MATHEMATICS IN INDUSTRY

Editors Hans-Georg Bock Frank de Hoog Avner Friedman Arvind Gupta Helmut Neunzert William R. Pulleyblank Torgeir Rusten Fadil Santosa Anna-Karin Tornberg

THE EUROPEAN CONSORTIUM FOR MATHEMATICS IN INDUSTRY

SUBSERIES

Managing Editor Vincenzo Capasso

Editors Robert Mattheij Helmut Neunzert Otmar Scherzer A. Di Bucchianico R.M.M. Mattheij M.A. Peletier *Editors*

Progress in Industrial Mathematics at ECMI 2004

With 299 Figures, 44 in Color, and 35 Tables

Editors

A. Di Bucchianico R.M.M. Mattheij M.A. Peletier

Technische Universiteit Eindhoven Department of Mathematics and Computer Science Postbus 513 5600 MB Eindhoven, The Netherlands

A.d.Bucchianico@tue.nl R.M.M.Mattheij@tue.nl M.A.Peletier@tue.nl

Library of Congress Control Number: 2005933612

Mathematics Subject Classification (2000): 35-XX, 60-XX, 62-XX, 65-XX, 76-XX, 92-XX

ISBN-10 3-540-28072-3 Springer Berlin Heidelberg New York ISBN-13 978-3-540-28072-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2006 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typeset by the editors using a Springer T_EX macro-package Production: LE- T_EX Jelonek, Schmidt & Vöckler GbR, Leipzig Cover design: *design & production* GmbH, Heidelberg Printed on acid-free paper 46/3142/YL - 5 4 3 2 1 0

Preface

In the autumn of 1985 ESMI (European Symposium on Mathematics in Industry), the predecessor of ECMI, took place in Amsterdam. During that meeting the ideas were born that eventually lead to the foundation of ECMI as we know it now. Many successful meetings followed this 'ECMI-1985' and during this period ECMI became a brand name for Industrial Mathematics. The adulthood of ECMI is apparent from the many things it has achieved since then, as a truly European institution devoted to promote Industrial Mathematics in education and research. It took nearly 20 years to have another ECMI meeting, the 13-th, held in the Netherlands again, now in Eindhoven, June 2004. During the preparations for this meeting we were joined by the European Network for Business and Industrial Statistics (ENBIS), an organisation with objectives similar to those of ECMI. It enlarged the scope of the meeting and opened up a number of opportunities for further co-operation. For one thing, ECMI-people have less tradition in employing theory and methods from Stochastics. Yet new challenges in Science and Industry increasingly cross borders between traditional mathematical areas. Multidisciplinarity applies to Industrial Mathematics as a whole and in fact Industrial Mathematics is multidisciplinary par excellence.

The Technische Universiteit Eindhoven (TU/e) is a relatively young university. Although not large, it recently came out as second in ranking of European Universities of Technology (see Third European Report on S&T Indicators 2003). Also the city of Eindhoven looks rather young, despite the fact that it has an old history. This modern face of the city is probably typical for the spirit here and, for that matter, in the larger region. Also the greater Eindhoven region does well as it ranks among the top three regions in Europe regarding technological and industrial innovation. The theme of this conference, Industrial Mathematics, is aptly fitting in with this. Indeed, nowadays Mathematics is generally accepted as a Technology, playing a crucial role in many branches of industrial activity, for optimising both processes and products.

VI Preface

Since Industrial Mathematics is a vast and diverse area, each ECMI conference chooses a number of (application) themes to focus on. This time they were Aerospace, Electronic Industry, Chemical Technology, Life Sciences, Materials, Geophysics, Financial Mathematics and Water flow. The majority of the subjects of the talks were on these topics indeed. In particular the talks of the invited speakers were related to these main themes. They delivered excellent lectures, most of which are reported in these proceedings. In alphabetical order the speakers were Søren Bisgaard (Amherst, MA), Rainer Helmig (Stuttgart), John Hinch (Cambridge), John Hunt (London), Chris Rogers (Cambridge), Cord Rossow (Braunschweig), Fabrizio Ruggeri (Milano), Wim Schoenmakers (Leuven), Bernard Schrefler (Padova), and Michael Waterman (Los Angeles, CA). Moreover there was a plenary talk by Sabine Zaglmayr, the winner of the Wacker price for the best thesis on Industrial Mathematics.

Organizing a meeting like this is a multi-person undertaking. During the last three years a dedicated group of people has devoted much of their time to making this event a success, eventually growing to quite a large number of persons who were actively involved in the lubrication of it all at the meeting. We are very grateful for their help. Special mention should be made of the help we received from our university congress bureau and our CASA secretariat. It goes without saying, however, that the actual success of this meeting was due to the participants. The conference was attended by some 400 people, from all continents, who altogether gave over 300 talks. There were excellent contributions by the invited speakers, a large number of high quality minisymposia, and many interesting contributed talks. All speakers were invited to submit a contribution to these proceedings, which therefore record the majority of the talks. We are most grateful to the many reviewers who helped us in the refereeing process.

At this place we would also like to thank the companies and institutions that participated in the exhibition, which was conducive to providing a proper atmosphere. We are particularly indebted to the many sponsors who made it possible to keep the fees quite moderate and yet have a nice social programme and affordable catering. The Local Organising Committee deserves special thanks for the many smaller and larger things that they have done. In particular I am personally very indebted to my two co-editors, Sandro Di Bucchianico and Mark Peletier. Their continuous enthusiasm, constructive ideas, as well as their skills in technical editing have proven invaluable. On behalf of all three of us I trust that these proceedings will be useful for all those who are interested in the use and the usefulness of Mathematics in Industry.

> Bob Mattheij Eindhoven, February 2005

Contents

Part I Theme: Aerospace

The MEGAFLOW Project – Numerical Flow Simulation for Aircraft

CC. Rossow, N. Kroll, D. Sch	hwamborn	3
1 Introduction		3
2 MEGAFLOW software	•••••••••••••••••	4
2.1 Grid Generation	•••••••••••••••••	4
2.2 Flow Solvers	• • • • • • • • • • • • • • • • • • • •	5
3 Software validation		3
4 Industrial Applications		6
5 Multidisciplinary simulation	ns	3
6 Numerical optimization		5
7 Conclusions and perspectiv	re 2	9
References		0
 K. Arens, P. Rentrop, S.O. Sta 1 Introduction	2011	$4 \\ 4 \\ 6 \\ 6 \\ 6 \\ 7 \\ 8 \\ 8$
Fast Numerical Computing	g for a Family of Smooth	
Trajectories in Fluids Flow C Argontini	9	0

G.	Argentini	39
1	Introduction	39

VIII Contents

2	Fitting trajectories with cubic polynomials	40
3	Computing splines	41
4	Valuating splines	41
5	Computing values of splines	43
6	Conclusions	43
Refe	erences	43

Optimal Control of an ISS-Based Robotic Manipulator with Path Constraints

S.	Breun, R. Callies	44
1	Introduction	44
2	Optimal Control Problem	45
3	Transformation into Minimum Coordinates	45
4	Optimal Control Theory	47
5	Numerical Example	48
Re	ferences	48

Rigorous Analysis of Extremely Large Spherical Reflector Antennas: EM Case

E.D	D. Vinogradova, S.S. Vinogradov, P.D. Smith	49
1	Introduction	49
2	The Decoupled System at High Frequencies	50
3	Algorithm Performance on the Decoupled System	52
4	Conclusions	53
Refe	erences	53

Part II Theme: Electronic Industry

Simulation and Measurement of Interconnects and On-Chip Passives: Gauge Fields and Ghosts as Numerical Tools

Wim Schoenmaker, Peter Meuris, Erik Janssens, Michael Verschaeve,	
Ehrenfried Seebacher, Walter Pflanzl, Michele Stucchi, Bamal	
Mandeep, Karen Maex, Wil Schilders 5	57
1 Introduction 5	57
2 The Maxwell Equations and the Drift-Diffusion Equations 5	59
3 Gauge Fields and Ghost Fields 6	31
4 Applications	35
5 Conclusions	72
References	73

Eigenvalue Problems in Surface Acoustic Wave Filter Simulations

S.	Zaglmayr, J. Schöberl, U. Langer	74
1	Introduction	75
2	Problem Description and First Model Assumptions	77

	2.1	Surface Acoustic Qave Filters	7
	2.2	Quasi-periodic Wave Propagation and the Dispersion Diagram 78	3
3	The	Piezoelectric Equations)
4	A Sc	alar Model Problem	L
	4.1	Bloch's Theorem and the Quasi-Periodic Unit-Cell Problem 82	2
	4.2	The Mixed Variational Formulation	3
	4.3	The Frequency-Dependent Eigenvalue Problem	3
	4.4	Galerkin-Discretization of the Frequency-Dependent EVP 84	1
	4.5	A Model Improvement by Absorbing Boundary Conditions 85	5
	4.6	Solution Strategies	3
5	Piezo	pelectric Equations and Periodic Structures	7
	5.1	2-D Geometry and Anisotropic Materials 88	3
	5.2	The Underlying Infinite Periodic Piezoelectric Problem 88	3
	5.3	Piezoelectric Equations in Weak and Discretized Form 89)
	5.4	The Quasi-Periodic Unit-Cell Problem)
6	Num	erical Results	3
	6.1	The Scalar Model Problem	3
	6.2	Simulation of a Piezoelectric Periodic Structure	5
7	Cond	elusions	3
Ref	erenc	es	7
Dif	fract	ion Grating Theory with RCWA or the C Method	
NF	race	der Aa)
1	Intro	duction 90	ì
2	Math	nematical problem 100)
3	Solut	tion methods 100)
4	Resu	lts	Ś
Ref	erenc	es	3
1001	01 0110		•
Re	locat	ion of Electric Field Domains and Switching Scenarios	
in S	Supe	rlattices	
L.L	. Bor	nilla, G. Dell'Acqua, R. Escobedo104	ł
1	Intro	duction	ł
2	The	Sequential Tunnelling Model 105	5
3	Swite	ching Scenarios	3
Ref	erenc	es $\dots \dots \dots$	3
011	antu	m Kinetic and Drift-Diffusion Equations for	
Ser	nicor	nductor Superlattices	
L.L	. Bor	nilla. R. Escobedo)
Ref	erenc	es	3

Model Order Reduction of Nonlinear Dynamical Systems

C.	Brennan, M. Condon, R. Ivanov1	14
1	Introduction	14
2	Linear time-varying systems1	15
3	Nonlinear systems 1	16
4	Illustrative numerical example	17
Rei	ferences	18

Electrolyte Flow and Temperature Calculations in Finite Cylinder Caused by Alternating Current

A.	Buikis, H. Kalis
1	Introduction
2	Mathematical Model
3	The Finite-Difference Approximations and Numerical Results 121
4	Conclusion
Rei	ferences

Numerical Simulation of the Problem Arising in the Gyrotron Theory

J.	Cepita	s, O. Dumbrajs, H. Kalis, A. Reinfelds	124
1	Intro	duction	124
2	Num	erical Simulation	126
	2.1	Quasistationarization	126
	2.2	Method of Lines	127
3	Cone	lusions	128
Re	eferenc	es	128

A Deterministic Multicell Solution to the Coupled Boltzmann-Poisson System Simulating the Transients of a 2D-Silicon MESFET

C.	Ertler, F. Schürrer, O. Muscato 1	29
1	Introduction	29
2	Physical Assumptions	30
3	The Multicell Method for Spatially Two-Dimensional Problems1	31
4	Numerical Results	32
Re	ferences	33

Some Remarks on the Vector Fitting Iteration

W.	Hendrickx, D. Deschrijver, T. Dhaene134
1	Introduction
2	An iterative scheme for solving rational LS problems
3	The Vector Fitting methodology136
4	How VF fits in
5	Initial pole placement
Ref	erences

Kr	ylov Subspace Methods in the Electronic Industry
Ρ.	Heres, W. Schilders
1	Introduction
2	Equation setting
3	Model Order Reduction
4	Validation of results
5	Redundancy
6	Conclusions
Ref	erences
On	Nonlinear Iteration Methods for DC Analysis of Industrial
Ci	cuits
М.	Honkala, J. Roos, V. Karanko
1	Introduction
2	Equation formulation
3	Line-search methods
4	Trust-region methods
5	Non-monotone strategy
6	Dog-leg method
7	Tensor methods
8	Results
Ref	erences
Im	plementing Efficient Array Traversing for FDTD-lumped
Ele	ment Cosimulation
<i>L</i> .	R. de Jussilainen Costa
1	Introduction
2	Implementing the Data Types and Array Traversing
3	Comparison of the Two Data Types
4	Conclusions
Ref	erences
Th	ermal Modeling of Bottle Glass Pressing
Ρ.	Kagan. R.M.M. Mattheij
1	Introduction
2	Physical model
3	Finite element model
4	Results
5	Conclusions
Ref	erences
Sin	nulation of Pulsed Signals in MPDAE-Modelled SC-Circuits
S.	Knorr. U. Feldmann
2 1	Introduction
2	Switched capacitor filter
-3	Multidimensional approach
	in a second seco

• **т** 1 т/ . а 1 . . _ _ _

4	Miller integrator	162
5	Conclusions	163
Ref	erences	163

A More Efficient Rigorous Coupled-Wave Analysis Algorithm

М.(G.M.M. van Kraaij, J.M.L. Maubach
1	Introduction
2	The model
3	The equations and boundary conditions166
4	Numerical results
5	Conclusions
Ref	erences

Iterative Solution Approaches for the Piezoelectric Forward Problem

M.	<i>Mohr</i>
1	Introduction
2	Mathematical Model
3	Iterative Solution
4	Numerical Experiments
Ref	erences

Hydrodynamic Modeling of an Ultra-Thin Base Silicon Bipolar Transistor

О.	<i>Muscato</i>
1	Introduction
2	The Extended Hydrodynamic Model
3	Limit Models
4	Numerical Results
Ref	Perences 178

Warped MPDAE Models with Continuous Phase Conditions

R.	Pulch
1	Introduction
2	Multivariate Signal Model
3	Warped MPDAE System
4	Numerical Simulation
5	Conclusions
Re	ferences

Exact Closure Relations for the Maximum Entropy Moment System in Semiconductor Using Kane's Dispersion Relation

M.	Junk, V. Romano	84
1	The Maximum Entropy Moment Systems for Electrons in	
	Semiconductors1	84
2	Solvability of the Maximum Entropy Problem 1	186

3 The Euler-Poisson Model
Reduced Order Models for Eigenvalue Problems
J. Rommes
1 Introduction
2 Reduced Order Modelling Problem
3 Reduced Order Modelling Methods
4 New Research Directions
References
DRK Methods for Time-Domain Oscillator Simulation
M.F. Sevat, S.H.M.J. Houben, E.J.W. ter Maten
1 Introduction
2 DRK methods
2.1 Order conditions $\dots \dots \dots$
2.2 Stability conditions
3 Two-stage Example
4 Alternative Formulation
5 Conclusions
References
Digital Linear Control Theory Applied To Automatic Stepsize Control In Electrical Circuit Simulation
A. Verhoeven, T.G.J. Beelen, M.L.J. Hautus, E.J.W. ter Maten 199
1 Introduction to error control
2 Control-Theoretic Approach to Stepsize Control
3 Derivation of Process Model for BDF-Methods
4 Design of Finite Order Digital Linear Stepsize Controller
5 Numerical Experiments
6 Conclusions
References

Part III Theme: Chemical Technology

On the Dynamics of a Bunsen Flame

M.1	L. Bondar, J.H.M. ten Thije Boonkkamp	207
1	Introduction	207
2	Flame front dynamics	207
3	Solution in the case of a Poiseuille flow	208
4	Flame response to flow perturbations	210
Ref	erences	211

Index Analysis for Singular PDE Models of Fuel Cells

Κ.	<i>Chudej</i>	212
1	Time Index: Definition and Prototype Example	212
2	Time Index of Dynamic Fuel Cell Models	214
Rei	ferences	216

On the Modeling of the Phase Separation of a Gelling Polymeric Mixture

F.A	. Coutelieris, G.A.A.V. Haagh, W.G.M. Agterof, J.J.M. Janssen 217
1	Introduction
2	Theory
3	Results and Discussion
4	Conclusion
Refe	erences

Iso-Surface Analysis of a Turbulent Diffusion Flame

B.J	<i>C. Geurts</i>	2
1	Introduction	2
2	Diffusion flame in a mixing layer	3
3	Iso-surface analysis of turbulent flame properties	4
Ref	erences	6

A Simplified Model for Non–Isothermal Crystallization of

Polymers

T.	Götz, J. Struckmeier	
1	Introduction	
2	Temperature Equation with Memory	
3	Numerical Results	
4	Conclusion	
Rei	ferences	

Numerical Simulation of Cylindrical Induction Heating Furnaces

Bermúdez, D. Gómez, M. C. Muñiz, P. Salgado23	32
Introduction	32
Mathematical modelling	33
2.1 The electromagnetic submodel	33
2.2 The thermal submodel	34
Numerical solution	35
erences	6
	Bermúdez, D. Gómez, M. C. Muñiz, P. Salgado 23 Introduction 23 Mathematical modelling 23 2.1 The electromagnetic submodel 23 2.2 The thermal submodel 23 Numerical solution 23 Prences 23

Thermal Radiation Effect on Thermal Explosion in a Gas Containing Evaporating Fuel Droplets.

Ι.	Goldfarb, V. Gol'dshtein, D. Katz, S. Sazhin	37
1	Introduction	37
2	Physical model	38

Contents	XV

2.1Fast gas temperature: $\epsilon_2 \gamma \ll 1$.2.2Fast droplet radius: $\epsilon_2 \gamma \gg 1$ 3Conclusions.References	240 240 241 241
Local Defect Correction for Laminar Flame Simulation M. Graziadei, J.H.M. ten Thije Boonkkamp 1 Introduction 2 An outline of LDC 3 Constructing an orthogonal curvilinear grid 4 The thermo-diffusive model for laminar flames References	242 242 242 244 244 245 246
Development of a Hierarchical Model Family for Molten Carbonate Fuel Cells with Direct Internal Reforming (DIR-MCFC) P. Heidebrecht, K. Sundmacher References Modelling of Filtration and Regeneration Processes in Diesel	247 251
Particulate Traps U. Janoske, T. Deuschle, M. Piesche 1 Introduction 2 Simulation model 3 Results 4 Conclusion and Outlook References	252 252 253 255 255 255 256
Modelling the Shelf Life of Packaged Olive Oil Stored at Various Conditions F.A. Coutelieris, A. Kanavouras 1 Introduction 2 Experimental 3 Theory 4 Result and Discussion 5 Conclusion References References	257 257 258 258 259 261 261
Nonlinear Model Reduction of a Dynamic Two-dimensional Molten Carbonate Fuel Cell Model M. Mangold, Min Sheng 1 Introduction 2 Spatially Distributed Reference Model of the MCFC 3 Derivation of the Reduced MCFC Model 4 Validation of the Reduced Model 5 Conclusions	262 262 263 263 265 265

XVI Contents

References	266
Liquid/Solid Phase Change with Convection and Deformations: 2D Case	
D. Mansutti, R. Raffo, R. Santi	
1 Introduction	
2 Governing Equations and Reformulation	
8 Numerical fest and Conclusions	
Mathematical Modelling of Mass Transport Equations in Fixed-Bed Absorbers	
A. Pérez-Foguet, A. Huerta	273
1 Introduction	273
2 Dimensionless model	274
2.1 Dimensionless analysis	276
3 Application: Working Capacity test	277
4 Conclusions	
References	277
a Weak Condensation J. Pousin, E. Zeltz 1 Motivating Problem and Mathematical Model 2 Comparisons with Experimental Data References Multigrid Solution of Three-Dimensional Radiative Heat	278 278 281 282
Transfer in Glass Manufacturing	202
M. Seaid, A. Klar	
Introduction Dedictive Heat Transfer in Class Manufacturing	
2 Multigrid Solution Procedure	···· 204
4 Results	286
References	
DEM Simulations of the DI Toner Assembly	
I.E.M. Severens, A.A.F. van de Ven	
1 Introduction	
2 Force Models	
2.1 Geometry 2.2 Collisions	∠09 280
2.3 Adhesion Force	
2.4 Magnetic Force	
2.5 Electric Force	
2.6 Charge Model	
~	

. . .

3	Results	291
4	Conclusion	291
Ref	erences	292

Modeling of Drying Processes in Pore Networks

A.G. Yiotis, A.K. Stubos, A.G. Boudouvis, I.N. Tsimpanogiannis,

<i>Y.</i> (<i>J. Yortsos</i>
1	Introduction
2	Pore network modeling of drying without the presence of liquid films 294
3	The effect of liquid films
4	Conclusions
Ref	erences

Mathematical Modelling of Flow through Pleated Cartridge Filters

V. Nassehi,	A.N.	Waghode,	N.S.	Hanspal,	R.J.	$Wakeman\ldots$	
References .							

Comparison of Some Mixed Integer Non-linear Solution Approaches Applied to Process Plant Layout Problems

J.	Westerlund, L.G. Papageorgiou	03
1	Introduction	03
2	Problem formulation	04
3	Non-Linear Solution Approaches	04
4	Illustrative examples	05
5	Conclusions	06
Re	ferences	07

A Mathematical Model of Three-Dimensional Flow in a Scraped-Surface Heat Exchanger

S.K	T. Wilson, B.R. Duffy, M.E.M. Lee	308
1	Scraped-Surface Heat Exchangers (SSHEs)	308
2	Transverse Flow	309
3	Longitudinal Flow	311
4	Summary	312
Refe	erences	312

Part IV Theme: Life Sciences

Transmission Line Matrix Modeling of Sound Wave Propagation in Stationary and Moving Media

	1 0	v 0	
M.	Bezděk, Hao	Zhu, A. Rieder, W. Drahm	.315
1	Introduction	1	. 315
2	TLM Model	of Stationary Media	. 316
3	TLM Model	of Moving Media	. 318
4	Conclusion		. 318

XVIII Contents

References
Viscous Drops Spreading With Evaporation And Applications To DNA Biochips
M. Cabrera, T. Clopeau, A. Mikelić, J. Pousin
2The physical model and the lubrication approximation
Similarity-Based Object Recognition of Airborne Fungi in Digital Images
<i>P. Perner</i>
1 Introduction
2 Fungi Images
3 Similarity-Based Object Recognition
3.2 Template Concretion 327
4 Results 328
5 Conclusions
References
Rivalling Optimal Control in Robot-Assisted Surgery
G.F. Schanzer, R. Callies
1 Introduction
2 Manipulator Model
3 1 Bigalling Control 321
3.2 Optimal Control Theory 332
4 Optimal Control Constraints
4.1 Constraints
4.2 Numerical Realisation
5 Example: Constrained Motion and Rivalling Control
References

Part V Theme: Materials

A Multiphase Model for Concrete: Numerical Solutions and Industrial Applications

B.A	A. Schrefler, D. Gawin, F. Pesavento	337
1	Numerical solution	340
2	Application of the model to concrete structures in high temperature	
	environments	344
3	Numerical simulation of cylindrical specimen exposed to high	
	temperature	347

Contents 2

References	349
Modelling the Glass Press-Blow Process	
S.M.A. Allaart-Bruin, B.J. van der Linden, R.M.M. Mattheij	351
1 Introduction	351
2 Governing equations	351
3 Re-initialisation of the level set function	353
4 Results	354
5 Conclusions	355
References	355

Real-Time Control of Surface Remelting

M.J	J.H. Anthonissen, D. Hömberg, W. Weiss	56
1	Introduction	56
2	Local grid refinement	57
3	Local defect correction	58
4	Simulations	59
Ref	erences	60

Fast Shape Design for Industrial Components

G.	Haase, E. Lindner, C. Rathberger	361
1	Modeling the problem	361
2	A short sketch on the optimization strategy	362
3	Calculating the gradient for shape optimization	363
	3.1 A second look at the gradient	363
4	Numerical results for the shape optimization problem	364
Ref	erences	365

Modeling of Turbulence Effects on Fiber Motion

N.	Marheineke	366
1	Motivation	366
2	Fiber Dynamics	366
3	Construction of Fluctuating Flow Velocity	367
4	Stochastic Force Model	369
5	Numerical Results with White Noise	370
Re	ferences	370

Design Optimisation of Wind-Loaded Cylindrical Silos Made from Composite Materials

E.V.	. Morozov
1 1	Introduction
2	Silo Geometry, Wall Material Structure and Loading Conditions372
3	Design Optimisation of The Cylindrical Section of The Silo
4	Example
5	Conclusions
Refe	rences

Two-Dimensional Short Wave Stability Analysis of the Floating Process

S.	<i>R. Pop</i>
1	Mathematical Formulation
	1.1 Governing system of motion
	1.2 Basic flow
2	The Disturbance System of Motion
3	Short Wave Limit
Re	ferences
Op	ptimization in high-precision glass forming
М.	<i>Sellier</i>
1	Description of the forward problem
2	Optimization of the cooling curve
3	Identification of the required initial geometry
Rei	ferences
A	Mathematical Model for the Mechanical Etching of Glass
A J.H	Mathematical Model for the Mechanical Etching of Glass I.M. ten Thije Boonkkamp 386
A J.H 1	Mathematical Model for the Mechanical Etching of Glass I.M. ten Thije Boonkkamp 386 Introduction 386
A <i>J.H</i> 1 2	Mathematical Model for the Mechanical Etching of Glass H.M. ten Thije Boonkkamp
A <i>J.H</i> 1 2 3	Mathematical Model for the Mechanical Etching of GlassI.M. ten Thije Boonkkamp386Introduction386Mathematical Model for Powder Erosion386Analytical Solution Method387
A <i>J.E</i> 1 2 3 4	Mathematical Model for the Mechanical Etching of GlassI.M. ten Thije Boonkkamp386Introduction386Mathematical Model for Powder Erosion386Analytical Solution Method387Numerical Solution Method389
A <i>J.H</i> 1 2 3 4 Rei	Mathematical Model for the Mechanical Etching of Glass <i>H.M. ten Thije Boonkkamp</i>
A <i>J.H</i> 1 2 3 4 Rei FP	Mathematical Model for the Mechanical Etching of Glass I.M. ten Thije Boonkkamp 386 Introduction 386 Mathematical Model for Powder Erosion 386 Analytical Solution Method 387 Numerical Solution Method 389 ferences 390 PM + Radiation = Mesh-Free Approach in Radiation
A <i>J.H</i> 1 2 3 4 FF Pr	Mathematical Model for the Mechanical Etching of Glass I.M. ten Thije Boonkkamp 386 Introduction 386 Mathematical Model for Powder Erosion 386 Analytical Solution Method 387 Numerical Solution Method 389 ferences 390 PM + Radiation = Mesh-Free Approach in Radiation oblems
A <i>J.H</i> 1 2 3 4 FP Pr <i>A</i> .	Mathematical Model for the Mechanical Etching of Glass <i>I.M. ten Thije Boonkkamp</i> 386 Introduction 386 Mathematical Model for Powder Erosion 386 Analytical Solution Method 387 Numerical Solution Method 389 ferences 390 PM + Radiation = Mesh-Free Approach in Radiation oblems 391
A <i>J.H</i> 1 2 3 4 FF Pr <i>A</i> . 1	Mathematical Model for the Mechanical Etching of Glass <i>A.M. ten Thije Boonkkamp</i> 386 Introduction 386 Mathematical Model for Powder Erosion 386 Mathematical Model for Powder Erosion 386 Analytical Solution Method 387 Numerical Solution Method 389 ferences 390 PM + Radiation = Mesh-Free Approach in Radiation oblems 391 Project 391
A <i>J.H</i> 1 2 3 4 FF Pr <i>A</i> . 1 2	Mathematical Model for the Mechanical Etching of Glass I.M. ten Thije Boonkkamp 386 Introduction 386 Mathematical Model for Powder Erosion 386 Analytical Solution Method 387 Numerical Solution Method 389 ferences 390 PM + Radiation = Mesh-Free Approach in Radiation oblems 391 Project 391 FPM 392

	3.1	Rosseland approximation)3
	3.2	Radiative Transfer Equation (RTE) approximations)3
4	Rest	ılts)5
Ref	erenc	es)5

Part VI Theme: Geophysics

Multiscale Methods and Streamline Simulation for Rapid Reservoir Performance Prediction

J.E	Aarnes, V. Kippe, KA. Lie	399
1	Introduction	399
2	Streamline Method	100
3	Multiscale Mixed Finite-Elements	101
4	Numerical Results	401

XXI

References			• •																																															4	02	2
------------	--	--	-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----	---

Part VII Theme: Financial Mathematics

ONE FOR ALL The Potential Approach to Pricing and

Hee	dging							
L.C	<i>C.G. Rogers</i>							
1	Introduction							
2	Generalities about pricing							
3	The potential approach							
4	Markov processes and potentials							
5	Foreign exchange in the potential approach							
6	Markov chain potential models							
7	Calibration							
8	Evidence from bond data							
9	Hedging							
10	Conclusions and future directions							
Refe	erences							
The	The Largest Claims Treaty ECOMOR							

S.A	. Lac	$loucette, J.L. Teugels \dots 422$
1	Intro	oduction
2	Rest	lts
	2.1	Bounds
	2.2	Asymptotic Equivalence
	2.3	Weak Convergence of $R_r(t)$
	2.4	Moment Convergence
3	Cone	clusion and Remarks
Ref	erenc	es

American Options With Discrete Dividends Solved by Highly Accurate Discretizations

С.С	C. W	Leentvaar, C.W. Oosterlee
1	Black	k-Scholes Equation, Discretization
	1.1	Grid Transformation and Discretization
2	Num	erical Results with Discrete Dividend
	2.1	European Call
	2.2	American Put
3	Cond	clusion
Ref	erenc	es

Semi-Lagrange Time Integration for PDE Models of Asian Options

A.F	Parrott, S. Rout	432
1	sian Options	432

XXII Contents

	1.1	Semi-Lagrangian Time Integration
	1.2	Discretisation
	1.3	Boundary Conditions for the Fixed-Strike Call
	1.4	Co-ordinate Stretching
2	Resu	lts
3	Cond	elusions
Refe	erence	es

Fuzzy Binary Tree Model for European Options

S.	Muzzioli, H. Reynaerts	7
1	Introduction	7
2	European-style Plain Vanilla Options in the Presence of Uncertainty 438	3
3	Solving Fuzzy Linear Systems	9
4	Conclusions	1
Re	eferences	1

Effective Estimation of Banking Liquidity Risk

P.	<i>Tobin, A. Brown</i>
1	Introduction
2	Data Handling
3	Correlations
4	Conclusion
Re	ferences

Part VIII Theme: Water Flow

Multiphase Flow and Transport Modeling in Heterogeneous Porous Media

R.	Helm	ig, C.T. Miller, H. Jakobs, H. Class, M. Hilpert, C. E. Kees,
J.	Niess	ner
1	Mot	ivation
2	Scal	es and forces
3	Anis	sotropy at the pore scale
4	Dyn	amic Macroscale Model Formulation
	4.1	Multiphase Mass Balance Equations
	4.2	Multiphase Momentum Balance Equations
	4.3	Multiphase Flow Equations
	4.4	Constitutive Relationships
	4.5	Inclusion of Microscale Heterogeneity
	4.6	Inclusion of Macroscale Heterogeneity
5	Nun	nerical Model
	5.1	Adaptive Time Discretization
	5.2	Subdomain collocation finite volume method (box method) 474
6	Exa	mples
	6.1	Examination of Numerical Results for 1D

Contents	XXIII
----------	-------

7 Conclusions
The Unsteady Expansion and Contraction of a Two- Dimensional Vapour Bubble Confined Between Superheated or Subsceled Plates
K.S. Das, S.K. Wilson. 489 1 Introduction 489
2 Problem Formulation 490 3 Both Plates Superheated 491 3 1 Delay Fountion Formulation for Continuous Films 401
3.1Deray-Equation formulation for Continuous Finits4913.2Constant-Velocity Solutions and their Stability4924Summary492
References
M. El Amrani, M. Seaïd 494 1 Introduction 494 2 Semi-Lagrangian Techniques 495
3 Numerical Results
A Filtered Renewal Process as a Model for a River Flow
M. Lefeovre 499 1 Introduction 499 2 Filtered Benewal Process 500
3An Application5013.1Model fitting502
3.2 Forecasting 502 4 Conclusion 503 References 503
A Parallel Finite Element Method for Convection-Diffusion Problems
J.M.L. Maubach
1The computational mesh
Modelling The Flow And Solidification of a Thin Liquid Film on a Three-Dimensional Surface
T.G. Myers, J.P.F. Charpin, S.J. Chapman

1.0	f. $Mgers$, g . f . f . $Charpin, g$. g . $Chapman$ g	90
1	Introduction)8
2	Mathematical model)8
	2.1 Thin film flow)9

2.2 Thermal problem5102.3 Extension to an arbitrary substrate5103 Results511
4 Conclusions
Numerical Schemes for Degenerate Parabolic Problems I.S. Pop 513 1 Introduction 513 2 The Numerical Approaches 514
Finite Element Modified Method of Characteristics for Shallow Water Flows: Application to the Strait of Gibraltar M. González, M. Seaïd
References
M. Sizov, M.J.H. Anthonissen, R.M.M. Mattheij 523 1 Introduction 523 2 Problem description and formulation of the LDC algorithm 524 3 High order compact schemes 525 4 Combination of LDC with HOCFD 526 5 Numerical results 527 References 527
A Finite-Dimensional Modal Modelling of Nonlinear Fluid Sloshing

A.	Timokha, M. Hermann	528
1	Single-dominant Modal System	528
2	Local and Non-Local Bifurcation Analysis	530
Ref	ferences	532

Part IX Other Contributions

On the Reliability of Repairable Systems: Methods and Applications

_		
F.	Ruggeri	35
1	Introduction	535
2	Repairable systems	636
3	Non-homogeneous Poisson processes5	538
	3.1 Main properties	538

	3.2 Statistical analysis of simple NHPP's	9
	3.3 Reliability measures	0
	3.4 Covariates in NHPP's	:0
	3.5 Classes of NHPP's	:1
	3.6 Change points in NHPP's54	:3
	3.7 Superposition of NHPP's	:4
4	3.8 Nonparametric models	:5
4	$\pm xamples \dots 54$:'(
	I.I Parametric vs. nonparametric models	:1
۲	4.2 Model selection and sensitivity analysis	:9 1
0 Dof	DISCUSSION	1
nei	ences	T
Ne	Schemes for Differential-Algebraic Stiff Systems.	
Ε.	lshina, N. Kalitkin, A. Koryagina55	4
1	Introduction $\dots \dots \dots$	4
2	Accuracy control	5
3	Rosenbrock Schemes	6
Ref	rences	7
Wa	elet and Cepstrum Analyses of Leaks in Pipe Networks	
S.E	M. Beck, J. Foong, W.J. Staszewski55	9
1	introduction $\dots \dots \dots$	9
2	Гheory	0
3	Experiment	1
4	Comparison between theory and experiment	1
5	Conclusions	3
Ref	rences	3
Ro	ust Design Using Computer Experiments	
R.A	Bates, R.S. Kenett, D.M. Steinberg, H.P. Wynn56	4
1	ntroduction	4
2	The Piston Simulator	5
3	Robustness Strategies	5
4	Comparison Of Robustness Strategies on the Piston	6
Ref	rences	8
No	-Classical Shocks for Buckley-Leverett: Degenerate	
Pse	ido-Parabolic Regularisation	
С.	I. Cuesta, C. J. van Duijn, I. S. Pop	9
1	ntroduction	9
2	Fravelling waves 57	'1

A Multi-scale Approach to Functional Signature Analysis for
T Figarella A Di Bucchianico 574
1 Introduction 574
2 Experimental Setup
2.1 Main Tray Experiment
2.2 Measurements and Feature Extraction
3 Wavelet Approach for Analysis of Stapler Motor Data576
3.1 Approach 1: Rough Denoising - Extracting the Features
Using A_6
3.2 Approach 2: Extracting the Features Using the Average of
Approximation Coefficients
4 Conclusions
1010101005
Aspects of Multirate Time Integration Methods in Circuit
Simulation Problems
A. El Guennouni, A. Vernoeven, E.J.W. ter Maten, I.G.J. Beelen 579
1 Introduction 579 2 Model Problem 581
3 Interface treatment fitting hierarchical sub-circuits 583
References
Exploiting Features for Finite Element Model Generation
O. Hamri, JC. Léon, F. Giannini, B. Falcidieno
1 Introduction
2 Analysis model preparation
3 Exploiting feature attributes for FE model preparation
3.1 Simplification features
3.2 Detail feature categories
4 Conclusion
1010101005
Implicit Subgrid-Scale Models in Space-Time VMS
Discretisations
S. J. Hulshoff
1 Introduction 501 2 Discretisation 501
2 Discretisation
4 Computed Results
4.1 Spatial discretisation effects at small time steps
4.2 Implicit SGS model
5 Conclusions
References 594

Multiscale Change-Point Analysis of Inhomogeneous Poisson Processes Using Unbalanced Wavelet Decompositions

M.	Jansen	ý
1	Introduction	j
2	Multiscale binning	;
3	Wavelet maxima	7
4	Unbalanced wavelet analysis	3
5	Elimination of false maxima and results)
Ref	erences)

Robust Soft Sensors Based on Ensemble of Symbolic Regression-Based Predictors

_	
E.	Jordaan, A. Kordon, L. Chiang600
1	Introduction
2	Ensemble of GP-generated Predictors in Soft Sensors
	2.1 Genetic Programming
	2.2 Ensembles of GP Generated Predictors
	2.3 Pareto front Method for Ensemble Model Selection
3	Application
4	Conclusions
Rei	ferences

Two-Dimensional Patterns in High Frequency Plasma Discharges

0	
Mackey, M.M. Turner	605
Introduction	605
Proposed Model	606
Derivation and Analysis of Amplitude Equations	606
Numerical Results and Conclusions	609
erences	609
	Mackey, M.M. Turner Introduction Proposed Model Derivation and Analysis of Amplitude Equations Numerical Results and Conclusions

A Mathematical Model for the Motion of a Towed Pipeline Bundle

N.	.W. Manson,	S.K. Wilson,	B.R. Duj	$fy \ldots$			 	610
1	The Contro	lled Depth T	ow Metho	d (CDTM	(I		 	610
2	A Mathema	tical Model.					 	611
3	Analytical S	Solutions					 	612
	3.1 Exact	Solution in t	he Special	Case c_N	$= c_T = c_T$	0	 	$\dots 612$
	3.2 Asymp	ototic Solutio	n in the L	Limit T –	$\rightarrow \infty \ldots$		 	613
	3.3 Genera	al Stability R	esults				 	613
4	Summary						 	613
Re	eferences			• • • • • • • • •			 • • •	614

XXVIII Contents

Operators and Criteria for Integrating FEA in the Design Workflow: Toward a Multi-Resolution Mechanical Model

J(C. Léon, P.M. Marin, G. Foucault
1	Introduction
2	Simplification operators
3	Mechanical criteria
4	Conclusion
Ref	erences

Wavelet Analysis of Sound Signal in Fluid-filled Viscoelastic Pipes

M.	Prek
1	Introduction
2	Experiment
3	Analysis and Results
4	Conclusions
Ref	Perences 625

Coarse-Grained Simulation and Bifurcation Analysis Using Microscopic Time-Steppers

P.	Van Leemput, G. Samaey, K. Lust, D. Roose, I.G. Kevrekidis626
1	Introduction
2	Patch Dynamics
3	Coarse-grained Numerical Bifurcation Analysis
4	Conclusions
Re	ferences

Optimal Prediction in Molecular Dynamics

В.	Seibol	<i>ld</i>
1	Prob	blem Description
	1.1	Industrial Problem
	1.2	ITWM Project
	1.3	One Dimensional Model Problem
2	2 Optimal Prediction	
	2.1	Low Temperature Asymptotics
	2.2	Boundary Layer Condition
	2.3	Computational Speed Up
3	Com	paring Optimal Prediction to the Original System
4	Cone	clusions and Outlook
Re	ferenc	es

From CAD to CFD Meshes for Ship Geometries

V.	<i>Skytt</i>
1	Introduction
2	Chart surfaces
3	Examples and Future Work

Contents	XXIX

References		
Integration of Strongly Damped Mechanical Systems by		
Runge-Kutta Methods		
<i>T. Stumpp</i>		
1 Motivation		
2 Expansion of the Analytical Solution		
3 RadauIIA Methods		
4 Error Results		
References		
Numerical Simulation of SMA Actuators		
<i>G. Teichelmann, B. Simeon</i>		

G.	
1	Introduction
2	Mathematical Model
3	Numerical Treatment
Rei	ferences
Co	lor Plates
Aτ	thor index

Theme: Aerospace

The MEGAFLOW Project – Numerical Flow Simulation for Aircraft

C.-C. Rossow, N. Kroll, and D. Schwamborn

- ¹ Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) in the Helmholtz-Association
- ² Institute of Aerodynamics and Flow Technology D-38108 Braunschweig, Germany cord.rossow@dlr.de, norbert.kroll@dlr.de

Summary. Some years ago the national CFD project MEGAFLOW was initiated in Germany, which combined many of the CFD development activities from DLR, universities and aircraft industry. Its goal was the development and validation of a dependable and efficient numerical tool for the aerodynamic simulation of complete aircraft which met the requirements of industrial implementations. The MEGAFLOW software system includes the block-structured Navier-Stokes code FLOWer and the unstructured Navier-Stokes code TAU. Both codes have reached a high level of maturity and they are intensively used by DLR and the German aerospace industry in the design process of new aircraft. Recently, the follow-on project MEGADESIGN was set up which focuses on the development and enhancement of efficient numerical methods for shape design and optimization. This paper highlights recent improvements and enhancements of the software. Its capability to predict viscous flows around complex industrial applications for transport aircraft design is demonstrated. First results concerning shape optimization are presented.

1 Introduction

Aerospace industry is increasingly relying on advanced numerical flow simulation tools in the early aircraft design phase. Today, computational fluid dynamics has matured to a point where it is widely accepted as an essential, complementary analysis tool to wind tunnel experiments and flight tests. Navier-Stokes methods have developed from specialized research techniques to practical engineering tools being used for a vast number of industrial problems on a routine basis [51]. Nevertheless, there is still a great need for improvement of numerical methods, because standards for simulation accuracy and efficiency are constantly rising in industrial applications. Moreover, it is crucial to reduce the response time for complex simulations, although the relevant geometries and underlying physical flow models are becoming increasingly complicated. In order to meet the requirements of German aircraft industry, the