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Introduction
Jim T. Smith and Nick A. Beresford

The explosion at Unit 4 of the Chernobyl nuclear power station was the worst
nuclear accident in history. Radioactive fallout from the accident (directly or indir-
ectly) affected the lives of hundreds of thousands of people in the former Soviet
Union and contamination spread throughout Europe. In the 19 years since the
accident, thousands of scientific papers have been published on Chernobyl and its
consequences. In this book we have tried to summarise this vast literature, focusing
particularly on the long-term consequences of the accident to people and the
environment.

There are many historical accounts of the Chernobyl accident (e.g., Shcherbak,
1989; TAEA, 1991; UNSCEAR, 2000; Mould, 2000; Kryshev and Ryazantsev, 2000;
OECD/NEA, 2002). Whilst this book focuses primarily on the longer term impacts
of the accident, here we briefly summarise the history of the accident and its
immediate consequences. In particular, we aim to put Chernobyl within the
context of other (natural and man-made) sources of radioactivity in the environ-
ment. This chapter also introduces some key concepts and units of radiation meas-
urement and risk assessment. Many of these will be familiar to some readers, and are
therefore where possible included in boxes separate from the main text.

1.1 HISTORY OF THE ACCIDENT

At the time of the accident in 1986, Chernobyl was one of four nuclear power
stations in the Ukraine and was part of a rapid expansion in nuclear generating
capacity. The Chernobyl power station consisted of four ‘RBMK-1000’-type
reactors, the first of which, Unit 1, began electricity generation in 1977. Electricity
generation at Unit 4 (the reactor at which the accident occurred) was begun in 1983
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and in 1986 two other Units (5 and 6) were being built. Construction of these last
units stopped after the accident.

The accounts of the accident and its immediate aftermath (Shcherbak, 1989;
IAEA, 1991; Mould, 2000) make truly chilling reading. There are still some uncer-
tainties regarding the exact causes and events leading to the accident, though the key
factors are now known. The accident occurred during an experiment to test the
behaviour of an electrical system which powered the station in the event of a
failure of the main electricity supply. In order to conduct the experiment, the
reactor thermal power output had to be reduced to 700-1,000 MegaWatts (MW),
about 25% of its maximum power output.

At 13:00 on 25 April, 1986, the plant operators began reduction of the reactor
power in preparation for the experiment. At 14:00, however, the operators received a
request from Kiev to continue supplying electricity until 23:10 that evening, so the
experiment was postponed. At 23:10 reduction of the reactor power output began
again and at just after midnight on 26 April, reactor power was 720 MW. Approxi-
mately 30 minutes later, however, power output had fallen to just 30 MW. This
unexpected fall in the power output is believed to have been due to a problem in
the operation of the automatic control rods (which were designed to control the
reactor power under low-power conditions).

At 01:00, the operators had stabilised reactor power at 200 MW by removing
some of the control rods. During the next 20 minutes the operators varied the flow
rate of water in the coolant circuit, leading to a significant variation in temperature
of the inlet water. The reactor has been described as being in an unstable condition
during this period (UNSCEAR, 2000): the coolant flow was almost completely liquid
water with no stream entrained. At 01:22:30 the operator received an automatic
printout which indicated that the reactor should be shut down immediately
(IAEA, 1986). This warning was ignored. At 01:23 the experiment began, despite
the fact that:

e the reactor power output was well below that required by the experimental
procedure;

e certain reactor safety systems had been deliberately disabled in order to carry
out the experiment; and

e the number of control rods in the reactor was only half the minimum required
for its safe operation.

Thirty seconds after the experiment began, the reactor power began to increase
rapidly and ten seconds later the operators attempted a full emergency shut down
by re-inserting the control rods. The reactor power was now increasing exponentially
leading to a failure in the pressurised cooling water system. Eight seconds later, the
reactor exploded (an explosion of steam, not a nuclear explosion) scattering burning
core debris over the surrounding area. The ruined reactor is shown in Figures 1.1
and 1.2.
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Box 1.1. Design flaw in the RBMK reactor.

The RBMK nuclear reactor used at Chernobyl, in contrast to most nuclear
reactors, had what is known in the nuclear industry as a ‘positive void coeffi-
cient’. In an accident situation, should cooling water be lost or turned to steam,
most reactors (with ‘negative void coefficient’) naturally reduce their power
output. In the RBMK reactor, loss of cooling water results in an increase in
power output and consequent temperature rise in the reactor core. This in turn
causes more of the coolant water to turn to steam, leading, potentially, to an
uncontrolled rise in power output.

Figure 1.1. The destroyed Unit 4 reactor building at the Chernobyl Nuclear Power Plant
(NPP). The edge of the Cooling Pond can be seen top left.

Figure 1.2. Aerial view of the destroyed reactor.
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Over 100 firemen were called to the scene and they worked with plant personnel to
put out many small fires in the reactor building and on the roofs of Unit 4 and the
adjacent Unit 3 building. This work exposed the emergency workers to extremely
high doses of radiation. The report of the ITAEA International Chernobyl Project
(IAEA, 1991) describes the scene:

By dawn on the Saturday [26 April], more than 100 firemen had succeeded in putting out
the roof fires, and by about 05:00 all but the graphite fire in the [reactor] core had been
extinguished. These courageous actions by the early firefighters and plant personnel
resulted in many injuries, but they were essential to preventing the spread of the fire to
the other units and to preventing a hydrogen explosion or fire that might have ignited the
oil in the turbines. Many firemen stayed on the alert on the premises for several hours
after the fire was out, which resulted in a number of radiation exposures.

Radiation levels were so high in the damaged part of the plant and just outside it that
monitoring equipment in the plant could not measure them. Available portable radiation
meters went off-scale and systematic monitoring became impossible. It seems that many
of those who entered the buildings to rescue others, fight fires, perform critical operations
or assess damage did not appreciate the radiation risk.

Although the initial fires had been put out, the destroyed reactor core continued to
burn. During the days after the explosion, helicopters were used to dump thousands
of tonnes of various materials onto the exposed reactor core. These materials
included boron, lead, sand and clay to smother the fire, absorb radiation and
reduce nuclear reactions in the molten core material. In total, 1,800 helicopter
flights were made at great risk to the pilots (UNSCEAR, 2000). Despite the heroic
efforts of firemen, helicopter pilots and many other emergency workers to put out the
fire, the reactor continued to burn for 10 days.

Box 1.2. Myths and revelations.

Soon after the accident, an article appeared in the New York Times claiming
that the Ukrainian word ‘YopuoOuibn” (Chernobyl) translates to English as
‘Wormwood’ (a bitter herb) and quoting a verse from the Book of Revelations:

The third angel sounded and there fell a great star from heaven, burning, as it were
a lamp, and it fell on the third part of the rivers and upon the fountains of water;
And the name of the star is Wormwood; and the third part of the waters became
Wormwood, and many men died of the waters because they were made bitter.

This has been interpreted by some as giving an apocalyptic dimension to the
tragedy, particularly since radioactivity polluted rivers and reservoirs in the
Ukraine. In fact, the herb named Chernobyl (‘YepHoObLibHuK — Russian,
Yoproounp — Ukrainian) is the Mugwort (Artemesia vulgaris). The
Wormwood (Ilombins ropokas, polyn gorkaya — Russian, [loaun ripkuit’
polyn girkiy — Ukrainian) is a related, but different species, Artemesia
absinthum.
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1.1.1 Emergency response and early health effects

In the early stages of the accident, many power plant operators and emergency
workers were exposed to very high doses of radiation. This was a result of
external gamma radiation from the exposed reactor core and core debris, as well
as exposure to beta radiation from contamination of their skin and clothes (see
Box 1.3 for a description of different radiation types). One hundred and thirty
four emergency workers were confirmed as suffering from acute radiation sickness
(UNSCEAR, 2000), 28 of whom died during the months after the accident
(Table 1.1). Internal radiation exposure of these people (mainly from inhalation of
radioiodine and radiocaesium) was in general much lower than the external
exposure. Chapter 6 presents a fuller discussion of the health consequences of the
accident.

Box 1.3. Charateristics of some radioactive emissions.

Approximate
Radiation relative biological
type Description Stopped by: effectiveness*
Alpha particle Helium nucleus Air or outer layers of skin 20
Beta particle Electron Few mm of aluminium 1
Gamma ray Electromagnetic wave Few cm of lead 1

* Relative biological effectiveness is used to convert radiation energy absorbed by the human body
into a radiation dose: for a given absorbed energy alpha radiation is estimated to be approximately
20 times more biologically damaging than high-energy beta or gamma.

T For beta energies <10keV a value of 3 is often used.

Table 1.1. Confirmed cases of acute radiation sickness in emergency workers.
Adapted from UNSCEAR (2000).

Degree of acute Range of external Number of Number of
radiation sickness radiation dose* people affected deaths
Mild 0.8-2.1 gray 41 0
Moderate 2.2-4.1 gray 50 1

Severe 4.2-6.4 gray 22 7

Very severe 6.5-16 gray 21 20

Total 134 28

*See Box 1.4 for a definition of the gray.

Measures to protect both the people on the site, and the population of the surround-
ing areas were, in the very early stages of the accident, inadequate. Firemen had not
been trained in radiation protection and had no dosimeters to control their radiation
exposure. Although potassium iodide tablets (to block radioiodine uptake by the
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) -

Figure 1.3. The abandoned town of Pripyat with the Chernobyl Nuclear Power Station in the
background.

thyroid) were distributed to power plant workers within half an hour of the accident
(UNSCEAR, 2000), there was ‘no systematic distribution’ (IAEA, 1991) of tablets to
the population of Pripyat, a town approximately 3 km from the plant (Figures 1.3
and 1.4). Face masks to protect from inhalation of radioactivity were not available
to the population and there were no official warnings for people to stay indoors, out
of the contaminated air. Many children in Pripyat were playing outdoors on 26 April
(the accident occurred in the early hours of 26 April), unaware of the potential
danger.

At 14:00 on Sunday 27 April, the 44,000 population of Pripyat were evacuated in
1,200 buses. On 2 May it was decided to evacuate people and cattle from an area of
approximately 30 km radius around the plant (the ‘30-km zone’), the boundary being
based on a map of radiation dose rate. By 6 May, the entire 30-km zone had been
evacuated. Subsequent mapping of contamination later led to more evacuations,
including areas in Belarus and the Bryansk region of Russia around 150 km to the
northwest of the reactor. In total, approximately 116,000 people (Belyaev et al.,
1996) and 60,000 cattle (UNSCEAR, 2000) were initially evacuated from an area
of approximately 3,500 km?. In subsequent years many more people were evacuated,
reaching approximately 350,000 (UNDP/UNICEF, 2002). At present, many of
the evacuated areas remain uninhabited, though some small areas have been re-
settled.
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Figure 1.4. Satellite photo of the area around Chernobyl NPP. Note that the town of
Chernobyl is about 15km south of the plant: it had much lower radioactive fallout than
many other areas. In this book ‘Chernobyl’ refers to the nuclear reactor rather than the

town unless otherwise stated.
Photo adapted by Simon Wright from the original with the kind permission of Valery Kashparov of the Ukrainian
Institute of Agricultural Radiology (UIAR, 2001).

1.1.2 Emergency clean up and waste disposal

A concrete structure (the ‘shelter’ or ‘sarcophagus’) was built around the destroyed
reactor building in order to prevent further releases of radioactive material
(Figures 1.5 and 1.6). The sarcophagus was built rapidly under extremely difficult
conditions; work was completed in November 1986 (Belyaev et al., 1996). Since its
construction, there have been concerns about the structural integrity of this
temporary building. The sarcophagus was (necessarily) built using existing parts of
the reactor building as support and the stability of these existing structures is not
precisely known.

There has been particular concern that the sarcophagus could collapse in the
event of an earthquake, for example (though seismic activity in this area is not high).



