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Preface

As we enter the new millennium, plant biology is witnessing dramatic ad-
vancements in studies related to the complex behaviour of higher plants
which are now beginning to reveal intelligent behaviour. Surprisingly, it
is plant ecology which is leading in the revelation that plants behave as
though having conscious comprehension of themselves and of their envi-
ronment. Charles Darwin was the first who noted the abilities of plants to
communicate with their environment and translate this information into
active movements of their organs (Darwin 1880).

Plants recognize other organisms such as bacteria, fungi, other plants,
insects, birds, and animals that presumably also include us, humans (Tak-
abayashi and Dicke 1996; Paré and Tumlinson 1999; Kessler and Baldwin
2001). For instance, to accomplish their sexual reproduction, plants rely
on complex interactions with insects and birds. In order to achieve this,
and as Charles Darwin was one of the first to show (Darwin 1862), plants
generate specially shaped sexual organs which allow insects and birds ac-
cess to their flowers. Moreover, plants reward these pollinators with nectar
and other compounds which are both attractive and a necessary part of
the diet of these insect/bird feeders (Cozzolino and Widmer 2005). Com-
plex interactions have been recorded between insect pheromones and plant
volatile semiochemicals (Reddy and Guerrero 2004). In the case of many
Arum spp., the insect-attracting plant volatiles with a dung-like odour are
exactly those chemicals which attract insects to animal dung where they
would otherwise gather and reproduce (Kite et al. 1998). These plants are
thus masters of a deceptive and intelligent strategy for their own repro-
duction. Moreover, plants appear to possess an innate type of immunity
system which closely resembles that of animals (Nürnberger et al. 2004)
and, interestingly in this respect, there are also several parallels between the
recognition of self and non-self in plant breeding systems and histocompat-
ibility in animals (Nasrallah 2005). Plant roots of Fabaceae can recognize
and ‘domesticate’ Rhizobium bacteria within nodules, and the composite
bacteroids then supply the host plants with nitrogen. Less well known,
perhaps, is that some plants recognize and communicate with ants (and
vice versa) which protect them against herbivores, pathogens as well as
competing vegetation (Brouat et al. 2001; Dejean et al. 2005). The plants, in
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turn, reward the ants by secreting nectar (Heil et al. 2005) and constructing
special food bodies (Solano et al. 2005). Plants actively recognize the iden-
tity of herbivores and are then able to recruit their enemies (Arimura et al.
2005). For instance, plant roots attacked by insect predators release volatiles
which then attract particular species of nematodes that kill these predators
(Rasmann et al. 2005). In addition, by releasing volatiles into the aerial en-
vironment, plant shoots infected by pathogens inform their neighbouring
plants about immanent danger and they can then increase their immunity
against these pathogens (Paré and Tumlinson 1999; Reddy and Guerrero
2004). Intriguingly, the signature of released volatiles is characteristic for
herbivore damage but is different from that resulting from a general wound
response (Reddy and Guerrero 2004; Arimura et al. 2005). Nicotiana atten-
uata attacked by the hornworm, Manduca sexta, accumulates nicotine,
which poisons acetylcholine receptors, and is thus toxic to those organisms
which relyonneuromuscular junctions (Baldwin2001). Interestingly in this
respect, plants express neuronal acetylcholinesterase (Sagane et al. 2005)
and use acetylcholine also for their neuronal-like cell–cell communication
(Momonoki et al. 1998). Furthermore, during their phylogeny, plants can
also switch from an autotrophic to a heterotrophic lifestyle – a feat which,
in the case of parasitic or carnivorous plants, requires the active selection
of suitable host/prey organisms (Albert et al. 1992).

Plants are extremely mechanosensitive. Their roots exhibit thigmotrop-
ism, which enables them to explore, with an animal-like curiosity, their
environment in a continual search for water and solutes, and their shoots
sometimes seek support by means of tendrils, assisted in this task by
volatiles such as jasmonates. Root apices constantly monitor the numerous
physical parameters of the soil and use this information in their search
for better niches for survival and reproduction. In this behaviour, plant
roots closely resemble fungi and, indeed, most roots enter symbiotic in-
teractions with mycorrhizal fungi in order to increase their efficiency in
obtaining critical ions such as phosphorus. In fact, roots might prove to
be descendents of ancient fungi which, by entering into close association
with their symbiotic photoautotrophs, have developed into heterotrophic
roots – there are, after all, close resemblances between the anatomies and
functions of apices of both rhizomorphs and roots (Botton and Dexheimer
1977) – while photoautotrophs have developed into the autotrophic shoots
of the organisms now known as vascular plants (Atsatt 1988; Selosse and
Le Tacon 1998; Heckman et al. 2001). This scenario is strongly supported
by present-day pioneer colonizers such as lichens, which, just as was the
case with early land plants (Yuan et al. 2005), are able to survive in even
the most extreme of environmental conditions.

Literally, plants nourish the whole world. They intercept the light energy
arriving on Earth from the sunbeams and transform it via energy-poor
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inorganic compounds into energy-rich organic matter which then serves
as the food for all heterotrophic organisms. Also, the gasoline which fuels
many of Man’s mechanical devices is of plant origin. Plants thus stand
at the interface between a seemingly hostile and violent universe, and
a fertile planet Earth teeming with life. We might postulate that if we
could understand plants better, they could reveal to us something of the
great mystery of life. Aristotle and his pupils were convinced that plants
have complex inner life including thoughts, memories, dreams, and plans
for the future. Unfortunately, our contemporary science considers plants
rather as passive creatures to be exploited if discovered to be useful, and
to be cleared away if not. However, their passivity – that is, their inability
to change their location or to communicate via sounds – is only relative to
the hyperactivity of human existence and the fleeting timescale of Man’s
artefacts. But the recent advances in ecology and phenomenology outlined
above urge a change in this biased perception of higher plants.

We should also remember that action potentials, the very characteristic
and rapidest way of neuronal communication, were discovered in plants in
1873 (Davies 2004). In those early days, the cellular basis of animal brains
was not accepted and the neuronal processes in brains were just starting
to be explored. Since then, a large amount of data has been accumulated
on electric phenomena in plants (Meylan 1971; Davies 2004). Currently,
new exciting discoveries are revealing that electrical signals modulate and
control such basic physiological processes in plants as photosynthesis and
phototropism (Koziolek et al. 2004; Volkov 2005). Unfortunately, the main-
stream of plant biology has never completely accepted plant electrophysi-
ology, so this field has survived in a quasi-dormant state up until now when
exciting advances in plant biology are allowing the introduction of plant
neurobiology as a newly emerging field of plant sciences. One foundation
of this new science is the discovery that not only do plant cells express
diverse neuronal molecules but that they also communicate together via
plant synapses (Baluška et al. 2005).

These glimpses of the fascinating and breathtaking complexity of plants
raise urgent questions which will dominate the whole field of plant biology
in the next decades. In particular: Do plants have some type of neuronal
system which resembles that which underlies the behaviour of animals?
Conversely, if plants turn out to be ‘brain-less’, then the question will
emerge where and how do they store and process the information which
theyobtainaboutboth theabioticandbiotic environments, andhowdothey
then use this information to optimize their future behaviour? Do plants feel
(as suggested by Aristotle) and experience pain? Further: Do plants hear,
and can they perceive odours? The truth is that we do not know, although
their extreme sensitivity to mechanical vibrations indicates that they can
perceive voices and their responses to volatile gases suggest they have a type
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of olfactory response. Importantly, our lack of knowledge should not justify
claims that plants do not possess these abilities and properties. In fact,
their complex, rational, and surely intelligent behaviour suggests just the
opposite. This is why we should be more sensitive to these issues and should
commence a serious enquiry into these urgent questions, utilizing minds
trained in the ‘scientific method’ but which can also clearly differentiate
between speculation and hypothesis (Huszagh and Infante 1989).

Is it by chance that the Greek word ‘neuron’ refers to vegetable fibre? In
fact, this happy and synchronistic coincidence might be taken to signify
that the term plant neurobiology is fully justified! This book brings together
all these new plant neuronal aspects and combines them with the classical
plant electrophysiology. Plant neurobiology is commencing its emergence
as a coherent science.

All the chapters of this volume were presented on the First Symposium on
Plant Neurobiology, Florence (Italy), 17–20 May 2005. This Symposium was
generously supported by Ente Cassa di Risparmio di Firenze. The editors
would like to express their gratitude for this support.

Bonn, Bristol and Florence, František Baluška, Peter W. Barlow,
July 2005 Stefano Mancuso and Dieter Volkmann

Finally, we wish to remember with affection Jolana Albrechtová (co-author
of Chap.25) who tragically died in a car accident on the 29th of November
2005 at the age of 39 years.
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1 The Green Plant as an Intelligent Organism
Anthony Trewavas

Abstract Intelligence is an aspect of complex adaptive behaviour and a term not normally
applied to plants. This chapter indicates a change in concept is long overdue and if poets
can recognize it (above) so should scientists. Networks that control information flow are
described as intelligent and such networks exist in all single living cells and in more complex
multicellular organisms. Phosphoneural bacterial networks are briefly considered and these
exist ina slightlydifferentmolecularbutmorecomplex forminhigherplant andanimal cells.
Intelligent behaviour involves the whole organism and such integration involves complex
communication. Evidence that plants forage and act intelligently in acquiring resources is
indicated. The phenotype is actively (not passively) constructed in response to a complex
changing environment by decisions that best secure the well-being of the individual plant
within the life cycle goal of optimal fitness.

More and more I have come to admire resilience Not the simple resistance of a pillow
whose foam Returns over and over to the same shape but the sinuous Tenacity of a tree:
finding the light newly blocked on one side It turns to another. A blind intelligence
true But out of such persistence arose turtles, rivers, Mitochondria figs-all this resinous
un-retractable earth.

Jane Hirshfield (2005)

1.1
Introduction

Intelligence is an aspect of adaptive behaviour, even in humans. Organisms
that live in challenging but variable and competitive circumstances require
forms of behaviour that rise to that challenge and must be equally flexible to
improve fitness. Those best able to master their environment are those most
likely to succeed in the Darwinian wars. “The success of a species depends
on it performing well (surviving and producing offspring, i.e. fitness) in
its own particular environment. And intelligence plays a critical part in
this success.” Warwick 2001, p. 9). Since the life cycle is probably a pri-
mary target of natural selection (McNamara and Houston 1996; Schlichting
and Pigliucci 1998), efficient acquisition of necessary food resources dur-
ing growth and development is an important aspect of subsequent fitness
because there is a common relation between accumulated resources and
subsequent sibling number (Bazzaz 1996).
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2 A. Trewavas

1.1.1
The Problems of Subjective Intelligence

Before embarking on a discussion of plant intelligence it is essential to
indicatewhat ismeantby the term.Theactualword isderived fromtheLatin
inter legere meaning simply to choose. Dictionary definitions of intelligence
use terms such as self-recognition or capacity for understanding and are
couched inhumanterms.Thesedefinitionsareperfectlyadequate forpublic
discussion that usually only involves human beings. But for biologists who
wish to investigate and understand intelligence in other organisms such
definitions lack useful substance.

A common problem is subjective intelligence. For example the cyber-
neticist, Warwick (2001, p. 9) states that “Comparisons (of intelligence)
are usually made between characteristics that humans consider important;
such a stance if of course biased and subjective in terms of the groups for
whom it is being used.” And as he shows is easily discredited. “When we
compare the important aspects of intelligence, it is those which allow one
species to dominate and exert power over other species that are of prime
importance” (Warwick 2001). Bearing in mind the fact that plants dom-
inate the planet, this statement is of importance for understanding plant
intelligence. A further common assumption is that only organisms with
brains (primates, cetaceans, crows) can be intelligent. Vertosick (2002) de-
scribes this as simple “brain chauvinism” and Schull (1990) goes further in
stating that such views ascribe nerve cells as having some sort of vitalistic
quality.

1.1.2
An Ability to Integrate a Multiplicity of Information
into a Response Is an Important Intelligent Capability

Plants and animals are not passive objects in the face of environmental
disturbance as indicated in the poem by Hirshfield (2005). They react and
positively fashion themselves according to the information (signals) be-
ing received. Behaviour is the response to signals (Silvertown and Gordon
1989). Animals move when signalled, plants change their phenotype (Tre-
wavas 2003). After that information is processed and integrated with the
internal information, a response is constructed that improves fitness, the
ultimate goal.

Green plants respond to numerous environmental biotic factors such as
food resources (light, minerals, water) mechanical stimuli, humidity, soil
structure, temperature and gases (Trewavas 2000; Turkington and Aarsen
1984). In each case the strength, direction, specific characteristics (e.g.
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light wavelength) and intensity can be separately discriminated (Ballare
1994, 1999), and further complexity is added by virtue of the availability
of resources being present either in fluctuating quantities varying from
seconds to months, gradients with fluctuating intensity or a mosaic in the
soil of vastly different concentrations (Bell and Lechowicz 1994; Farley and
Fitter 1999; Grime 1994; Kuppers 1994; Pearcy et al. 1994; Robertson and
Gross 1994) and others. Biotic signals are also sensed and acted upon and
these include space;presence, absenceand identityofneighbours (Tremmel
andBazzaz1993); disturbance; competition (Darwinkel 1978;Goldbergand
Barton 1992; Tremmel and Bazzaz 1995), predation and disease (Callaway
et al. 2003; Turkington and Aarsen 1984). We understand little of the nature
of the signals involved. Growth of individuals and neighbours continually
and specifically changes the information spectrum.

There is no unique separate response to each signal in this complex but
merely a response issued froman integrationof all environmental and inter-
nal information. In the case of green plants, the visible response to signals
is phenotypic plasticity (Bradshaw 1965; Schlichting and Pigliucci 1998;
Sultan 2000). During information processing all signals meet somewhere
in the cellular and tissue reactions that specify changes in form.

In seeking to understand the biological origins of human intelligence,
Stenhouse (1974) described intelligence as adaptively variable behaviour
during the lifetimeof the individual in anattempt todiscriminate intelligent
behaviour fromautonomic, that is unvarying, responses.Given theplethora
of signals that plants integrate into a response, autonomic responses do
not occur. Signal perception is instead ranked according to assessments
of strength and exposure. But autonomic responses can be rejected; the
numbers of different environments that any wild plant experiences must
be almost infinite in number. Only complex computation can fashion the
optimal fitness response.

1.1.3
Experimental Circumstances Can Be Misleading

When one factor is experimentally varied at a time in an attempt to simplify
the complexity that wild plants normally experience, all those factors that
do not vary are still sensed and integrated with the modified variable. For
example, exposing a dicot seedling root to a gravitational signal leads to
the textbook response of a resumption of vertical growth. But gradients
of humidity, minerals, light, temperature imposed in a different direction
or touch can override the gravity signal (Eapen et al. 2003; Massa and
Gilroy 2003). Further complexity can result from an individuality in re-
sponse to any one imposed signal (Trewavas 1998). Again for example with
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gravity, the growth trajectories with which each root approaches the verti-
cal can be individual (Bennett-Clerk and Ball 1951, referenced in Trewavas
2003).

The common use of statistics to obliterate individual variation leads to
assumptions that the response to signals is always replicable. If the same
signal and response are chosen, the same genotype, the environmental
conditions are identical and the results are averaged statistically, this is
no doubt true (but then the same can be said of an IQ test for human
beings). No such simplicity of circumstance is available to an individual
wild plant, which in meeting an almost infinite variety of environmental
states must construct individual responses to improve its own fitness. No
genome could contain the information that would provide an autonomic
response to every environmental state. And even cloned individuals do not
exhibit identical responses.

However, it is not just abiotic factors that are critical. Natural selec-
tion operates on individuals and Darwin (1859) considered that there is
“a deeply seated error of considering the physical conditions of a country
as the most important for its inhabitants whereas it cannot be disputed
that the nature of other inhabitants with which each one has to compete is
generally a far more important element of success.” Considering the num-
ber of different species and individuals that co-exist, each one variable in
phenotype and characteristics, any individual plant faces complexity not
simplicity. Instead we are left only with the possibility of non-heritable
(epigenetic) means whereby optimal fitness is achieved. Plants adequately
meet the Stenhouse (1974) definition of intelligence.

1.2
Intelligent Behaviour of Single Cells

1.2.1
Molecular Networks in Single Eucaryote Cells

Cells are organized structures and vital properties result from the con-
nections between the molecular constituents of which they are composed
(Kitano 2002; Trewavas 1998). Numerous molecular connections integrate
into a higher emergent organized order that we recognize as living. It is now
known (1) that various steps in metabolism act like many Boolean com-
puter logic gates such as AND, OR and NOR (Bray 1995) and are termed
chemical neurons (Arkin and Ross 1994; Hjelmfelt and Ross 1992; Okamoto
et al. 1987), (2) that these chemical neurons can act as pattern-recognition
systems (Hjelmfeldt et al. 1993), (3) that proteins can act as computational
elements (Bray 1995), and (4) that protein phosphorylation using about


