Communication in Plants

František Baluška Stefano Mancuso Dieter Volkmann (Eds.)

Communication in Plants

Neuronal Aspects of Plant Life

With 82 Figures, 5 in Color

DR. FRANTIŠEK BALUŠKA
University of Bonn
Institute of Cellular
and Molecular Botany
Kirschallee 1
53115 Bonn
Germany
e-mail: baluska@uni-bonn.de

DR. DIETER VOLKMANN
University of Bonn
Institute of Cellular
and Molecular Botany
Kirschallee 1
53115 Bonn
Germany
e-mail: unb110@uni-bonn.de

DR. STEFANO MANCUSO
University of Florence
Department of Horticulture
Electrophysiology Laboratory
Viale delle Idee 30
50019 Sesto Fiorentino
Italy
e-mail: stefano.mancuso@unifi.it

Library of Congress Control Number: 2005933894

1st ed. 2006. 2nd printing ISBN-10 3-540-28475-3 Springer Berlin Heidelberg New York ISBN-13 978-3-540-28475-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science + Business Media springeronline.com

© Springer-Verlag Berlin Heidelberg 2006 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: *design&production*, Heidelberg, Germany Typesetting and production: LE-T_EX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany 31/3150-YL - 5 4 3 2 1 - Printed on acid-free paper

Preface

As we enter the new millennium, plant biology is witnessing dramatic advancements in studies related to the complex behaviour of higher plants which are now beginning to reveal intelligent behaviour. Surprisingly, it is plant ecology which is leading in the revelation that plants behave as though having conscious comprehension of themselves and of their environment. Charles Darwin was the first who noted the abilities of plants to communicate with their environment and translate this information into active movements of their organs (Darwin 1880).

Plants recognize other organisms such as bacteria, fungi, other plants, insects, birds, and animals that presumably also include us, humans (Takabayashi and Dicke 1996; Paré and Tumlinson 1999; Kessler and Baldwin 2001). For instance, to accomplish their sexual reproduction, plants rely on complex interactions with insects and birds. In order to achieve this, and as Charles Darwin was one of the first to show (Darwin 1862), plants generate specially shaped sexual organs which allow insects and birds access to their flowers. Moreover, plants reward these pollinators with nectar and other compounds which are both attractive and a necessary part of the diet of these insect/bird feeders (Cozzolino and Widmer 2005). Complex interactions have been recorded between insect pheromones and plant volatile semiochemicals (Reddy and Guerrero 2004). In the case of many Arum spp., the insect-attracting plant volatiles with a dung-like odour are exactly those chemicals which attract insects to animal dung where they would otherwise gather and reproduce (Kite et al. 1998). These plants are thus masters of a deceptive and intelligent strategy for their own reproduction. Moreover, plants appear to possess an innate type of immunity system which closely resembles that of animals (Nürnberger et al. 2004) and, interestingly in this respect, there are also several parallels between the recognition of self and non-self in plant breeding systems and histocompatibility in animals (Nasrallah 2005). Plant roots of Fabaceae can recognize and 'domesticate' Rhizobium bacteria within nodules, and the composite bacteroids then supply the host plants with nitrogen. Less well known, perhaps, is that some plants recognize and communicate with ants (and vice versa) which protect them against herbivores, pathogens as well as competing vegetation (Brouat et al. 2001; Dejean et al. 2005). The plants, in VI Preface

turn, reward the ants by secreting nectar (Heil et al. 2005) and constructing special food bodies (Solano et al. 2005). Plants actively recognize the identity of herbivores and are then able to recruit their enemies (Arimura et al. 2005). For instance, plant roots attacked by insect predators release volatiles which then attract particular species of nematodes that kill these predators (Rasmann et al. 2005). In addition, by releasing volatiles into the aerial environment, plant shoots infected by pathogens inform their neighbouring plants about immanent danger and they can then increase their immunity against these pathogens (Paré and Tumlinson 1999; Reddy and Guerrero 2004). Intriguingly, the signature of released volatiles is characteristic for herbivore damage but is different from that resulting from a general wound response (Reddy and Guerrero 2004; Arimura et al. 2005). *Nicotiana atten*uata attacked by the hornworm, Manduca sexta, accumulates nicotine, which poisons acetylcholine receptors, and is thus toxic to those organisms which rely on neuromuscular junctions (Baldwin 2001). Interestingly in this respect, plants express neuronal acetylcholinesterase (Sagane et al. 2005) and use acetylcholine also for their neuronal-like cell-cell communication (Momonoki et al. 1998). Furthermore, during their phylogeny, plants can also switch from an autotrophic to a heterotrophic lifestyle - a feat which, in the case of parasitic or carnivorous plants, requires the active selection of suitable host/prey organisms (Albert et al. 1992).

Plants are extremely mechanosensitive. Their roots exhibit thigmotropism, which enables them to explore, with an animal-like curiosity, their environment in a continual search for water and solutes, and their shoots sometimes seek support by means of tendrils, assisted in this task by volatiles such as jasmonates. Root apices constantly monitor the numerous physical parameters of the soil and use this information in their search for better niches for survival and reproduction. In this behaviour, plant roots closely resemble fungi and, indeed, most roots enter symbiotic interactions with mycorrhizal fungi in order to increase their efficiency in obtaining critical ions such as phosphorus. In fact, roots might prove to be descendents of ancient fungi which, by entering into close association with their symbiotic photoautotrophs, have developed into heterotrophic roots - there are, after all, close resemblances between the anatomies and functions of apices of both rhizomorphs and roots (Botton and Dexheimer 1977) – while photoautotrophs have developed into the autotrophic shoots of the organisms now known as vascular plants (Atsatt 1988; Selosse and Le Tacon 1998; Heckman et al. 2001). This scenario is strongly supported by present-day pioneer colonizers such as lichens, which, just as was the case with early land plants (Yuan et al. 2005), are able to survive in even the most extreme of environmental conditions.

Literally, plants nourish the whole world. They intercept the light energy arriving on Earth from the sunbeams and transform it via energy-poor

Preface VII

inorganic compounds into energy-rich organic matter which then serves as the food for all heterotrophic organisms. Also, the gasoline which fuels many of Man's mechanical devices is of plant origin. Plants thus stand at the interface between a seemingly hostile and violent universe, and a fertile planet Earth teeming with life. We might postulate that if we could understand plants better, they could reveal to us something of the great mystery of life. Aristotle and his pupils were convinced that plants have complex inner life including thoughts, memories, dreams, and plans for the future. Unfortunately, our contemporary science considers plants rather as passive creatures to be exploited if discovered to be useful, and to be cleared away if not. However, their passivity – that is, their inability to change their location or to communicate via sounds – is only relative to the hyperactivity of human existence and the fleeting timescale of Man's artefacts. But the recent advances in ecology and phenomenology outlined above urge a change in this biased perception of higher plants.

We should also remember that action potentials, the very characteristic and rapidest way of neuronal communication, were discovered in plants in 1873 (Davies 2004). In those early days, the cellular basis of animal brains was not accepted and the neuronal processes in brains were just starting to be explored. Since then, a large amount of data has been accumulated on electric phenomena in plants (Meylan 1971; Davies 2004). Currently, new exciting discoveries are revealing that electrical signals modulate and control such basic physiological processes in plants as photosynthesis and phototropism (Koziolek et al. 2004; Volkov 2005). Unfortunately, the mainstream of plant biology has never completely accepted plant electrophysiology, so this field has survived in a quasi-dormant state up until now when exciting advances in plant biology are allowing the introduction of plant neurobiology as a newly emerging field of plant sciences. One foundation of this new science is the discovery that not only do plant cells express diverse neuronal molecules but that they also communicate together via plant synapses (Baluška et al. 2005).

These glimpses of the fascinating and breathtaking complexity of plants raise urgent questions which will dominate the whole field of plant biology in the next decades. In particular: Do plants have some type of neuronal system which resembles that which underlies the behaviour of animals? Conversely, if plants turn out to be 'brain-less', then the question will emerge where and how do they store and process the information which they obtain about both the abiotic and biotic environments, and how do they then use this information to optimize their future behaviour? Do plants feel (as suggested by Aristotle) and experience pain? Further: Do plants hear, and can they perceive odours? The truth is that we do not know, although their extreme sensitivity to mechanical vibrations indicates that they can perceive voices and their responses to volatile gases suggest they have a type

VIII Preface

of olfactory response. Importantly, our lack of knowledge should not justify claims that plants do not possess these abilities and properties. In fact, their complex, rational, and surely intelligent behaviour suggests just the opposite. This is why we should be more sensitive to these issues and should commence a serious enquiry into these urgent questions, utilizing minds trained in the 'scientific method' but which can also clearly differentiate between speculation and hypothesis (Huszagh and Infante 1989).

Is it by chance that the Greek word 'neuron' refers to vegetable fibre? In fact, this happy and synchronistic coincidence might be taken to signify that the term plant neurobiology is fully justified! This book brings together all these new plant neuronal aspects and combines them with the classical plant electrophysiology. Plant neurobiology is commencing its emergence as a coherent science.

All the chapters of this volume were presented on the First Symposium on Plant Neurobiology, Florence (Italy), 17–20 May 2005. This Symposium was generously supported by Ente Cassa di Risparmio di Firenze. The editors would like to express their gratitude for this support.

Bonn, Bristol and Florence, July 2005 František Baluška, Peter W. Barlow, Stefano Mancuso and Dieter Volkmann

Finally, we wish to remember with affection Jolana Albrechtová (co-author of Chap. 25) who tragically died in a car accident on the 29th of November 2005 at the age of 39 years.

References

Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495

Arimura G-I, Kost C, Boland W (2005) Herbivore-induced indirect plant defences. Biochim Biophys Acta 1734:91–111

Atsatt PR (1988) Are vascular plants 'reside-out' lichens? Ecology 69:17-23

Baldwin IT (2001) An ecological motivated analysis of plant-herbivore inreractions in native tobacco. Plant Physiol 127:1449–1458

Baluška F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci 10:106–111

Botton B, Dexheimer J (1977) Ultrastructure des rhizomorphs du *Sphaerostilbe repens* B. et Br. Z Pflanzenphysiol 85:429–443

Brouat C, Garcia N, Andarry C, McKey D (2001) Plant lock and ant key: pairwise coevolution of an exclusion filter in an ant-plant mutualism. Proc R Soc Lond Ser B 268:2131–2141

Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol (in press)

Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilised by insects. Murray, London

Darwin C assisted by Darwin F (1880) The power of movements in plants. Murray, London

Preface IX

Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610 Dejean A, Solano PJ, Ayroles J, Corbara B, Orivel J (2005) Arboreal ants build traps to capture prey. Nature 434:973

- Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133
- Heil M, Rattke J, Boland W (2005) Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:560–563
- Huszagh VA, Infante JP (1989) The hypothetical way of progress. Nature 338:109
- Kessler A, Baldwin IT (2001) Defensive function of herbivory-induced plant volatile emissions in nature. Science 291:2141–2144
- Kite GC, Hetterscheid WLA, Lewis MJ, Boyce PC, Ollerton J, Cocklin E, Diaz, Simmonds MSJ (1998) Inflorescence odours and pollinators of *Arum* and *Amorphophallus* (Araceae). In: SJ Owens, PJ Rudall (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp 295–315
- Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722
- Meylan S (1971) Bioélectricité. Quelques problèmes. Masson & Cie, Paris
- Momonoki YS, Hinemo C, Noguchi K (1998) Acetylcholine as a signaling system to environmental stimuli in plants. III. Asymmetric solute distribution by ACh in gravistimulated maize seedlings. Plant Prod Sci 1:83–88
- Nasrallah JB (2005) Recognition and rejection of self in plant self-incompatibility: comparisons to animal histocompatibility. Trends Immunol (in press)
- Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266
- Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331
- Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737
- Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261
- Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguri S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138:1359–1371
- Selosse MA, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Tree 13:15–20
- Solano, P-J, Belin-Depoux M, Dejean A (2005) Formation and structure of food bodies in *Cordia nodosa* (Boraginaceae). C R Biol 328:642–647
- Takabayashi J, Dicke M (1996) Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113
- Volkov AG (2005) Electrophysiology and phototropism. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin Heidelberg New York (this volume)
- Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

Contents

1	The	Green 1	Plant as an Intelligent Organism	1
	Anthony Trewavas			
	1.1	Intro	duction	1
		1.1.1 1.1.2	The Problems of Subjective Intelligence	2
		1.1.2	into a Response Is an Important Intelligent Capability	2
		1.1.3	Experimental Circumstances Can Be Misleading	3
	1.2		igent Behaviour of Single Cells	4
		1.2.1		4
			Bacterial Intelligence and Phosphoneural Networks	6
			Observations of Eucaryote Single Cell Intelligence	6
	1.3	Other	Forms of Biological Intelligence	7
	1.4		ntelligence of Green Plants	8
			Decisions and Choice in Plant Development	9
		1.4.2	Predictive Modelling to Improve Fitness	10
		1.4.3	Internal Assessment of Present State	
			Before Phenotypic Change	11
	1.5	Concl	usions and Future Prospects	11
	Refe	rences		12
2			gical View of Plants and Their Body Plan	19
			aluška, Andrej Hlavacka, Stefano Mancuso,	
	Pete1	r W. Ba		
	2.1		duction	20
	2.2		Apex as the Anterior Pole of the Plant Body	21
	2.3		Apex as the Posterior Pole of the Plant Body	23
	2.4		as a Plant Neurotransmitter	24
	2.5		ar End-Poles as Plant Synapses	24
	2.6		llar Strands as Plant Neurons	25
	2.7		Apices as "Brain-Like" Command Centres	27
	2.8		ent Fungal-Like Nature of Roots	29
	2.9		usions and Future Prospects	31
	Refe	rences		31

XII Contents

3	Clos	les Darwin and the Plant Root Apex: ing a Gap in Living Systems Theory as Applied to Plants · W. Barlow	37
	3.1 3.2 3.3	Introduction	37 39 39 39 41 42 43
	3.5 3.6	Closing a Gap in Living Systems Theory	44 47 49
4		Can Plants Choose the Most Promising Organs? Sachs	53
	4.1	Introduction: Developmental Selection	
	4.1	of Branch Configurations	53
	4.2	An Experimental Model Demonstrates Branch Competition	54
	1.2	4.2.1 The Experimental System	54
		4.2.2 Stress Increases Competition	56
		4.2.3 Unequal Light Conditions	56
		4.2.4 The Rate of Shoot Development and Leaf Removal	56
		4.2.5 Hypothesis: Branches Compete	59
	4.3	Mechanisms of Competition	60
	4.4	Conclusions and Future Prospects	61
	Refe	rences	62
5		Role of Root Apices in Shoot Growth Regulation:	-
		oort for Neurobiology at the Whole Plant Level? • M. Neumann	65
	5.1	Introduction	65
	5.2	The Comparative Need for Rapid Neurobiological Activity	
	5.3	in Animals and Plants	66
	5.4	and Vascular Tissues Do Plant Shoot Responses to Environmental Stresses	67
		Require Rapid Root-to-Shoot Signaling?	69
	5.5	Conclusions and Future Perspectives	72
	Refe	rences	72

Contents XIII

6	Reco	gnitio	Targets Triggered by Self-Incompatibility in Plants: n of "Self" Can Be Deadly s, S. Huang, C.J. Staiger, V.E. Franklin-Tong	75
			luction	75
	6.1		Pollen-Pistil Interactions	75 76
		6.1.1		
	()	6.1.2	1 /	
	6.2		actin Cytoskeleton and Self-Incompatibility	
			Actin as a Sensor of Environmental Stimuli	78
		6.2.2	Actin as a Target for Self-Incompatibility Signals	70
			in Incompatible Pollen	79
		6.2.3	Self-Incompatibility Stimulates Rapid	0.0
			and Sustained Depolymerization of F-Actin	80
		6.2.4	Increases in Cytosolic Calcium Lead to Changes	0.1
			in F-Actin	81
		6.2.5	Profilin and Gelsolin:	
			Mediators of Actin Alterations?	
		6.2.6	PrABP80 is Poppy Gelsolin	
	6.3	_	ammed Cell Death and Self-Incompatibility	
		6.3.1	Key Features of Programmed Cell Death	84
		6.3.2	Programmed Cell Death is Triggered During	
			the <i>Papaver</i> Self-Incompatibility Response	85
		6.3.3	A Link Between Actin	
			and Programmed Cell Death?	
	6.4	Concl	usions and Future Perspectives	87
	Refe	rences		89
7			eption and Transduction in Plant Innate Immunity	95
	Thor	sten Ni	ürnberger, Birgit Kemmerling	
	7.1	Introd	duction	95
	7.2	PAME	Ps as Triggers of Nonplant Cultivar-Specific	
			e Immune Responses	96
	7.3		Pattern Recognition Receptors	
			ate PAMP Perception and Activation	
			n-Cultivar-Specific Plant Defense	98
	7.4		gen Recognition	
			st Cultivar-Specific Resistance	100
	7.5		cellular Signal Transduction	
			nt Innate Immunity	102
	7.6		usions and Future Prospects	
		cancas	<u> </u>	

XIV Contents

8	in In	compa	e Involvement itible Plant–Pathogen Interactions Stefano, Alberto Ferrarini, Massimo Delledonne	111
			•	111
	8.1		duction	
	8.2		ation of the Defense Response	. 112
	8.3		roduction During the Hypersensitive Disease	112
	0.4		tance Response	. 113
	8.4		rimental Approaches for Manipulation	114
	0.5		dogenous NO Levels	
	8.5		nd Cell Death	
	8.6		ignaling in the Plant Defense Response	
	8.7		mic Acquired Resistance and NO	
	8.8		lusions and Future Prospects	
	Refe	rences		. 119
^	E	. C-11 T	Similar to Organ Charac Nitalia Omida	
9			Division to Organ Shape: Nitric Oxide	122
			in Auxin-Mediated Root Development	123
			ana Lanteri, Magdalena Graziano,	
			rea-Aragunde, Lorenzo Lamattina	
	9.1		duction	
			Auxins Control Root Development	. 124
		9.1.2	Nitric Oxide Is a New Player in Auxin-Mediated	
			Root Development: Summary of Its Effects	. 125
	9.2	Nitric	Oxide Mediates Auxin-Induced	
		Latera	al Root Development	. 127
	9.3	Nitric	Oxide Is Required for Adventitious Root Formation	. 129
		9.3.1	Nitric Oxide Acts Downstream of Auxins	
			to Induce Adventitious Root Formation	. 130
		9.3.2	Nitric Oxide Activates Cyclic GMP Dependent	
			Pathways During Adventitious Root Formation	. 130
		9.3.3	Nitric Oxide Induces Cyclic GMP Independent	
			Pathways During Adventitious Root Formation	. 131
	9.4	Concl	lusions and Future Perspectives	
	Refe		<u>-</u>	
10	Neur	otrans	smitters, Neuroregulators and Neurotoxins in Plants	137
	Susa	n J. Mu	ırch	
	10.1	Neuro	otransmitters: Signaling Molecule in Plants?	. 137
			oregulators in Plants	
			otoxins in Plants	
			lusions and Future Prospects	
		rences	*	148

Contents XV

11	of Ne	no Acid Transport in Plants and Transport curotransmitters in Animals: a Common Mechanism? as Müller, Wolfgang Koch, Daniel Wipf	153
	11.1	Introduction	153
		Amino Acid Transport in Animals	
		11.2.1 Sodium Dicarboxylate Symporter Family	
		(SDS, SLC1)	154
		11.2.2 The Sodium- and Chloride-Dependent	
		Neurotransmitter Transporter Family (NTF, SLC6)	156
		11.2.3 Cationic Amino Acid Transporters and Heteromeric	
		Amino Acid Transporters (SLC7)	
		11.2.4 The Type I Phosphate Transporter Family (SLC17)	157
		11.2.5 The Vesicular Inhibitory Amino Acid Transporter	1
		Family (VIAAT, SLC32)	157
		11.2.6 The Proton/Amino Acid Transporter Family (PAT, SLC36)	157
		11.2.7 The Sodium-Coupled Neutral Amino	137
		Acid Transporter Family (SNAT, SLC38)	158
	11.3	Amino Acid Transport in Plants	
	11.0	11.3.1 Amino Acid-Polyamine-Choline Transporter Family	
		11.3.2 Amino Acid Transporter Family 1	
	11.4	Conclusions and Future Prospects	
		rences	
12	GAR	A and GHB Neurotransmitters in Plants and Animals	171
12		n Fait, Ayelet Yellin, Hillel Fromm	1,1
		Introduction	171
		The GABA Shunt and GABA Signaling	
		12.2.1 Mammalian GABA Signaling	
		12.2.2 GABA Signaling in Plants	
		12.2.3 GABA Transporters	
	12.3	GHB, a By-Product of the GABA Shunt	
		and a Neurotransmitter	177
		12.3.1 From Elixir of Life to Date-Rape Drug	177
		12.3.2 SSADH Inborn Deficiency: the Dark Side of GHB	178
		12.3.3 The GABA Shunt and Redox Imbalance:	
		from Bacteria to Humans	179
		12.3.4 The GABA Shunt, GHB,	
	10.4	and the Redox State in Plants	
		Conclusions and Future Perspectives	
	Ketei	ences	181

XVI Contents

13	The A	Arabidopsis thaliana Glutamate-like Receptor Family	187
	•	hew Gilliham, Malcolm Campbell, Christian Dubos,	10/
		<u>*</u>	
		Becker, Romola Davenport	
		Introduction	187
	13.2	Roles (and Effects) of Glutamate, Glycine	
		and Interrelated Amino Acids in Plants	
		13.2.1 Effects of Amino Acids on Plant Development	
		13.2.2 Glutamate and Glycine as Signalling Molecules	
	13.3		
		13.3.1 Expression	
		13.3.2 Amino Acid Binding and AtGLR Regulation	
		13.3.3 Are AtGLRs Ion Channels?	
		13.3.4 C:N Signalling	
		13.3.5 Stress Responses	
	13.4	Conclusions and Future Perspectives	
		13.4.1 Expression	
		13.4.2 Ligand Binding and Regulation	
		13.4.3 Knockout and Overexpression Phenotyping	198
		13.4.4 Heterologous Expression	
		13.4.5 NSCC Characterisation	200
	Refer	ences	200
14		larities Between Endocannabinoid Signaling	
		nimal Systems and N-Acylethanolamine	
		bolism in Plants	205
	Eliso	n B. Blancaflor, Kent D. Chapman	
	14.1	Introduction and Overview of Mammalian	
		Endocannabinoid Signaling	205
	14.2	NAE Structure and Occurrence in Plants	207
	14.3	NAE Metabolism in Plants	208
		14.3.1 NAE Formation	208
		14.3.2 NAE Hydrolysis	210
		14.3.3 NAE Oxidation	
		14.3.4 NAPE Formation	212
	14.4	Prospective Functions of NAE in Plants	213
		14.4.1 NAEs in Plant Defense Responses	
		14.4.2 NAE in Seed Germination and Seedling Growth	
	14.5	Conclusions and Future Prospects	
	_	ences	

Contents XVII

15	by Ex	lation of Plant Growth and Development stracellular Nucleotides ley J. Roux, Charlotte Song, Collene Jeter	221
	15.1	Introduction	
		of Cytoplasmic Calcium Ions	222
		15.2.2 Induced Changes in Superoxide Production	227
	15.3	Slower Growth Response Changes Induced by eATP	228
		Conclusions and Future Perspectives	
	Refe	rences	232
16	Phys	iological Roles of Nonselective Cation Channels	
	in th	e Plasma Membrane of Higher Plants	235
	Vadi	m Demidchik	
		Introduction	
		Physiological Roles of Animal NSCC	
		Functional Classification of Plant NSCC	
	16.4	The Role of NSCC in Plant Mineral Nutrition	237
		16.4.1 Potassium and Ammonium	
		16.4.2 Calcium and Magnesium	238
		16.4.3 Microelements and Trace Elements	
		The Role of NSCC in Plant Signalling	
		The Role of NSCC in Plant Growth and Development	
		Conclusions and Future Perspectives	
	Refe	rences	244
17		h-Responsive Behaviors and Gene Expression in Plants beth McCormack, Luis Velasquez, Nikkí A. Delk, Janet Braam	249
	17.1	Specialized Plants – Touch Responses That Catch Attention	249
		Thigmotropism – Vines, Tendrils and Roots	
		Thigmomorphogenesis – Plasticity of Shoot Growth	
		Mechanosensitive Gene Expression	
		Conclusions and Future Prospects	
		rences	
18	Oscil	lations in Plants	261
	Serge	ry Shabala	
	18.1	Introduction	261
		Diversity and Hierarchy of Plant Oscillators	
		18.2.1 Spatial and Temporary Hierarchy	
		18.2.2 Functional Expression	

XVIII Contents

	18.3	Advantages and Principles of Oscillatory Control	268
		18.3.1 Feedback Control, Damping and Self-Sustained Oscillations	260
		18.3.2 Advantages of Oscillatory Strategy	
		18.3.3 Deterministic Chaos and "Strange" Behaviour	
		18.3.4 Resonant Regimes	
		Conclusions and Future Perspectives	
	Refer	ences	272
19		0 0	277
	Kazii	nierz Trebacz, Halina Dziubinska, Elzbieta Krol	
	19.1	Action Potentials	277
		19.1.1 General Characteristics	277
		19.1.2 Ion Mechanism of Action Potentials	278
		19.1.3 Ways of Action Potential Transmission	283
		19.1.4 Physiological Implication of Plant Excitation	
	19.2	Conclusions and Future Perspectives	
		ences	
20	Slow	Wave Potentials – a Propagating Electrical Signal	
			291
		er Stahlberg, Robert E. Cleland, Elizabeth Van Volkenburgh	
	20.1		
	20.1	of Electrical Long-Distance Signals in Plants	292
	20.2	Propagating Depolarization Signals in Plants	
		SWPs are Hydraulically-Induced Depolarizations	
		The Propagation of SWPs	
		The Ionic Mechanism of SWPs	
		The Effects of SWPs: Targeted Organs	
		WPs and SWPs	
	Keier	rences	305
21		rical Signals, the Cytoskeleton, and Gene Expression:	
		pothesis on the Coherence of the Cellular Responses	200
			309
	Eric I	Davies, Bratislav Stankovic	
	21.1	Introduction to the Hypothesis	
	21.2	Evidence for Our Hypothesis	312
		21.2.1 Electrical Signals and Translation	
		21.2.2 Calcium, the Cytoskeleton, and Translation	
		21.2.3 Calcium Channels, the Cytoskeleton, and Transcription	315

Contents XIX

	21.3	Conclusions and Perspectives:	210
	Dofor	The "Help! It's a Virus" Hypothesisences	
	Refer	ences	310
22	Char	acteristics and Functions of Phloem-Transmitted	
		rical Signals in Higher Plants	321
	Jörg I	Fromm, Silke Lautner	
	22.1	Introduction	321
		Signal Perception and Short-Distance Electrical Signalling \dots	
		Long-Distance Signalling via the Phloem	
		Characteristics of Phloem-Transmitted Action Potentials	
		Ion Channels of the Phloem	
		Functions of Electrical Signals in Higher Plants	
		Conclusions and Future Perspectives	
	Refer	ences	329
23	Long	-Distance Signal Transmission in Trees	333
		no Mancuso, Sergio Mugnai	555
	•	Introduction	333
		Transmission of Chemicals	
		23.2.1 From Where Does ABA Come?	
		23.2.2 How Much ABA Is Involved in the Response	
		of Trees to Drought?	335
		23.2.3 ABA and Xylem Sap pH	
		Hydraulic Signals	
		Integration of Chemical and Hydraulic Signals	
		Electrical Signals	
		Airborne Flow of Volatile Messengers	
		Colour Signals	
		Conclusions and Future Prospects	
	Refer	ences	343
24	Elect	rophysiology and Phototropism	351
		ander G. Volkov	
	24.1	Introduction	351
	24.2	Phototropism and Photosensors	353
		Electrochemical Circuits	355
	24.4	Measuring of Action, Graded,	
		and Variation Potentials in Plants	
		Light-Induced Electrophysiological Signaling in Plants	
	Vator	an cas	365

XX Contents

25		ro-Electrochemical Integration of the Higher Plant – s for Electrogenic Flower Induction	369
	Edgar Wagner, Lars Lehner, Johannes Normann,		
	Justyna Veit, Jolana Albrechtová		
	25.1	State of the Art in Photoperiodic Control of Flowering in Short- and Long-Day Plants	369
	25.2	Rhythms in SER as Markers of Photoperiodic Control and Interorgan Communication in a Long-	
		and a Short-Day Plant	373
	25.3	Early Changes at the Shoot Apical Meristem During Flower Induction	373
	25.4	Evolution of Circadian Frequencies – Timing of Metabolic Controls	
	25.5	Circadian Rhythmic Organisation of Energy Metabolism in <i>C. rubrum</i> and the Gating of Photoreceptor	
		(Phytochrome) Action	
		Hydraulic–Electrochemical Integration of the Whole Plant \dots	378
	25.7	Electrophysiological Integration of Activity of the Whole Plant – Monitoring of Surface Sum Potentials	380
	25.8	Substitution of Photoperiodic Flower Induction	205
	25.0	by Electrogenic Flower Induction	
		Conclusions and Future Perspectives	
	Refer	ences	307
26		als and Signalling Pathways in Plant Wound Responses 1y D. Rhodes, John F. Thain, David C. Wildon	391
	26.1	Introduction	391
		Patterns of Proteinase Inhibitor Activity and Electrical Activity Following a Variety	
		of Wounding Protocols Applied to Tomato Seedlings	394
	26.3	Conclusions and Future Prospects	
		rences	
27		Exudation and Rhizosphere Biology:	
	Laur	iple Functions of a Plant Secondary Metabolite a G. Perry, Tiffany L. Weir, Balakrishnan Prithiviraj, c W. Paschke, Jorge M. Vivanco	403
	27.1	Introduction	403
	27.2	C. maculosa Invasion Ecology	
	27.3	(±)-Catechin, Allelopathy, and Cell Death	407
		27.3.1 Identification of the Allelochemical	

Contents XXI

		27.3.2 Catechin Induces Reactive Oxygen Species	
		and Ca ²⁺ -Mediated Cell Death	408
		27.3.3 Catechin Exposure Leads to Genome-Wide Changes	
		in Arabidopsis	409
		27.3.4 (±)-Catechin Is Present at Phytotoxic Concentrations	
		in C. maculosa Soils	410
		27.3.5 The Role of (±)-Catechin in <i>C. maculosa</i> Invasion	411
		(±)-Catechin and C. maculosa Autoinhibition	
	27.5	(±)-Catechin Effects on Soil Communities	413
	27.6	(±)-Catechin, Soil Processes, and Nutrient Availability	415
	27.7	Conclusions and Future Prospects	416
	Refer	ences	417
28		munication Between Undamaged Plants by Volatiles:	
		ole of Allelobiosis	421
	Veler	nir Ninkovic, Robert Glinwood, Jan Pettersson	
	28.1	Introduction	421
		28.1.1 Plant-Plant Communication via Volatiles -	
		a Complex Language	423
		28.1.2 Experimental Considerations	
		in Plant-Plant Communication	423
	28.2	Allelobiosis in Barley	424
		28.2.1 Barley Plant Responses to Plant Volatiles	424
		28.2.2 Allelobiosis and Plant Responses	
	28.3	Allelobiosis and Insect Responses	427
		28.3.1 Allelobiosis and Aphid Response	428
		28.3.2 Allelobiosis and Ladybird Searching Behaviour	430
	28.4	Conclusions and Future Prospects	431
	Refer	rences	432
_			
Su	bject	Index	435

Contributors

Albrechtová, J.

University of Freiburg, Institute of Biology II, Schänzlestr. 1,79104 Freiburg, Germany

Baluška, F. (e-mail: baluska@uni-bonn.de)

University of Bonn, Institute of Cellular and Molecular Botany, Kirschallee 1, 53115 Bonn, Germany

Barlow, P.W. (e-mail: P.W.Barlow@bristol.ac.uk)

University of Bristol, School of Biological Sciences, Woodland Road, Clifton, Bristol BS8 1UG, UK

Becker, D.

Julius von Sachs Institute for Biosciences, University of Würzburg, 97082 Würzburg, Germany

Blancaflor, B.E. (e-mail: eblancaflor@noble.org)

Staff Scientist, Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA

Braam, J. (e-mail: braam@bioc.rice.edu)

Rice University, 6100 S. Main St., Houston, TX 77005, USA

Campbell, M.

Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2

Chapman, K.D.

Center for Plant Lipid Research, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA

Cleland, R.E.

Department of Biology, University of Washington, Seattle, WA 98195–5325, USA

XXIV Contributors

Correa-Aragunde, N.

Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245 (7600) Mar del Plata, Argentina

Davenport, R.

Stress Physiology Laboratory, Department of Plant Sciences, University of Cambridge, Downing Site, Cambridge CB2 3EA, UK

Davies, E. (e-mail: edavies@edavies.mail.ncsu.edu)

North Carolina State University, Department of Botany, 1231 Gardner Hall, Raleigh, NC 27695, USA

Delk, N.A.

Biochemistry and Cell Biology, Rice University, 6100 S. Main St., Houston, TX 77005–1892, USA

Delledonne, M. (e-mail: massimo.delledonne@univr.it)

Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada Le Grazie 15 – Cà Vignal, 37134 Verona, Italy

Demidchik, V. (e-mail: vd211@hermes.cam.ac.uk)

University of Cambridge, Department of Plant Sciences, Downing Street, Cambridge, CB2 3EA, UK

Dubos, C.

Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2

Dziubinska, H.

Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland

Fait, A.

Department of Plant Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel

Ferrarini, A.

Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy

Franklin-Tong, V.E. (e-mail: v.e.franklin_tong@bham.ac.uk)

Professor of Plant Cell Biology, School of Biosciences, University of Birmingham, Edgbaston, B15 2TT,

Contributors XXV

Fromm, H. (e-mail: HillelF@tauex.tau.ac.il)

Tel Aviv University, Department of Plant Sciences, 69978 Tel Aviv, Israel

Fromm, J. (e-mail: fromm@holz.forst.tu-muenchen.de)

TU University of München, FG Holzbiologie, Winzererstrasse 45, 80797 München, Germany

Gilliham, M. (e-mail: mg253@cam.ac.uk)

University of Cambridge, Department of Plant Sciences, Stress Physiology Laboratory, Downing Site, Cambridge, CB2 3EA, UK

Glinwood, R.

Department of Entomology, Swedish University of Agricultural Sciences, P.O. Box 7044, 750 07 Uppsala, Sweden

Graziano, M.

Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245 (7600) Mar del Plata, Argentina

Hlavacka, A.

Institute of Botany, Slovak Academy of Sciences, Dubravska 14, 84223 Bratislava, Slovak Republic

Huang, S.

Department of Biological Sciences & The Bindley Bioscience Center, Purdue University, 201 S. University Street, West Lafayette, IN 47907-2064, USA

Jeter, C.

Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, 1808 Park Rd 1C, Smithville, TX 78957, USA

Kemmerling, B.

Zentrum für Molekularbiologie der Pflanzen (ZMBP), Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany

Koch, W.

Plant Physiology, ZMBP, Auf der Morgenstelle 1, 72076 Tübingen, Germany

Krol, E.

Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland

XXVI Contributors

Lamattina, L. (e-mail: lolama@mdp.edu.ar)

Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina

Lanteri, M.L.

Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245 (7600) Mar del Plata, Argentina

Lautner, S.

Fachgebiet Holzbiologie, TU München, Winzererstrasse 45, 80797 München, Germany

Lehner, L.

University of Freiburg, Institute of Biology II, Schänzlestr. 1,79104 Freiburg, Germany

Mancuso, S. (e-mail: stefano.mancuso@unifi.it)

University of Florence, Department of Horticulture, Electrophysiology Laboratory, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy

McCormack, E. (e-mail: braam@rice.edu)

Biochemistry and Cell Biology, Rice University, 6100 S. Main St., Houston, TX 77005–1892, USA

Mugnai, S.

Department of Horticulture, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy

Müller, T.

NGW Transport in Mycorrhiza, IZMB – Institut für Zelluläre und Molekulare Botanik Bonn, University of Bonn, Kirschallee 1, 53115 Bonn, Germany

Murch, S. (e-mail: smurch@mail.ntbg.org)

Institute for Ethnobotany, National Tropical Botanical Garden, Kalaheo, HI 96741, Hawaii

Neumann, P.M. (e-mail: agpetern@techunix.technion.ac.il)

Technion-Israel Institute of Technology, Department of Environmental, Water and Agricultural Engineering, Plant Physiology Laboratory, Haifa 3200, Israel

Ninkovic, V. (e-mail: Velemir.Ninkovic@entom.slu.se)

Swedish University of Agricultural Sciences (SLU), Department of Entomology, P.O. Box 7044, 750 07 Uppsala, Sweden

Contributors XXVII

Normann, J.

University of Freiburg, Institute of Biology II, Schänzlestr. 1, 79104 Freiburg, Germany

Nürnberger, T. (e-mail: nuernberger@uni-tuebingen.de)

Center for Plant Molecular Biology, Research Group Plant Biochemistry, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany

Paschke, M.W.

Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, USA

Perry, L.G. (e-mail: lperry@lamar.colostate.edu)

Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, USA

Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA

Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, CO 80523, USA

Pettersson, J.

Department of Entomology, Swedish University of Agricultural Sciences, P.O. Box 7044, 750 07 Uppsala, Sweden

Prithiviraj, B.

Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, USA

Rhodes, J.D. (e-mail: j.rhodes@uea.ac.uk)

School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Roux, S.J. (e-mail: sroux@uts.cc.utexas.edu)

University of Texas, School of Biological Sciences, Molecular Cell and Developmental Biology, Austin, TX 78712, USA

Sachs, T. (e-mail: tsachs@vms.huji.ac.il)

Hebrew University of Jerusalem, Alexander Silberman Istitute of Life Science, Department of Plant Sciences, Edmond Safra Campus, Givat Ram, 91904 Jerusalem, Israel

Shabala, S. (e-mail: Sergey.Shabala@utas.edu.au)

University of Tasmania, School of Agricultural Science, Private Bag 54, Hobart, Tas 7001, Australia

XXVIII Contributors

Song, C.

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA

Stahlberg, R.

Department of Biology, University of Washington, Seattle, WA 98195–5325, USA

Staiger, C.J.

Department of Biological Sciences & The Bindley Bioscience Center, Purdue University, 201 S. University Street, West Lafayette, IN 47907-2064, USA

B. Stankovic

Brinks Hofer Gilson & Lione, 455 N. Cityfront Plaza Drive, Chicago, IL 60611, USA

Stefano, M.D.

Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy

Thain, J.F.

School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK

Thomas, S.G.

School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Trebacz, K. (e-mail: trebacz@biotop.umcs.lublin.pl)

Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland

Trewavas, A. (e-mail: trewavas@ed.ac.uk)

University of Edinburgh, Institute of Cell and Molecular Biology, Mayfield Road, Edinburgh EH9 3JH, Scotland

Van Volkenburgh, E. (e-mail: lizvanv@u.washington.edu)

University of Washington, Biology Department, 407 Hitchcock Hall, Seattle, WA 98195-5325, USA

Veit, J.

University of Freiburg, Institute of Biology II, Schänzlestr. 1,79104 Freiburg, Germany

Contributors XXIX

Velasquez, L.

Biochemistry and Cell Biology, Rice University, 6100 S. Main St., Houston, TX 77005–1892, USA

Vivanco, J.M.

Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, USA

Volkov, A.G. (e-mail: gvolkov@oakwood.edu)

Department of Chemistry, Oakwood College, 7000 Adventist Blvd., Huntsville, AL 35896, USA

Volkmann, D.

Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms University Bonn, Kirschallee 1, 53115 Bonn, Germany

Wagner, E. (e-mail: Edgar.Wagner@biologie.uni-freiburg.de) Albert-Ludwigs University, Institute of Biology, Schanzlerstr. 1, 79104 Freiburg, Germany

Weir, T.L.

Center for Rhizosphere Biology, Colorado State University, Fort Collins, CO 80523, USA

Wildon, D. (e-mail: D.Wildon@uea.ac.uk)

University of East Anglia, School of Biological Sciences, Norwich, NR4 7TJ, UK

Wipf, D. (e-mail: dwipf@uni-bonn.de)

NWG Transport in der Mykorrhiza, IZMB – Institut für Zelluläre und Molekulare Botanik Bonn, University Bonn, Kirschallee 1, 53115 Bonn, Germany

Yellin, A.

Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel

The Green Plant as an Intelligent Organism

Anthony Trewavas

Abstract Intelligence is an aspect of complex adaptive behaviour and a term not normally applied to plants. This chapter indicates a change in concept is long overdue and if poets can recognize it (above) so should scientists. Networks that control information flow are described as intelligent and such networks exist in all single living cells and in more complex multicellular organisms. Phosphoneural bacterial networks are briefly considered and these exist in a slightly different molecular but more complex form in higher plant and animal cells. Intelligent behaviour involves the whole organism and such integration involves complex communication. Evidence that plants forage and act intelligently in acquiring resources is indicated. The phenotype is actively (not passively) constructed in response to a complex changing environment by decisions that best secure the well-being of the individual plant within the life cycle goal of optimal fitness.

More and more I have come to admire resilience Not the simple resistance of a pillow whose foam Returns over and over to the same shape but the sinuous Tenacity of a tree: finding the light newly blocked on one side It turns to another. A blind intelligence true But out of such persistence arose turtles, rivers, Mitochondria figs-all this resinous un-retractable earth.

Jane Hirshfield (2005)

1.1 Introduction

Intelligence is an aspect of adaptive behaviour, even in humans. Organisms that live in challenging but variable and competitive circumstances require forms of behaviour that rise to that challenge and must be equally flexible to improve fitness. Those best able to master their environment are those most likely to succeed in the Darwinian wars. "The success of a species depends on it performing well (surviving and producing offspring, i.e. fitness) in its own particular environment. And intelligence plays a critical part in this success." Warwick 2001, p. 9). Since the life cycle is probably a primary target of natural selection (McNamara and Houston 1996; Schlichting and Pigliucci 1998), efficient acquisition of necessary food resources during growth and development is an important aspect of subsequent fitness because there is a common relation between accumulated resources and subsequent sibling number (Bazzaz 1996).

Communication in Plants

F. Baluška, S. Mancuso, D. Volkmann (Eds.)

© Springer-Verlag Berlin Heidelberg 2006

2 A. Trewavas

1.1.1

The Problems of Subjective Intelligence

Before embarking on a discussion of plant intelligence it is essential to indicate what is meant by the term. The actual word is derived from the Latin *inter legere* meaning simply to choose. Dictionary definitions of intelligence use terms such as self-recognition or capacity for understanding and are couched in human terms. These definitions are perfectly adequate for public discussion that usually only involves human beings. But for biologists who wish to investigate and understand intelligence in other organisms such definitions lack useful substance.

A common problem is subjective intelligence. For example the cyberneticist, Warwick (2001, p. 9) states that "Comparisons (of intelligence) are usually made between characteristics that humans consider important; such a stance if of course biased and subjective in terms of the groups for whom it is being used." And as he shows is easily discredited. "When we compare the important aspects of intelligence, it is those which allow one species to dominate and exert power over other species that are of prime importance" (Warwick 2001). Bearing in mind the fact that plants dominate the planet, this statement is of importance for understanding plant intelligence. A further common assumption is that only organisms with brains (primates, cetaceans, crows) can be intelligent. Vertosick (2002) describes this as simple "brain chauvinism" and Schull (1990) goes further in stating that such views ascribe nerve cells as having some sort of vitalistic quality.

1.1.2

An Ability to Integrate a Multiplicity of Information into a Response Is an Important Intelligent Capability

Plants and animals are not passive objects in the face of environmental disturbance as indicated in the poem by Hirshfield (2005). They react and positively fashion themselves according to the information (signals) being received. Behaviour is the response to signals (Silvertown and Gordon 1989). Animals move when signalled, plants change their phenotype (Trewavas 2003). After that information is processed and integrated with the internal information, a response is constructed that improves fitness, the ultimate goal.

Green plants respond to numerous environmental biotic factors such as food resources (light, minerals, water) mechanical stimuli, humidity, soil structure, temperature and gases (Trewavas 2000; Turkington and Aarsen 1984). In each case the strength, direction, specific characteristics (e.g.

light wavelength) and intensity can be separately discriminated (Ballare 1994, 1999), and further complexity is added by virtue of the availability of resources being present either in fluctuating quantities varying from seconds to months, gradients with fluctuating intensity or a mosaic in the soil of vastly different concentrations (Bell and Lechowicz 1994; Farley and Fitter 1999; Grime 1994; Kuppers 1994; Pearcy et al. 1994; Robertson and Gross 1994) and others. Biotic signals are also sensed and acted upon and these include space; presence, absence and identity of neighbours (Tremmel and Bazzaz 1993); disturbance; competition (Darwinkel 1978; Goldberg and Barton 1992; Tremmel and Bazzaz 1995), predation and disease (Callaway et al. 2003; Turkington and Aarsen 1984). We understand little of the nature of the signals involved. Growth of individuals and neighbours continually and specifically changes the information spectrum.

There is no unique separate response to each signal in this complex but merely a response issued from an integration of all environmental and internal information. In the case of green plants, the visible response to signals is phenotypic plasticity (Bradshaw 1965; Schlichting and Pigliucci 1998; Sultan 2000). During information processing all signals meet somewhere in the cellular and tissue reactions that specify changes in form.

In seeking to understand the biological origins of human intelligence, Stenhouse (1974) described intelligence as adaptively variable behaviour during the lifetime of the individual in an attempt to discriminate intelligent behaviour from autonomic, that is unvarying, responses. Given the plethora of signals that plants integrate into a response, autonomic responses do not occur. Signal perception is instead ranked according to assessments of strength and exposure. But autonomic responses can be rejected; the numbers of different environments that any wild plant experiences must be almost infinite in number. Only complex computation can fashion the optimal fitness response.

1.1.3 Experimental Circumstances Can Be Misleading

When one factor is experimentally varied at a time in an attempt to simplify the complexity that wild plants normally experience, all those factors that do not vary are still sensed and integrated with the modified variable. For example, exposing a dicot seedling root to a gravitational signal leads to the textbook response of a resumption of vertical growth. But gradients of humidity, minerals, light, temperature imposed in a different direction or touch can override the gravity signal (Eapen et al. 2003; Massa and Gilroy 2003). Further complexity can result from an individuality in response to any one imposed signal (Trewavas 1998). Again for example with

4 A. Trewavas

gravity, the growth trajectories with which each root approaches the vertical can be individual (Bennett-Clerk and Ball 1951, referenced in Trewavas 2003).

The common use of statistics to obliterate individual variation leads to assumptions that the response to signals is always replicable. If the same signal and response are chosen, the same genotype, the environmental conditions are identical and the results are averaged statistically, this is no doubt true (but then the same can be said of an IQ test for human beings). No such simplicity of circumstance is available to an individual wild plant, which in meeting an almost infinite variety of environmental states must construct individual responses to improve its own fitness. No genome could contain the information that would provide an autonomic response to every environmental state. And even cloned individuals do not exhibit identical responses.

However, it is not just abiotic factors that are critical. Natural selection operates on individuals and Darwin (1859) considered that there is "a deeply seated error of considering the physical conditions of a country as the most important for its inhabitants whereas it cannot be disputed that the nature of other inhabitants with which each one has to compete is generally a far more important element of success." Considering the number of different species and individuals that co-exist, each one variable in phenotype and characteristics, any individual plant faces complexity not simplicity. Instead we are left only with the possibility of non-heritable (epigenetic) means whereby optimal fitness is achieved. Plants adequately meet the Stenhouse (1974) definition of intelligence.

1.2 Intelligent Behaviour of Single Cells

1.2.1

Molecular Networks in Single Eucaryote Cells

Cells are organized structures and vital properties result from the connections between the molecular constituents of which they are composed (Kitano 2002; Trewavas 1998). Numerous molecular connections integrate into a higher emergent organized order that we recognize as living. It is now known (1) that various steps in metabolism act like many Boolean computer logic gates such as AND, OR and NOR (Bray 1995) and are termed chemical neurons (Arkin and Ross 1994; Hjelmfelt and Ross 1992; Okamoto et al. 1987), (2) that these chemical neurons can act as pattern-recognition systems (Hjelmfeldt et al. 1993), (3) that proteins can act as computational elements (Bray 1995), and (4) that protein phosphorylation using about