348	
Herbarium collections	349	
Current status of floristic research	350	
Recent progress: the New Flora of Korea Project	353	
Conclusion	353	
ferences	354	
1	cent progress in floristic research in Korea ong-Wook Park Introduction Taxonomic diversity and endemism Floristic affinities Historical background of floristic research Herbarium collections Current status of floristic research Recent progress: the New Flora of Korea Project Conclusion ferences	

Rec Jins	cent p shuan	rogress in systematics in China
1	Intro	duction
2	Basic	information
	2.1	Herbaria
	2.2	Library
	2.3	Collections
	2.4	Research
3	Pub	lications
	3.1	Flora
		3.1.1 Flora Reipublicae Popularis Sinicae (FRPS)
		3.1.2 Flora of China
		3.1.3 Local flora of China
4	Joui	nals
5	Pap	ers, monographs and revisions
	5.1	Paleobotany
	5.2	Ferns
	5.3	Gymnosperms
	5.4	Araliaceae
	5.5	Asteraceae
	5.6	Brassicaceae
	5.7	Burmanniaceae
	5.8	Celastraceae
	5.9	Cornaceae
	5.10	Corsiaceae
	5.11	Cyperaceae
	5.12	Euphorbiaceae
	5.13	Gesneriaceae
	5.14	Hamamelidaceae
	5.15	Labiatae
	5.16	Lauraceae
	5.17	Orchidaceae
	5.18	Paeoniaceae
	5.19	Phrymataceae
	5.20	Poaceae
	5.21	Primulaceae
	5.22	Ranunculaceae
	5.23	Rhamnaceae
	5.24	Schisandraceae
	5.25	Scrophulariaceae

	5.26	Styracaceae	371	
	5.27	Umbelliferae/Apiaceae	371	
	5.28	Zingiberaceae	371	
6	Floristic work			
7	Angiosperm system			
8	Higher plants of China			
9	New developments and trends			
10	Conclusion			
References				

Ecology

Str cap Ülo	uctur acity Niin	al determinants of leaf light-harvesting
1	Intro	duction
2	Struc	ctural limitations of leaf light-harvesting efficiency
	2.1	Tissue-Scale Limitations of Light Interception
	2.2	Thickness (I) and Inclination Effects on Light Harvesting 388
	2.3	Light Capture Dependence on the Flatness
		of the Leaf Lamina 390
	2.4	Modification of Light Harvesting by Leaf Size 391
3	How Structure Determines Leaf Photosynthetic Capacity	
	3.1	Photosynthetic Capacity in Relation to Leaf Tissue
		Types and Thickness
	3.2	Does the Efficiency of Intraleaf Diffusion Vary
		for Leaves of Differing Structure? Role of D and M_A
	3.3	Structural Determinants of Leaf Water
		Transport Efficiency 396
	3.4	Leaf Size and Shape Effects on Photosynthesis:
		Only a Matter of Leaf Energy Balance? 398
	3.5	A Further Linkage Between Leaf Size and Amass 400
	3.6	Variation in PNUE due to Leaf Structure
4	Struc	ctural Acclimation of Leaf Photosynthesis
	to Er	wironment
	4.1	Adjustments to Light 402
_	4.2	Modifications due to Varying Moisture Supply404
5	Age-	Dependent Changes in Leaf Photosynthetic Capacity 405
	5.1	Increases in the Functional Activity in Young Leaves:
		Biochemical Versus Structural Limits 405
	5.2	Time-Dependent Deterioration of Leaf Physiological
		Activity in Mature Leaves and During Senescence

6 7 Rei	Outlook: a Network of Coordinated Leaf Traits407Conclusions411ferences412
Ree in g Ecl	cent trends in plant-ecological modelling: Species dynamics grassland systems
1 2	Introduction420Markov and Matrix Models4212.1Markov Models of Vegetation Change4212.2Matrix Models of Population Development423
3 4	SEIB Models
	4.1Coexistence: The Basic Problem4284.2Competition and Coexistence4284.3Seedling Lottery4294.4Plant Performance under Trade-offs4304.5Limits of Analytical Models4324.6Theory and Empirical Work433
5 Ref Atı	Outlook 435 ferences 436 mospheric carbon dioxide enrichment effects
on Ma	ecosystems – experiments and the real world
1 2	Introduction441Experimental Manipulation of Atmospheric CO24432.1The History of CO2 Enrichment Experimentation4432.2FACE Technology4442.3Deviations From the Real World Despite FACE Technology4462.4The Hohenheim Mini-FACE System448
3 Ref	Conclusions453ferences455
Qu Ce and Bu	a ternary Palaeoecology: ntral and South America, Antarctica d the Pacific Ocean Region
1	The Problem of Exactly Dating Palaeoecological Processes

2	Upp	Upper Pleistocene and Holocene Palaeoecology of Central America			
2	Qua	the Suffounding Islands			
5	Qua	the Droblem of the Younger Dryes Equivalent			
	in th	a Southern Hemionhere (163			
4	Sout	h American Upper Quaternary Vegetation History 465			
4	Jinn	ar Quaternamy Palaooscology of Anterestica			
5	Upper Quaternary Palaeoecology of Antarctica				
07	Palaeoecology of the East Asian Monsoon Region				
/	Opp	of the Desification de			
D -	and	of the Pacific Islands			
Re	teren	ces			
Bio	odive	rsity experiments – artificial constructions			
or	heur	istic tools?			
Са	rl Bei	erkuhnlein and Carsten Nesshöver			
1	Intro	oduction			
2	Som	e Philosophical and Basic Aspects of Ecology			
	and	Diversity Research			
3	Нур	otheses and Concepts Addressing Biodiversity			
	and	Ecosystem Functioning			
4	Expe	eriments in Community Ecology and Biodiversity Research 497			
	4.1	The Role and the Value of Experiments			
	4.2	Historical Experiments			
	4.3	Modern Experiments			
5	Adv	ances and Frontiers – Insights into Mechanisms			
	and	Processes			
	5.1	The Biodiversity–Productivity Relationship			
	5.2	Plant Species Diversity, Invasibility			
		and Community Dynamics			
	5.3	Influences of Species Diversity on Element Cycling			
6	Dev	elopments in Methods and Approaches			
	6.1	Functional Types, Traits and Attributes			
	6.2	Individuality. Assembly Rules and			
	0.2	Non-Stochastic Extinction			
	6.3	The Importance of Temporal and Spatial Scales			
	6.4	Separation of External Factors and Intrinsic Factors –			
	0.1	Multi-Site Experiments and the Connection			
		Between Experimental and Observational Studies 518			
7	Out	look 520			
/ Re	feren	οοκ			
10	Let ette	JCO			

Res Ma	sourc rkus	e alloca Lötsche	tion in clonal plants 536 r		
1	Intro	duction	n		
2	Fora	ging Be	haviour		
	2.1	Vertica	l versus Horizontal Growth537		
	2.2	Lateral	l Spread		
	2.3	Branch	ning		
3	Clon	Clonal Integration			
	3.1	Extend	led Support of New Ramets 541		
	3.2	Cost/B	enefit		
	3.3	Divisio	on of Labour		
	3.4	Resour	rce Transport and Sectoriality 545		
		3.4.1	The Model Plants Glechoma hederacea		
			and Trifolium repens		
		3.4.2	Complexity of the Clone		
		3.4.3	Genetic Variation		
4	Impo	ortance	of Storage Pools		
5	Simu	Simulation Models			
6	Conclusions				
Ref	erenc	ces			
Sul	oject	Index.			

List of Editors

Professor Dr.Dr.h.c. mult. K. Esser Lehrstuhl für Allgemeine Botanik, Ruhr Universität Postfach 10 21 48 44780 Bochum, Germany Phone: +49-234-32-22211; Fax: +49-234-32-14211 e-mail: karl.esser@ruhr-uni-bochum.de

Professor Dr. U. Lüttge TU Darmstadt, Institut für Botanik, FB Biologie (10) Schnittspahnstraße 3-5 64287 Darmstadt, Germany

Phone: +49-6151-163200; Fax: +49-6151-164630 e-mail: luettge@bio.tu-darmstadt.de

Professor Dr. W. Beyschlag Fakultät für Biologie Lehrstuhl für Experimentelle Ökologie und Ökosystembiologie Universität Bielefeld, Universitätsstraße 25 33615 Bielefeld, Germany

Phone: +49-521-106-5573; Fax: +49-521-106-6038 e-mail: w.beyschlag@biologie.uni-bielefeld.de

Professor Dr. Jin Murata Botanical Gardens Graduate School of Science University of Tokyo 3-7-1 Hakusan Bunkyo-ku, Tokyo 112-0001 Japan Phone: +81-3-3814-2625; Fax: +81-3-3814-0139 e-mail: murata@ns.bg.s.u-tokyo.ac.jp

Curriculum Vitae

Diter H. von Wettstein, born 20, September 1929, Göttingen, Germany Dep. of Crop and Soil Sciences, Washington State University 267 Johnson Hall, Pullman, WA 99164-6420, USA Tel:+1-509-3353635; Fax:+1-509-3358674; E-mail: <u>diter@wsu.edu</u>

Education:

Tübingen University: Dr. rer. nat.(Ph.D.) 1953; (Biology, Biochemistry.) Stockholm University: Fil.Lic. (Ph.D.) 1953; Genetics Stockholm University: Fil. Dr. (D.Sc.) 1957; Genetics Hanars: Foreign Associate of the National Academy of Sciences US

Honors: Foreign Associate of the National Academy of Sciences USA; Member of the following: Royal Danish Academy of Sciences; Royal Physiographical Society, Lund; European Molecular Biology Organization; Deutsche Akademie der Naturforscher Leopoldina; Royal Swedish Academy of Sciences, Academy of Technical Sciences, Copenhagen, Academia Europaea, Acadeémie Royale des Sciences de Belgique Österreichische Akademie der Wissenschaften, Nordrhein-Westfälische Akademie der Wissenschaften. Honorary Member of the Swedish Seed Association, Svalöf; Awarded the Lillö-Stiftelsens Prize for Genetic Research, Gregor Mendel Medal & Kurt Mothes Gold Medal, Leopoldina, Dr.agro.h.c. Copenhagen.

Professional experience:

1 October 1996 R.A. Nilan Distinguished Professor, Dep. of Crop and Soil Sciences & School of Molecular Biosciences, Washington State University 1972-September 1996 Professor and Head, Department of Physiology, Carlsberg Laboratory, Copenhagen

1975-1988 Director of Carlsberg Plant Breeding

1962-1975 Professor and Head, Institute of Genetics, University of Copenhagen 1966, 1972, 1974 Visiting Professor, University of California, Davis

1969 Visiting Professor, Washington State University

1958 Rockefeller fellow, California Institute of Technology, Pasadena & Carnegie Institution of Washington, Cold Spring Harbor and Stanford

1957 Assistant Professor in Genetics, Stockholm University Has published 332 papers in genetics, plant breeding, developmental physiology, cell biology, plant biochemistry and molecular biology.

Honorary Offices:

Member and Chair, Scientific Advisory Board Friedrich Miescher Institute, Basel, 1980-91; Chair Scientific and Technical Advisory Committee UNDP/World Bank/WHO Programme for Research and Training in Tropical Diseases, 1985-89; Member of Sainsbury Laboratory Council, Norwich, 1987-95; Member Fachbeirat, Max-Planck-Institut für Züchtungsforschung, Köln 1992-1996; Chair Fachbeirat, Institut für Pflanzengenetik & Kulturpflanzenforschung, Gatersleben, 1992-95; Chair International Advisory Board, Graduate School, Experimental Plant Sciences. Wageningen Agricultural University, 1993-95.

Fascination with Chloroplasts and Chromosome Pairing

Diter von Wettstein

During the second half of the twentieth century biological research could be characterized as a period of strong convergence. Genetics, physiology, biochemistry and other sub-disciplines of biology were joined in the common goal of clarifying the molecular processes behind the function of organelles, cells, organs and organisms. The whole chain from the information contained in the genome to the properties and function of an organism was and is analysed with sophisticated methods.

It has been a pleasure and privilege to contribute to these ventures and at the outset I would like to mention and thank my mentors in the different disciplines. They taught me to carry out research and to ask important questions: Erwin Bünning and Adolph Butenandt in Tübingen, Jacob Seiler and Albert Frey-Wyssling in Zürich, Åke Gustafsson in Stockholm, Frank Stahl and Salvador Luria at Cold Spring Harbor, and Paul Stumpf at Davis and Mogens Westergaard in Copenhagen. But the results could likewise not have been achieved without the imaginative and enthusiastic efforts of co-workers, students, postdoctoral fellows and visiting scientists. They include 54 students who completed their master's degree and 65 their PhD, and I will try to review some of their work here. During my time at the Carlsberg Laboratory, the Department of Physiology hosted 115 postdoctoral fellows and visiting scientists; they provided much of the inspiration that guided innovation and progress.

In this review I would like to discuss two areas of my interests:

- 1. Biosynthesis of the photosynthetic membrane and chloroplast biogenesis.
- 2. Chromosome pairing, the mechanism of crossing-over and genome analysis.

1 Biosynthesis of the photosynthetic membrane and chloroplast biogenesis

My interest in the development of chloroplasts and chlorophyll biosynthesis began when I became an assistant to Åke Gustafsson in Stockholm in 1951

and joined the multidisciplinary Swedish Group of Mutation Research he had created and was leading with great success. One of my tasks was to analyse mutation rates, and spectra, in the M₂ generation of barley grains treated with various ionising radiation and chemical mutagens. This was done by a test he had devised in the 1930s and consisted of counting the white, yellow, light-green or tiger-striped lethal seedling mutants emerging from thousands of spikes planted in the greenhouse during the winter season. These tests were done to find the most efficient treatments for inducing mutants suitable for barley breeding programs. Interestingly, now there is hardly a cultivar that does not contain an induced mutant among its ancestors, but at the time it was considered that all induced mutations were detrimental and therefore useless in plant breeding, a view propagated by Herman J. Muller and L. J. Stadler. Due to the tireless efforts of Åke Gustafsson and a few others like Bob Nilan in Pullman it was shown that induced mutations could yield improved cultivars - Muller and Stadler overlooked the fact that the majority of spontaneous mutations were also detrimental, and that mutations are still a major factor in the evolution of genes to organisms. The discussions for and against were not unlike the present discussions concerning the use of transgenic plants in breeding. As history repeats itself, the time will come when transformed cultivars will be as accepted and considered as "traditional" as crop plants containing induced mutations.

Encouraged by the successful efforts of Beadle and Tatum in analysing metabolic pathways by knock-out mutations, it seemed to me that all these hundreds of interesting mutants should be useful for a detailed analysis of the development of chloroplasts and pigment biosynthesis. I thus started to collect representatives of the different types of mutants and to conduct crosses to determine allelic relationships by complementation tests. At that time electron microscopy of thin sections started to reveal the ultrastructure of animal and plant cells. So I took my mutants and spent a few days every week at Arne Tiselius's Biochemistry Institute at Uppsala University, where Håkan Leyon had constructed a microtome and developed embedding procedures, and where I could use the third electron microscope built by Siemens in 1940. It had been acquired by The Svedberg and was installed next to his ultracentrifuges. The mutants turned out to be very useful for characterizing the development of chloroplast structure as presented in a summary (von Wettstein 1959). In higher plants, chloroplasts develop from proplastids in the light or via the etioplast pathway after an initial dark period. The primary thylakoid layers are formed by alignment of vesicles budded from the inner membrane of the plastid envelope. In contrast to the in depth knowledge obtained since then of the organization of the photosynthetic membrane and the import of the protein components into the chloroplast and their targeting to the thylakoids, progress in learning how the lipid bilayer membranes are formed is less apparent (von Wettstein 2001). This may change with the discovery by Kroll et al. (2001) and Westphal et al. (2001) of a function of the vesicle-inducing protein in plastids (VIPP).

In pea chloroplasts the 37-kDa VIPP protein is located both in the vicinity of the chloroplast envelope and the thylakoid membranes and was considered by Li et al. (1994) as a candidate for the transfer of galactolipids from their site of synthesis at the chloroplast envelope to the thylakoids. Daniella Kroll and co-workers (Kroll et al. 2001) studied a recessive Arabidopsis T-DNA insertion mutant with severe disturbances in the photosynthetic electron transport chain and the formation of the thylakoids. The insertion was identified in the gene encoding VIPP and the mutant could be rescued by transformation with the VIPP cDNA. The cause for the disturbed development or maintenance of the thylakoids was the failure of the mutant to bud the vesicles from the inner chloroplast envelope membrane, which transfer lipids from the inner envelope to the thylakoid membranes. In the transformants the process of vesicle budding was re-established and the thylakoid organization normalized. The companion paper by Sabine Westphal and co-workers (2001) identifies VIPP 1 genes in the genomes of Synechocystis, Anabaena, Synechococcus and Nostoc. In these cyanobacteria, the protein is located in the plasma membrane, but its disruption in Synechocystis by insertion mutagenesis with a kanamycin cassette prevents ordered thylakoid formation and light-dependent oxygen evolution.

The photosynthetic membrane in barley and other higher plants converts solar energy into chemical energy, and as we now know, it uses six larger protein complexes for this purpose (Simpson and von Wettstein 1989; von Wettstein et al. 1995) (Fig. 1). They are called the reaction centres of photosystem I and II, the two light harvesting complexes of photosystem I and II, the cytochrome b6/f complex and the chloroplast coupling factor (synthesizing ATP). The polypeptides in these complexes bind and orient chlorophyll and carotenoid molecules and the different metals and molecules which are required for energy channelling and electron transport. Circa one half of the ~57 membrane proteins are encoded by genes in the nucleus and the other half in the chloroplast's own DNA genome. This cooperation between the two genomes in the plant cell also takes place in the assembly of the CO₂-fixing enzyme, Rubisco, that is made up of two, different-sized subunits, of which the larger one is encoded in chloroplast DNA and the smaller one in the nuclear chromosomal DNA. The following results of our research are of special significance.

Fig. 1a, b. Model of the photosynthetic membrane showing the polypeptide components of the major complexes. The site of coding is indicated by shading (chloroplast DNA) or is unshaded (nuclear gene). (Modified from Simpson and von Wettstein 1989)

In cooperation with the Biological Laboratories of Harvard University the nucleotide sequence of the first plant gene, the structural gene for the large subunit of Rubisco, was determined in 1980 (Mc Intosh et al. 1980; von Wettstein 1981). Carsten Poulsen, Anthony Holder, Brian Martin and Ib Svendsen had produced peptide maps of the large subunit of Rubisco of barley and the genus Oenothera and obtained partial amino acid sequences (von Wettstein et al. 1978; Holder 1978; Poulsen et al. 1979). Lawrie Bogorad called me one day in 1977 to say that he had heard that we had amino acid sequences of the large subunit and to ask if I would share them with him, since he wanted to sequence the maize gene and this would be of great help to his project. "Sure," I said, "and I would also like to send you Carsten Poulsen with his Carlsberg fellowship to help with the sequencing." After supplying Carsten with a large supply of liquorice, he and Lee completed the task. Peptide mapping of the large and small Rubisco subunits also led to the identification of the pomato, the first somatic hybrid between potato and tomato produced by Georg Melchers in Tübingen (Melchers et al. 1978; Poulsen et al. 1980; von Wettstein 1983). The most interesting aspect of the analysis of these generic hybrids was the finding that they only retained the tomato or potato chloroplast genome at an equal frequency, but not both. We still do not know how this happens.

Over the years 357 barley mutants with defects in chloroplast development and chlorophyll synthesis have been assigned to 105 gene loci. Together with Albert Kahn, Ole Frederik Nielsen, Simon Gough and Naomi Avivi-Bleiser (von Wettstein et al. 1974; Kahn et al. 1976) structural and regulatory genes of chlorophyll synthesis were identified. Knud Henningsen, John Boynton, David Simpson, Otto Machold, Gunilla Høyer-Hansen, Roberto Bassi, Bob Smillie and Torsten Fester analysed the different categories of the mutants with regard to their ultrastructure, pigment levels, thylakoid polypeptide composition and photosynthetic capacity (Henningsen et al. 1993; Simpson and von Wettstein 1980; Simpson et al. 1985; Smillie et al. 1978).

The mutants were used to localize the macromolecular photosynthesis complexes, as recognized by freeze-fracture particles, to the different domains of the chloroplast membranes (e.g. Simpson et al. 1989; Simpson and von Wettstein 1989). Birger Lindberg Møller analysed the function of the grana and stroma membranes by isolating and purifying these membrane types, by separating the membrane polypeptides and reconstituting them to give photosynthetically active membranes (e.g. Henry et al. 1982; Møller and Høj 1983; Møller 1985). The gene family encoding the light-harvesting proteins of photosystem I was also identified (e.g. Knoetzel et al. 1992). The first transcription map of a chloroplast genome was established for barley (Poulsen 1983) and alternative transcription was demonstrated

for the gene encoding the large subunit of Rubisco. The longer transcript is used by the plant when a large amount of protein is synthesized in the light (Poulsen 1984).

A single molecule of chlorophyll and haem is synthesized from eight molecules of 5-aminolevulinic acid. In 1975 it was shown by isotope labelling that higher plants, in contrast to animals and humans, synthesize this non-protein amino acid from the intact carbon skeleton of glutamate (Beale et al. 1975). Gamini Kannangara, Simon Gough, postdoctoral fellows, students and visiting scientists have elucidated this three-step pathway at the biochemical and molecular level over a period of 19 years (cf. Kannangara et al. 1994; von Wettstein et al. 1995; von Wettstein 2000a, b). This pathway is used by higher plants, algae, cyanobacteria, Escherichia coli (not recognized for over 30 years), as well as a number of other bacteria. Animals and humans, yeast and photosynthetic bacteria form 5-aminolevulinate by condensation of glycin and succinate. Entirely surprising was the discovery that the glutamic acid has to be activated by ligation to a glutamyl tRNA before it can be reduced to glutamate-semialdehyde and thereafter transaminated by an aminomutase to 5-aminolevulinic acid (Schön et al. 1986). It is so far the only known case in which a tRNA participates in the conversion of a low molecular weight compound. In higher plants this tRNA is encoded in chloroplast DNA and also has to serve for the translation of mRNA on chloroplast ribosomes. The three enzymes are encoded in nuclear DNA, and have to be translated on cytosolic ribosomes and imported into the chloroplast.

The importance of the pathway for chlorophyll synthesis is demonstrated by transgenic tobacco plants expressing an antisense gene for the glutamine semialdehyde aminotransferase (Höfgen et al. 1994). The barley enzyme that requires the glutamyl tRNA as substrate was purified and a partial amino acid sequence obtained (Pontoppidan and Kannangara 1994). This work identified the structural gene for this enzyme as the *HemA* gene, already cloned and sequenced in many organisms but not recognized as encoding glutamyl RNA^{Glu} reductase. Finally this interesting enzyme was expressed as a fusion protein in *E. coli* (Vothknecht et al. 1996, 1998). It turned out that haem, a prominent inhibitor of chlorophyll synthesis, binds to the N-terminal extension of the protein that is characteristic for plant enzymes, but absent in bacteria.

In 1994 Lucien Gibson, Ph.D. student with Neil Hunter, University of Sheffield, arrived and brought with him plasmids that contained the *bchH*, *bchD* and *bchI* genes from *Rhodobacter spheroides*. Lucien, Robert Willows and Gamini Kannangara expressed the proteins of these three genes in *E. coli* and demonstrated for the first time that the association of these three pro-

teins *in vitro* inserts the Mg atom into protoporphyrin IX (Gibson et al. 1995; Willows et al. 1996). Reconstitution of Mg chelatase activity required only ATP, Mg^{2+} and protoporphyrin. This opened the way to learn more about how the metal ion is incorporated into the porphyrin ring. The insertion of Mg^{2+} into protoporphyrin IX proceeds in two stages. In the first stage subunits BchD (70 kDa) and BchI (40 kDa) undergo activation by complex formation in the presence of ATP and Mg^{2+} . The protein–protein interaction of these two subunits was subsequently confirmed for the tobacco subunits with the yeast two-hybrid system (Gräfe et al. 1999). Thereafter Mg^{2+} is inserted into the protoporphyrin IX substrate that is bound to the large subunit BchH (140 kDa).

The information of the nucleotide sequence of the *Rhodobacter* genes permitted the identification, cloning and molecular characterization of the corresponding barley and other higher plant genes and their mutants (Jensen et al. 1996; Kannangara et al. 1997; cf. von Wettstein 2000b). That three different gene products are required for the insertion of Mg²⁺ into protoporphyrin IX was originally found with xantha mutants at three gene loci in barley that accumulate protoporphyrin IX when fed 5-aminolevulinate (Gough 1972; von Wettstein et al. 1974; cf. von Wettstein 2000a). They belong to the first mutants isolated and analysed in 1953. Gene *Xantha-f* corresponds to *bchH*, *Xantha-g* to *bchD* and *Xantha-h* to *bchI*.

One of the post-genomic challenges is to determine the function of the genes discovered in genome sequencing projects. Usually > 50% of the genes uncovered in the sequenced genomes have no significant matches to proteins or cloned genes in the databases for other organisms. Furthermore, while such matches can hint at similar functions they do not prove the function of the gene in question. To determine the precise function of a gene its cloning is required, frequently carried out by positional cloning. While this is expedient with small genomes like that of *Arabidopsis* it is difficult with large sequenced or un-sequenced genomes like those of small grain cereals. Due to the availability of the transcript-deficient barley mutant *xantha-h*⁵⁷ we were able to develop the microarray method for transcript-based cloning of genes only known through their mutant phenotype (Zakhrabekova et al. 2002).

Libraries of genomic clones or cDNA clones or expressed sequence tag clones representing several thousand genes are microarrayed on glass slides. Each clone occupies a round spot on the slide. cDNAs made from the mRNAs of the transcript-deficient mutant and its wild type is differentially labelled with green and red fluorescing nucleotides, respectively, and hybridized in equal amounts to the microarrayed clones. Because of the absence of the mutant transcripts, pure red fluorescence from a spot will result from wild type DNA and identify the gene sought This technique also worked with the xantha-f 27 and xantha-f 40 mutants, which display nonsense-mediated mRNA decay, a surveillance system developed by organisms to reduce the abundance of mRNA with nonsense codons (Gadjieva et al. 2004). It can be exploited to clone genes through mutants with reduced transcript abundance. This then will allow functional identification of a majority of the ca. 1,000 barley genes for which > 8,322 mutants have been identified through Åke Gustafsson's and Udda Lundqvist's efforts and are conserved in the Nordic Gene Bank.

The three-dimensional structure of the ATP-binding subunit BchI of *Rhodobacter capsulatus* solved at a resolution of 2.1 Å by Michel Fodje and Salam Al-Karadaghi in combination with the molecular genetic analyses of Mats and Andreas Hansson has allowed remarkable insights into the molecular basis of the insertion of Mg^{2+} into protoporphyrin IX (Fodje et al. 2001). It provides the starting point for clarifying the mechanism by which Mg^{2+} is inserted into the chlorophyll molecule.

BchI belongs to the chaperone-like "ATPase associated with a variety of cellular activities" (AAA) family of ATPases. Its structure could be compared with those of other members of this protein family, such as the heat shock protein 100 of E. coli, the delta-prime subunit of DNA polymerase III clamp loader complex and the hexamerization domain D2 of the N-methylmaleimide-sensitive membrane vesicle fusion protein. The domains of these proteins are highly conserved, but are located in different ways in the overall structure. BchI also contains loop structures forming a deep positively charged groove that might be involved in interaction with the other subunits of Mg-chelatase. Electron microscopy of BchI in solution in the presence of ATP revealed that it forms in the same way as hexameric ring structures of other AAA proteins. The primary structure of the BchD subunit consists of an AAA module at the N-terminal portion and an integrin I domain in the C-terminal half. An acidic, proline-rich region links the two domains and is predestined to bind to the positively charged cleft of BchI. Both BchI and BchH (the protoporphyrin-binding subunit) contain integrin I domain-binding amino acid sequences. Most likely the hexamer ring of BchI is connected to a hexameric ring of the BchD-AAA module via the proline-rich domain. The integrin BchI domains bind to BchH linking porphyrin metallation by BchH to ATP hydrolysis by BchI.

Among the seven mutant alleles of the barley *xantha*-h gene encoding the smallest subunit of magnesium chelatase (corresponding to BchI) four are recessive and three are semi-dominant. The homozygous mutants are yellow, because of a lack of chlorophyll. The heterozygotes of the recessive mutants are fully green whereas the heterozygotes carrying the semidominant allele

are pale to yellow-green. The recessive mutations prevent transcription of the gene (Jensen et al. 1996), while the semidominant alleles are mis-sense mutations leading to single amino acid substitutions (Hansson et al. 1999). Identification of the mutated residues in the BchI three-dimensional structure located all three of them in the interface between two neighbouring subunits in the AAA⁺ hexamer and close to the region forming the ATP-binding site. The three amino acid changes were made by site-directed mutagenesis in the BchI gene of R. capsulatus and the subunits expressed in E. coli. Combination of wild type BchD and BchH subunits with modified BchI subunits were deficient in ATP hydrolysis and Mg-chelatase activity. However mixtures of the mutated and wild type BchI subunits could form oligomeric complexes with the D and H subunits. The oligomerization is ATP dependent but results in complexes lacking Mg-chelatase activity. Furthermore the presence of mutant BchI subunits in the oligomer did not inhibit the ATPase activity of the wild type subunits but prevented the insertion of Mg²⁺ into prototoporphyrin IX. It is suggested that a small amount of hexamers consisting only of wild type subunits rescues the heterozygous plants. It remains to be seen if disruption of ATP hydrolysis in the mixed hexamers prevents the conformational change expected to permit chelation of Mg²⁺.

2 Chromosome pairing, mechanism of crossing-over and genome analysis

The ascomycete Neottiella rutilans turned out to be an excellent object with which to study the assembly and disassembly of the synaptonemal complex, the 200-nm-wide ribbon between the paired pachytene chromosomes, by electron microscopy of serial sections. Jane Mink Rossen and Mogens Westergaard had shown that the DNA replication in this organism before meiotic prophase occurs in the crozier nuclei prior to karyogamy, which laid to rest the textbook theory of chromosome pairing in connection with a DNA replication at meiotic prophase. In this ascomycete the chromosomes are always at a condensed chromatin stage, also during mitosis and meiosis, which makes it a highly favourable subject for ultrastructural studies (Westergaard and von Wettstein 1966). In a study of all stages of meiosis of Neottiella (Westergaard and von Wettstein 1970; von Wettstein 1971, 1977) it was demonstrated that after a rough alignment of the homologous chromosomes to within 300 nm, the lateral components (protein and RNA) are laid down between the two sister chromatids of each chromosome (Fig. 2). This causes the appearance of the leptotene chromosome as undivided in the light microscope. At the same time the central region pre-assembles in the nucleolus and is then transported together with recombination nodules into

Fig. 2. Formation of the synaptonemal complex and chiasmata during meiosis in an ascomycete (*Neottiella*)

the space between the roughly aligned homologues. The two sister chromatids relocate, so that that the lateral components are positioned lateral to the chromatin of the chromosome. In the pairing fork the central region material is organized alternately on one or the other lateral component, and the synaptonemal complex is completed by attachment of the free lateral