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Review

Fascination with Chloroplasts and Chromosome Pairing

Diter von Wettstein

During the second half of the twentieth century biological research could be
characterized as a period of strong convergence. Genetics, physiology, bio-
chemistry and other sub-disciplines of biology were joined in the common
goal of clarifying the molecular processes behind the function of organelles,
cells, organs and organisms. The whole chain from the information con-
tained in the genome to the properties and function of an organism was and
is analysed with sophisticated methods.

It has been a pleasure and privilege to contribute to these ventures and at the
outset I would like to mention and thank my mentors in the different disciplines.
They taught me to carry out research and to ask important questions: Erwin
Biinning and Adolph Butenandt in Tiibingen, Jacob Seiler and Albert Frey-
Wyssling in Ziirich, Ake Gustafsson in Stockholm, Frank Stahl and Salvador
Luria at Cold Spring Harbor, and Paul Stumpf at Davis and Mogens Westergaard
in Copenhagen. But the results could likewise not have been achieved without
the imaginative and enthusiastic efforts of co-workers, students, postdoctoral
fellows and visiting scientists. They include 54 students who completed their
master’s degree and 65 their PhD, and I will try to review some of their work
here. During my time at the Carlsberg Laboratory, the Department of
Physiology hosted 115 postdoctoral fellows and visiting scientists; they provided
much of the inspiration that guided innovation and progress.

In this review I would like to discuss two areas of my interests:

1. Biosynthesis of the photosynthetic membrane and chloroplast biogenesis.
2. Chromosome pairing, the mechanism of crossing-over and genome
analysis.

1 Biosynthesis of the photosynthetic membrane and chloroplast
biogenesis

My interest in the development of chloroplasts and chlorophyll biosynthesis
began when I became an assistant to Ake Gustafsson in Stockholm in 1951
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and joined the multidisciplinary Swedish Group of Mutation Research he
had created and was leading with great success. One of my tasks was to
analyse mutation rates, and spectra, in the M, generation of barley grains
treated with various ionising radiation and chemical mutagens. This was
done by a test he had devised in the 1930s and consisted of counting the
white, yellow, light-green or tiger-striped lethal seedling mutants emerging
from thousands of spikes planted in the greenhouse during the winter sea-
son. These tests were done to find the most efficient treatments for inducing
mutants suitable for barley breeding programs. Interestingly, now there is
hardly a cultivar that does not contain an induced mutant among its ances-
tors, but at the time it was considered that all induced mutations were detri-
mental and therefore useless in plant breeding, a view propagated by
Herman J. Muller and L. J. Stadler. Due to the tireless efforts of Ake
Gustafsson and a few others like Bob Nilan in Pullman it was shown that
induced mutations could yield improved cultivars — Muller and Stadler
overlooked the fact that the majority of spontaneous mutations were also
detrimental, and that mutations are still a major factor in the evolution of
genes to organisms. The discussions for and against were not unlike the
present discussions concerning the use of transgenic plants in breeding. As
history repeats itself, the time will come when transformed cultivars will be
as accepted and considered as “traditional” as crop plants containing
induced mutations.

Encouraged by the successful efforts of Beadle and Tatum in analysing
metabolic pathways by knock-out mutations, it seemed to me that all these
hundreds of interesting mutants should be useful for a detailed analysis of
the development of chloroplasts and pigment biosynthesis. I thus started to
collect representatives of the different types of mutants and to conduct
crosses to determine allelic relationships by complementation tests. At that
time electron microscopy of thin sections started to reveal the ultrastructure
of animal and plant cells. So I took my mutants and spent a few days every
week at Arne Tiselius’s Biochemistry Institute at Uppsala University, where
Hékan Leyon had constructed a microtome and developed embedding pro-
cedures, and where I could use the third electron microscope built by
Siemens in 1940. It had been acquired by The Svedberg and was installed
next to his ultracentrifuges. The mutants turned out to be very useful for
characterizing the development of chloroplast structure as presented in a
summary (von Wettstein 1959). In higher plants, chloroplasts develop from
proplastids in the light or via the etioplast pathway after an initial dark
period. The primary thylakoid layers are formed by alignment of vesicles
budded from the inner membrane of the plastid envelope. In contrast to the
in depth knowledge obtained since then of the organization of the photo-
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synthetic membrane and the import of the protein components into the
chloroplast and their targeting to the thylakoids, progress in learning how
the lipid bilayer membranes are formed is less apparent (von Wettstein
2001). This may change with the discovery by Kroll et al. (2001) and
Westphal et al. (2001) of a function of the vesicle-inducing protein in
plastids (VIPP).

In pea chloroplasts the 37-kDa VIPP protein is located both in the vicin-
ity of the chloroplast envelope and the thylakoid membranes and was con-
sidered by Li et al. (1994) as a candidate for the transfer of galactolipids from
their site of synthesis at the chloroplast envelope to the thylakoids. Daniella
Kroll and co-workers (Kroll et al. 2001) studied a recessive Arabidopsis
T-DNA insertion mutant with severe disturbances in the photosynthetic
electron transport chain and the formation of the thylakoids. The insertion
was identified in the gene encoding VIPP and the mutant could be rescued
by transformation with the VIPP cDNA. The cause for the disturbed devel-
opment or maintenance of the thylakoids was the failure of the mutant to
bud the vesicles from the inner chloroplast envelope membrane, which
transfer lipids from the inner envelope to the thylakoid membranes. In the
transformants the process of vesicle budding was re-established and the thy-
lakoid organization normalized. The companion paper by Sabine Westphal
and co-workers (2001) identifies VIPP I genes in the genomes of Synechocystis,
Anabaena, Synechococcus and Nostoc. In these cyanobacteria, the protein is
located in the plasma membrane, but its disruption in Synechocystis by inser-
tion mutagenesis with a kanamycin cassette prevents ordered thylakoid for-
mation and light-dependent oxygen evolution.

The photosynthetic membrane in barley and other higher plants converts
solar energy into chemical energy, and as we now know, it uses six larger pro-
tein complexes for this purpose (Simpson and von Wettstein 1989; von
Wettstein et al. 1995) (Fig. 1). They are called the reaction centres of photo-
system I and II, the two light harvesting complexes of photosystem I and I,
the cytochrome b6/f complex and the chloroplast coupling factor (synthe-
sizing ATP). The polypeptides in these complexes bind and orient chloro-
phyll and carotenoid molecules and the different metals and molecules
which are required for energy channelling and electron transport. Circa one
half of the ~57 membrane proteins are encoded by genes in the nucleus and
the other half in the chloroplast’s own DNA genome. This cooperation
between the two genomes in the plant cell also takes place in the assembly of
the CO,-fixing enzyme, Rubisco, that is made up of two, different-sized sub-
units, of which the larger one is encoded in chloroplast DNA and the smaller
one in the nuclear chromosomal DNA. The following results of our research
are of special significance.
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In cooperation with the Biological Laboratories of Harvard University the
nucleotide sequence of the first plant gene, the structural gene for the large
subunit of Rubisco, was determined in 1980 (Mc Intosh et al. 1980; von
Wettstein 1981). Carsten Poulsen, Anthony Holder, Brian Martin and Ib
Svendsen had produced peptide maps of the large subunit of Rubisco of bar-
ley and the genus Oenothera and obtained partial amino acid sequences (von
Wettstein et al. 1978; Holder 1978; Poulsen et al. 1979). Lawrie Bogorad
called me one day in 1977 to say that he had heard that we had amino acid
sequences of the large subunit and to ask if I would share them with him,
since he wanted to sequence the maize gene and this would be of great help
to his project. “Sure,” I said, “and I would also like to send you Carsten
Poulsen with his Carlsberg fellowship to help with the sequencing.” After
supplying Carsten with a large supply of liquorice, he and Lee completed the
task. Peptide mapping of the large and small Rubisco subunits also led to the
identification of the pomato, the first somatic hybrid between potato and
tomato produced by Georg Melchers in Tiibingen (Melchers et al. 1978;
Poulsen et al. 1980; von Wettstein 1983). The most interesting aspect of the
analysis of these generic hybrids was the finding that they only retained the
tomato or potato chloroplast genome at an equal frequency, but not both.
We still do not know how this happens.

Over the years 357 barley mutants with defects in chloroplast development
and chlorophyll synthesis have been assigned to 105 gene loci. Together with
Albert Kahn, Ole Frederik Nielsen, Simon Gough and Naomi Avivi-Bleiser
(von Wettstein et al. 1974; Kahn et al. 1976) structural and regulatory genes
of chlorophyll synthesis were identified. Knud Henningsen, John Boynton,
David Simpson, Otto Machold, Gunilla Heyer-Hansen, Roberto Bassi, Bob
Smillie and Torsten Fester analysed the different categories of the mutants
with regard to their ultrastructure, pigment levels, thylakoid polypeptide
composition and photosynthetic capacity (Henningsen et al. 1993; Simpson
and von Wettstein 1980; Simpson et al. 1985; Smillie et al. 1978).

The mutants were used to localize the macromolecular photosynthesis
complexes, as recognized by freeze-fracture particles, to the different
domains of the chloroplast membranes (e.g. Simpson et al. 1989; Simpson
and von Wettstein 1989). Birger Lindberg Moller analysed the function of
the grana and stroma membranes by isolating and purifying these mem-
brane types, by separating the membrane polypeptides and reconstituting
them to give photosynthetically active membranes (e.g. Henry et al. 1982;
Moller and Hoj 1983; Moller 1985). The gene family encoding the light-har-
vesting proteins of photosystem I was also identified (e.g. Knoetzel et al.
1992). The first transcription map of a chloroplast genome was established
for barley (Poulsen 1983) and alternative transcription was demonstrated
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for the gene encoding the large subunit of Rubisco. The longer transcript is
used by the plant when a large amount of protein is synthesized in the light
(Poulsen 1984).

A single molecule of chlorophyll and haem is synthesized from eight
molecules of 5-aminolevulinic acid. In 1975 it was shown by isotope
labelling that higher plants, in contrast to animals and humans, synthesize
this non-protein amino acid from the intact carbon skeleton of glutamate
(Beale et al. 1975). Gamini Kannangara, Simon Gough, postdoctoral fel-
lows, students and visiting scientists have elucidated this three-step pathway
at the biochemical and molecular level over a period of 19 years (cf.
Kannangara et al. 1994; von Wettstein et al. 1995; von Wettstein 2000a, b).
This pathway is used by higher plants, algae, cyanobacteria, Escherichia coli
(not recognized for over 30 years), as well as a number of other bacteria.
Animals and humans, yeast and photosynthetic bacteria form 5-aminole-
vulinate by condensation of glycin and succinate. Entirely surprising was
the discovery that the glutamic acid has to be activated by ligation to a glu-
tamyl tRNA before it can be reduced to glutamate-semialdehyde and there-
after transaminated by an aminomutase to 5-aminolevulinic acid (Schon
et al. 1986). It is so far the only known case in which a tRNA participates in
the conversion of a low molecular weight compound. In higher plants this
tRNA is encoded in chloroplast DNA and also has to serve for the transla-
tion of mRNA on chloroplast ribosomes. The three enzymes are encoded in
nuclear DNA, and have to be translated on cytosolic ribosomes and
imported into the chloroplast.

The importance of the pathway for chlorophyll synthesis is demonstrated
by transgenic tobacco plants expressing an antisense gene for the glutamine
semialdehyde aminotransferase (Hofgen et al. 1994). The barley enzyme that
requires the glutamyl tRNA as substrate was purified and a partial amino
acid sequence obtained (Pontoppidan and Kannangara 1994). This work
identified the structural gene for this enzyme as the HemA gene, already
cloned and sequenced in many organisms but not recognized as encoding
glutamyl RNAS" reductase. Finally this interesting enzyme was expressed as
a fusion protein in E. coli (Vothknecht et al. 1996, 1998). It turned out that
haem, a prominent inhibitor of chlorophyll synthesis, binds to the N-terminal
extension of the protein that is characteristic for plant enzymes, but absent in
bacteria.

In 1994 Lucien Gibson, Ph.D. student with Neil Hunter, University of
Sheftield, arrived and brought with him plasmids that contained the bchH,
bchD and behl genes from Rhodobacter spheroides. Lucien, Robert Willows
and Gamini Kannangara expressed the proteins of these three genes in E. coli
and demonstrated for the first time that the association of these three pro-
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teins in vitro inserts the Mg atom into protoporphyrin IX (Gibson et al.
1995; Willows et al. 1996). Reconstitution of Mg chelatase activity required
only ATP, Mg** and protoporphyrin. This opened the way to learn more
about how the metal ion is incorporated into the porphyrin ring. The inser-
tion of Mg?" into protoporphyrin IX proceeds in two stages. In the first stage
subunits BchD (70 kDa) and Bchl (40 kDa) undergo activation by complex
formation in the presence of ATP and Mg?*. The protein—protein interaction
of these two subunits was subsequently confirmed for the tobacco subunits
with the yeast two-hybrid system (Grife et al. 1999). Thereafter Mg** is
inserted into the protoporphyrin IX substrate that is bound to the large sub-
unit BchH (140 kDa).

The information of the nucleotide sequence of the Rhodobacter genes per-
mitted the identification, cloning and molecular characterization of the cor-
responding barley and other higher plant genes and their mutants (Jensen
et al. 1996; Kannangara et al. 1997; cf. von Wettstein 2000b). That three dif-
ferent gene products are required for the insertion of Mg** into protopor-
phyrin IX was originally found with xantha mutants at three gene loci in
barley that accumulate protoporphyrin IX when fed 5-aminolevulinate
(Gough 1972; von Wettstein et al. 1974; cf. von Wettstein 2000a). They
belong to the first mutants isolated and analysed in 1953. Gene Xantha-fcor-
responds to bchH, Xantha-gto bchD and Xantha-h to behl.

One of the post-genomic challenges is to determine the function of the
genes discovered in genome sequencing projects. Usually > 50% of the
genes uncovered in the sequenced genomes have no significant matches to
proteins or cloned genes in the databases for other organisms. Furthermore,
while such matches can hint at similar functions they do not prove the
function of the gene in question. To determine the precise function of a
gene its cloning is required, frequently carried out by positional cloning.
While this is expedient with small genomes like that of Arabidopsis it is dif-
ficult with large sequenced or un-sequenced genomes like those of small
grain cereals. Due to the availability of the transcript-deficient barley
mutant xantha-h>’ we were able to develop the microarray method for tran-
script-based cloning of genes only known through their mutant phenotype
(Zakhrabekova et al. 2002).

Libraries of genomic clones or cDNA clones or expressed sequence tag
clones representing several thousand genes are microarrayed on glass slides.
Each clone occupies a round spot on the slide. cDNAs made from the
mRNAs of the transcript-deficient mutant and its wild type is differentially
labelled with green and red fluorescing nucleotides, respectively, and
hybridized in equal amounts to the microarrayed clones. Because of the
absence of the mutant transcripts, pure red fluorescence from a spot will
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result from wild type DNA and identify the gene sought This technique also
worked with the xantha-f 27 and xantha-f 40 mutants, which display non-
sense-mediated mRNA decay, a surveillance system developed by organisms
to reduce the abundance of mRNA with nonsense codons (Gadjieva et al.
2004). It can be exploited to clone genes through mutants with reduced tran-
script abundance. This then will allow functional identification of a major-
ity of the ca. 1,000 barley genes for which > 8,322 mutants have been
identified through Ake Gustafsson’s and Udda Lundqvist’s efforts and are
conserved in the Nordic Gene Bank.

The three-dimensional structure of the ATP-binding subunit Bchl of
Rhodobacter capsulatus solved at a resolution of 2.1 A by Michel Fodje and
Salam Al-Karadaghi in combination with the molecular genetic analyses of
Mats and Andreas Hansson has allowed remarkable insights into the molec-
ular basis of the insertion of Mg?* into protoporphyrin IX (Fodje et al.
2001). It provides the starting point for clarifying the mechanism by which
Mg?* is inserted into the chlorophyll molecule.

BchlI belongs to the chaperone-like “ATPase associated with a variety of
cellular activities” (AAA) family of ATPases. Its structure could be com-
pared with those of other members of this protein family, such as the heat
shock protein 100 of E. coli, the delta-prime subunit of DNA polymerase III
clamp loader complex and the hexamerization domain D2 of the
N-methylmaleimide-sensitive membrane vesicle fusion protein. The
domains of these proteins are highly conserved, but are located in different
ways in the overall structure. Bchl also contains loop structures forming a
deep positively charged groove that might be involved in interaction with the
other subunits of Mg-chelatase. Electron microscopy of Bchl in solution in
the presence of ATP revealed that it forms in the same way as hexameric ring
structures of other AAA proteins. The primary structure of the BchD sub-
unit consists of an AAA module at the N-terminal portion and an integrin I
domain in the C-terminal half. An acidic, proline-rich region links the two
domains and is predestined to bind to the positively charged cleft of Bchl.
Both Bchl and BchH (the protoporphyrin-binding subunit) contain integrin
I domain-binding amino acid sequences. Most likely the hexamer ring of
Bchl is connected to a hexameric ring of the BchD-AAA module via the pro-
line-rich domain. The integrin Bchl domains bind to BchH linking por-
phyrin metallation by BchH to ATP hydrolysis by Bchl.

Among the seven mutant alleles of the barley xantha-h gene encoding the
smallest subunit of magnesium chelatase (corresponding to Bchl) four are
recessive and three are semi-dominant. The homozygous mutants are yellow,
because of a lack of chlorophyll. The heterozygotes of the recessive mutants
are fully green whereas the heterozygotes carrying the semidominant allele
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are pale to yellow-green. The recessive mutations prevent transcription of the
gene (Jensen et al. 1996), while the semidominant alleles are mis-sense muta-
tions leading to single amino acid substitutions (Hansson et al. 1999).
Identification of the mutated residues in the Bchl three-dimensional struc-
ture located all three of them in the interface between two neighbouring sub-
units in the AAA* hexamer and close to the region forming the ATP-binding
site. The three amino acid changes were made by site-directed mutagenesis in
the Bchl gene of R. capsulatus and the subunits expressed in E. coli.
Combination of wild type BchD and BchH subunits with modified Bchl sub-
units were deficient in ATP hydrolysis and Mg-chelatase activity. However
mixtures of the mutated and wild type Bchl subunits could form oligomeric
complexes with the D and H subunits. The oligomerization is ATP depend-
ent but results in complexes lacking Mg-chelatase activity. Furthermore the
presence of mutant Bchl subunits in the oligomer did not inhibit the ATPase
activity of the wild type subunits but prevented the insertion of Mg?* into
prototoporphyrin IX. It is suggested that a small amount of hexamers con-
sisting only of wild type subunits rescues the heterozygous plants. It remains
to be seen if disruption of ATP hydrolysis in the mixed hexamers prevents the
conformational change expected to permit chelation of Mg?*.

2 Chromosome pairing, mechanism of crossing-over and genome
analysis

The ascomycete Neottiella rutilans turned out to be an excellent object with
which to study the assembly and disassembly of the synaptonemal complex,
the 200-nm-wide ribbon between the paired pachytene chromosomes, by
electron microscopy of serial sections. Jane Mink Rossen and Mogens
Westergaard had shown that the DNA replication in this organism before
meiotic prophase occurs in the crozier nuclei prior to karyogamy, which laid
to rest the textbook theory of chromosome pairing in connection with a
DNA replication at meiotic prophase. In this ascomycete the chromosomes
are always at a condensed chromatin stage, also during mitosis and meiosis,
which makes it a highly favourable subject for ultrastructural studies
(Westergaard and von Wettstein 1966). In a study of all stages of meiosis of
Neottiella (Westergaard and von Wettstein 1970; von Wettstein 1971, 1977)
it was demonstrated that after a rough alignment of the homologous chro-
mosomes to within 300 nm, the lateral components (protein and RNA) are
laid down between the two sister chromatids of each chromosome (Fig. 2).
This causes the appearance of the leptotene chromosome as undivided in the
light microscope. At the same time the central region pre-assembles in the
nucleolus and is then transported together with recombination nodules into
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Fig. 2. Formation of the synaptonemal complex and chiasmata during meiosis in an
ascomycete (Neottiella)

the space between the roughly aligned homologues. The two sister chro-
matids relocate, so that that the lateral components are positioned lateral to
the chromatin of the chromosome. In the pairing fork the central region
material is organized alternately on one or the other lateral component, and
the synaptonemal complex is completed by attachment of the free lateral



