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Preface

This book has two goals. On the one hand it develops a completely new uni-
fying theory of self-dual codes that enables us to prove a far-reaching general-
ization of Gleason’s theorem on weight enumerators of self-dual codes. On the
other hand it is an encyclopedia that gives a very extensive list of “Types” of
self-dual codes and their properties—the associated Clifford-Weil groups and
their invariants, in particular. For the most important Types we give bounds
on their minimal distance and updated tables of the best codes.

One of the most remarkable theorems in coding theory is Gleason’s 1970
theorem [191] that the weight enumerator of a binary doubly-even self-dual
code is an element of the polynomial ring generated by the weight enumerators
of the Hamming code of length 8 and the Golay code of length 24. In the
past thirty-five years a number of different proofs of this theorem have been
given, as well as many generalizations that apply to other families of self-dual
codes (see for example [34], [359], [361], [383], [454], [500]). One reason for the
interest in self-dual codes is that they include some of the nicest and best-
known error-correcting codes, and there are strong connections with other
areas of combinatorics, group theory and (as we will mention in a moment)
lattices. Self-dual codes are also of considerable practical importance, although
that is outside the scope of this book.

In the past, analogues of Gleason’s theorem have been derived for each new
family of codes on a case-by-case basis. One of the main goals of this book is
to present a generalization of Gleason’s theorem that applies simultaneously
to weight enumerators of self-dual codes over many different alphabets. The
codes we consider are linear, which for us means that the alphabet is a module
V over a ring R, and a code of length N is an R-submodule of V N . Our
theorem applies to any alphabet that is a finite module over a quasi-chain
ring—a quasi-chain ring is a product of matrix rings over chain rings, and a
chain ring is a ring in which the left ideals are linearly ordered by inclusion.
Quasi-chain rings include finite fields, the integers mod m (e.g. Z/4Z), and
more generally any finite Galois ring, as well as finite quotient rings of maximal
orders in quaternion algebras. It would be incorrect to say that our theory
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applies to self-dual codes over any finite ring or module, but it certainly applies
to any in which the reader is likely to be interested for the foreseeable future.1

The weight enumerator of a classical binary code C is a homogeneous poly-
nomial that gives the number of codewords in C of each Hamming weight.
For binary doubly-even self-dual codes this polynomial belongs to the invari-
ant ring of a certain complex matrix group of order 192, and the fact that
this ring has a very simple structure leads to Gleason’s theorem: the ring is
a polynomial ring with two generators, and as generators one can take the
weight enumerators of the Hamming and Golay codes.

Our approach provides a general setting for this connection between self-
dual codes and invariant theory. To a self-dual code C over an alphabet of
size v we associate a polynomial pC ∈ C[x1, . . . , xv], the “complete weight
enumerator” of C. Properties of C translate into invariance properties of pC .
For example, if the length of C is even, pC must be invariant under the
transformation xi �→ −xi (i = 1, . . . , v). The polynomials with the given
invariance properties then belong to a finitely generated graded ring. This
makes it much easier to determine the possible pC , and may allow one to
deduce new properties of the codes, for instance to give bounds on the minimal
distance.

We will define a general notion of Type of a self-dual code. Attached to
each Type ρ is a finite complex matrix group C(ρ), the associated “Clifford-
Weil group”, and our main theorem (Theorem 5.5.7 and Corollary 5.7.5) shows
that the invariant ring of C(ρ) is generated by the weight enumerators pC of
codes C of Type ρ. On the one hand this provides information about the
possible codes of this Type (divisibility criteria for the length, bounds on the
minimal distance, etc.), and on the other hand it makes it easier to compute
the invariant ring of C(ρ). In fact our original investigations in [383] began as
an attempt to generalize Sidelnikov’s theorem [490], [491], [492], [493] that,
for m ≥ 3, the lowest degree harmonic invariant of the group Cm has degree 8.
Since the invariant ring of Cm is spanned by the genus-m weight-enumerators
of self-dual binary codes, this observation is reflected in the fact that 8 is
the first length where there are two inequivalent Type I codes, i42 and the
Hamming code e8 (see Chapter 6).

Our theory also applies to higher-order weight enumerators (sometimes
called multiple or higher-genus weight enumerators), which consider m-tuples
of codewords rather than single codewords. This leads to the higher-genus
Clifford-Weil groups Cm(ρ) ≤ GLvm(C). For m = 1, 2, . . . these groups form an
infinite series for which the sequence of Molien series converges monotonically
to the generating function

∑
N≥0 aN tN for the numbers aN of equivalence

classes of codes of Type ρ and length N (Cor. 5.7.7, Cor. 6.2.4). Note that this

1 As an example, self-dual codes over the ring
(

Z/4Z Z/4Z

2Z/4Z Z/4Z

)
are not covered by

Theorem 5.5.7. Nor are codes over the group ring F3S3, where S3 is the symmetric
group of order 6.
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leads to a surjection Inv(Cm(ρ)) −→ Inv(Cm−1(ρ)), analogous to the famous
Siegel Φ-operator in the theory of Siegel modular forms (cf. Freitag [176]),
which is presumably worth investigating further (see [381] for some initial
investigations along these lines).

The Clifford-Weil groups are often very nice groups. In the case of genus-
m weight enumerators (for m ≥ 1) of self-dual binary codes, Cm(ρ) is the
real Clifford group Cm of our earlier paper [383]. For the Type ρ of doubly-
even self-dual binary codes, Cm(ρ) is the complex Clifford group Xm of [383].
The case m = 1 gives the original Gleason theorem (except for the specific
identification of codes that generate the ring). In [383] we followed Bolt, Room
and Wall [57], [58], [59], [536] in calling these “Clifford” groups. For self-dual
codes over Fp containing the all-ones vector (where p is an odd prime), Cm(ρ)
is the group C(p)

m of [383, §7]. This is a metaplectic group, as in Weil [546],
and explains why we call these “Clifford-Weil” groups in general.

These Clifford-Weil groups are also Jordan subgroups of classical Lie
groups (as discussed in Alekseevskii [3], Gross and Nebe [206], Kostrikin and
Tiep [334]), and provide an infinite family of examples of maximal finite ma-
trix groups that are closely related to generalized Barnes-Wall lattices.

Besides Gleason’s theorem, another remarkable fact in the background to
this book is the close relationship between codes and lattices. There are some
astonishing parallels between the two theories, as shown in the following list.
To each of the following concepts from coding theory there is an analogue
from lattice theory:

code lattice
self-dual code unimodular lattice

doubly-even self-dual code even unimodular lattice
weight enumerator theta series

invariant polynomial modular form
MacWilliams identity Jacobi identity

Gleason’s theorem Hecke’s theorem
Molien’s theorem Selberg trace formula
Hamming code e8 root lattice E8

Golay code g24 Leech lattice Λ24

Items in the left column can be related to those in the right column by “Con-
struction A”, or one of its variants [133]. These parallels have been discussed
in various articles ([500], [501], [503], Broué and Enguehard [82], [83], and
most recently by Elkies [168]). One of the goals in this book, not fully real-
ized, was to extend our main theorem to include lattices, and so to throw some
additional light on the connections between codes and lattices. We were only
partially successful, but the theory, presented in Chapter 9, has nevertheless
led to a number of new results.

As well as lattices, another topic that has a lot in common with self-dual
codes is that of quantum error-correcting codes. In fact, the construction of



viii Preface

quantum codes was one of the initial reasons for our interest in the Clifford-
Weil group. Although our main theorem does not directly apply to these codes,
there are many connections to the rest of the book, and they are discussed in
the final chapter.

In order to define the Type of a code in sufficient generality, we found
it necessary to extend the notion of “form ring” from unitary K-theory (cf.
Hahn and O’Meara [226]). In that theory, form rings are not closed under
taking quotients, but with our definition, given in Chapter 1, they are. It may
be worth investigating this extended notion from a K-theoretical perspective.

A note about finiteness. Although coding theory usually deals with finite
alphabets (which in this book mean finite modules over finite rings), a large
part of our theory is valid for arbitrary rings. In particular, the theory of
form rings applies also to infinite rings. Our particular construction of the
Clifford-Weil groups in Chapter 5, however, relies heavily on the finiteness of
the R-module V . Consequently the proofs of the main theorems are valid only
for finite form rings. On the other hand, the construction of the hyperbolic
co-unitary groups applies to arbitrary form rings. We make use of this in
particular in Chapter 9, where we see that the hyperbolic co-unitary groups
for matrix rings over the integers coincide with Siegel modular groups.

Although this is not a textbook, our treatment is self-contained, and we
have defined most of the concepts that we use, both from coding theory and
invariant theory. These definitions have been kept short and expressed in our
new language of form rings. As a result the book should be accessible to
mathematicians, engineers and computer scientists.

The following is a brief description of the individual chapters, with empha-
sis on what is new. The reader is referred to the introductions to the chapters
and to the table of contents for a more detailed list of what is in each chapter.

The introduction to Chapter 1 discusses how the notion of a self-dual code
has been enlarged over the years. A major stimulus was the discovery in the
early 1990’s by Hammons, Kumar, Calderbank, Sloane and Solé [175], [91],
[227] that certain notorious nonlinear binary codes could best be understood
as arising from linear codes over the Galois ring Z/4Z. Our new notion of Type
is defined in §1.8, after the necessary algebraic machinery has been developed
in the earlier sections. In brief, a Type is a representation ρ of a form ring.

Chapter 2 begins by defining various weight enumerators associated with
a code, and then follows a long section (§2.3) in which we describe all the
families of self-dual codes that have been studied up to the present time as
Types, using our new language of form rings. We also introduce (in §2.3.6)
many new Types that treat self-dual codes over general Galois rings. Although
the latter codes have so far received little attention, this may change, and in
any case this section illustrates how our methods could be applied in the
future if further classes of self-dual codes arise. A second long section (§2.4)
then gives examples of codes and their weight enumerators for the major
Types.



Preface ix

Chapter 2 contains two tables, Tables 2.1 (p. 78) and 2.2 (p. 79), which
provide a useful list of the principal Types and the sections where they appear
in the book. Another useful table appears in Chapter 11: Table 11.1 (p. 325)
gives bounds on the minimal distance (used to define “extremal” codes) for
the principal Types, as well as numbers ν and c such that the length must be
a multiple of ν and the weights must be divisible by c. The latter property is
related to the Gleason-Pierce theorem, discussed in the final section (§2.5) of
Chapter 2.

Our primary interest in the book is in self-dual codes, satisfying C⊥ = C.
Of course this implies that C⊥⊥ = C. Codes with this latter property are
called closed. In Chapter 3 we attempt to identify just which families of codes
are closed. Our main conclusion, which may be new, is that codes in certain
finite representations of twisted rings are closed (see §3.3). In particular, the
definition of Type given in Chapter 1 is strong enough to guarantee that all
codes in a representation of a form ring are closed. Conversely, Theorem 3.2.8
shows that, while the notion of twisted rings may not be the only way to force
codes to be closed, it is the only natural way. Our analysis in this chapter may
be regarded as a continuation of the work of Wood [552], [553], [554], who
concluded that quasi-Frobenius rings are the most general setting in which it
makes sense to study codes over rings. Our analysis shows that one can work
with the larger family of codes over twisted rings. The extra generality comes
about because we consider bilinear forms taking values in a module rather
than in a ring.

Chapter 4 examines the objects introduced in Chapter 1 from the point of
view of category theory, and develops machinery that will be needed to prove
the main theorems in the following chapter. The mathematical techniques
used in this chapter are probably the most abstract in the book, and will be
the least familiar to coding theorists. The Witt group of representations of
a form ring, introduced in §4.6, will play an important role in several later
chapters. A more detailed summary can be found in the introduction to this
chapter. These results may also be of independent interest to people working
in unitary K-theory.

Chapter 5 introduces the Clifford-Weil groups and their invariants. Table
5.1 on page 142 summarizes the principal Clifford-Weil groups and their struc-
ture. The main results of this book, Theorems 5.5.5 and 5.5.7, will be found
in §5.5. They show that, under quite general conditions, the invariant ring of
the Clifford-Weil group associated with a finite representation ρ of a form ring
is spanned by the complete weight enumerators of self-dual isotropic codes of
Type ρ (and arbitrary length). Although a simplified version was given in our
announcement in [385], this is the first time that the complete statement of
our main theorems have appeared in print. One of our two main theorems,
Theorem 5.5.7 (p. 152), establishes this for self-dual codes defined over quasi-
chain rings. The other main theorem, Theorem 5.5.5 (p. 150), establishes a
similar result when the Type is a representation of a finite triangular form
ring (defined in §1.9).
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In fact we conjecture that a still more powerful theorem should hold, which
would include both of the two main theorems as special cases. We state this
“Weight Enumerator Conjecture” in two forms, Conjectures 5.5.2 and 5.7.2.
An additional piece of evidence for this conjecture is provided by Theorem
5.5.3: an isotropic self-dual code of Type ρ and length N exists if and only if
C(ρ) has an invariant of degree N .

Chapter 6 summarizes some of the results of our earlier paper [383] and
relates them to the new situation. We can now give simpler proofs for some of
the theorems in [383], including of course the main theorems, which are now
special cases of the theorems in Chapter 5. The chief subjects of [383] were the
real Clifford group Cm arising from genus-m weight enumerators of binary self-
dual codes, and the complex Clifford group Xm arising in a similar way from
doubly-even binary self-dual codes. The opening section of Chapter 6 gives
some background information about the history of these groups, and the ear-
lier work of several authors including—in roughly historical order—Barnes,
Bolt, Room, Wall, Duke, Runge, Oura, Sidelnikov, Calderbank, Kantor, and
Shor. This historical section concludes with the story of the amazing coinci-
dence which led to the writing of the papers [92], [95], [96], and eventually to
the present book.

In Chapter 7 we continue with the Types of codes defined in Chapter 2, and
construct the associated form rings, representations, Clifford-Weil groups, and
their invariants and Molien series. Chapters 6 and 7 include all the classical
Types of codes.

Chapter 8 treats some further Types that were not covered in the previous
two chapters, including codes over Galois rings, such as Z/4Z, and codes over
Fq2 + Fq2u where u2 = 0. The most important case of the latter family is
when q = 2—such codes were studied by Bachoc [19] and Gaborit [178] in
connection with the construction of quaternionic lattices.

Self-dual codes of many of the Types we discuss have been investigated,
and their invariant rings determined, by a number of authors, including Ba-
choc, Bannai, Betsumiya, Bonnecaze, Choie, Conway, Dougherty, Gaborit,
Gulliver, Harada, Huffman, Kim, Mallows, Munemasa, Otmani, Ozeki, Pless,
Solé, and many others (as well as the present authors). However, this is the
first time that these codes and their invariant rings have all been derived in a
uniform way. Many of the results in Chapters 6–8 are new.

Chapter 9 presents our attempt to fit self-dual lattices into our framework
of Types. The reader is referred to the long introductory section of that chapter
for more information about its contents.

In Chapter 10 we apply our theory to study weight enumerators of maxi-
mally isotropic codes—that is, codes which, while not self-dual, are maximal
subject to being isotropic. Note that, by definition, isotropic codes are also
self-orthogonal. The weight enumerators of maximally self-orthogonal codes
were first studied from this point of view by Mallows, Pless and Sloane [364],
[366]. Our systematic approach enables us to correct some errors and omissions
in the earlier work and to extend it to other families of codes. In particular,
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we describe the space of weight enumerators of maximal isotropic codes from
the following families:

– doubly-even binary codes (Theorem 10.2.1)
– singly-even binary codes (Theorem 10.3.1)
– ternary codes (Theorem 10.4.1)
– ternary codes with 1 in the dual (Theorems 10.4.2 and 10.4.2)
– even additive trace-Hermitian self-orthogonal codes over F4 (Theorem

10.5.1)
– doubly-even codes over Z/4Z (Theorem 10.6.1)

Almost all these results are new. In the second half of the chapter we use the
results in Chapter 9 and the first half of the chapter to describe the space of
modular forms spanned by the theta series of

– maximal even lattices of determinant 3k (Corollary 10.7.7)
– maximal even lattices of determinant 2k (Theorem 10.7.14)

Again we believe that these results are new.
One of the motivations for calculating these invariant rings is that it may

then be possible to apply the linear programming method to obtain bounds on
the minimal distance. The general “linear programming bound” for isotropic
codes is the subject of §11.1.1 of Chapter 11. Section 11.1 summarizes the
best upper bounds on codes of the principal Types that have been obtained
by the linear programming and other methods; §11.2 then gives lower bounds.

We follow [454] in using the term extremal to indicate a code which has the
highest minimal distance permitted by the appropriate linear programming
bound, and optimal to indicate a code which has the actual highest minimal
distance of any code of the given Type and length (an extremal code is au-
tomatically optimal, but in general no extremal code may exist). Table 11.1
(p. 325) summarizes what extremal means for the principal Types. The final
section, §11.3, gives a summary of what is presently known about the exis-
tence of extremal and optimal codes of modest lengths. These are based on
earlier tables in [454] and other sources. Although most of the material in this
chapter is not new, it has not been collected in one place before. (See also the
survey article of Huffman [282].)

In Chapter 12 we discuss what is presently known about the enumeration
of self-dual codes of the main Types. Again this is an update of earlier tables.
The main tool for these enumerations are the mass formulae given in §12.1.

The final chapter, Chapter 13, gives a brief discussion of quantum codes
and their constructions and bounds. The last section, §13.6 gives a table of
the best additive [[N, k, d]] binary codes presently known. This is an updated
version of the table in Calderbank, Rains, Shor and Sloane [96]. Again we refer
the reader to the introduction to this chapter for a more detailed description
of its contents and its relationship to the rest of the book.
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The book concludes with an extensive bibliography. This seemed desir-
able, since few readers will be familiar with all the topics we mention. Fur-
thermore, there are a large number of papers on self-dual codes, which have
been scattered throughout the literature on engineering, mathematics and
computer science. Besides these conventional references, we have also given
cross-references to the On-Line Encyclopedia of Integer Sequences [504] for
various number sequences that occur (coefficients of Molien series, minimal
distances of optimal codes of various Types, etc.). For an example, see the
reference to sequence A001399 in Eq. (5.8.1) on page 169.

A summary of some of the new results appeared in [385].
In this book we will mostly only discuss self-dual codes. Two topics that

we will not treat are isodual codes, that is, codes which are equivalent to their
duals under an appropriate notion of equivalence (cf. Conway and Sloane
[132]), and formally self-dual codes, that is, possibly nonlinear codes which
the property that their weight enumerator coincides with its MacWilliams
transform (cf. Betsumiya, Gulliver and Harada [40], Betsumiya and Harada
[44], [43], and Gulliver and Harada [210]). An isodual code is automatically
formally self-dual. However, we do give a definition of formally self-dual in the
language of Types at the end of §5.7.

We will also not say anything about decoding self-dual codes. Most of the
existing work on this subject is concerned with classical codes such as the
Golay and extended quadratic residue codes; little has been done on decoding
self-dual codes over rings, except for the octacode of §2.4.9 (or its alter ego
the Nordstrom-Robinson code). Readers interested in decoding are referred
to the following papers: Amrani and Beéry [4], Amrani, Beéry and Vardy [5],
Amrani, Beéry, Vardy, Sun and van Tilborg [6], Anderson [8], Blaum and
Bruck [53], Bossert [69], Conway and Sloane [126], Dodunekov, Zinoviev and
Nilsson [145], Esmaeili, Gulliver and Khandani [169], Fekri, McLaughlin,
Mersereau and Schafer [171], Gaborit, Kim and Pless [184], Gordon [196],
Greferath and Vellbinger [202] Greferath and Viterbo [203] Hammons, Ku-
mar, Calderbank, Sloane and Solé [227], Higgs and Humphreys [264], Kim,
Mellinger and Pless [305], Kim and Pless [306], Ping and Yeung [407], Pless
[418], [421], Reed, Yin and Truong [456], Rifà [459], Solomon [509], Vardy
[532], Wolfmann [549], [550], Yuan and Leung [564].
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General notation

Unless specified otherwise a ring (usually denoted by R) has an identity ele-
ment 1 �= 0 and may be finite or infinite, commutative or noncommutative.
Rings are always associative. Codewords are generally viewed as row vectors
and the alphabet is a left R-module. The following table lists symbols that
are used throughout the book.

List of Symbols.

Symbol Meaning See

A .B group with normal subgroup isomorphic
to A and quotient isomorphic to B

A � B split extension or semidirect product
A �B wreath product
AYB central product
Aut(ρ) automorphism group Defn 1.11.1
C ≤ V the code C is a submodule of V Defn 1.2.1
C⊥ dual code Defn 1.2.1
C ⊗R code C promoted to a larger ring Rem. 2.1.10
C complex numbers
C(ρ) Clifford-Weil group Defn 5.3.1
Cm(ρ) Clifford-Weil group of genus m Defn 5.3.4
Cm real Clifford group of genus m §6.2
C(p)

m p-Clifford group of genus m §6.2
cwe complete weight enumerator Defn 2.1.2
cwem genus-m complete weight enumerator Defn 2.1.7
e(τ) exp(2πiτ) Eq. (9.1.1)
Evn(S) even matrices Defn 1.10.4
Fq field of order q

fwe full weight enumerator Defn 2.1.3
Ĝ character group Defn 2.2.1
GLn(Fq) general linear group
H# dual subgroup Defn 2.2.1
H real quaternions
Hι,uι,vι

MacWilliams transform in U(R,Φ) Eq. (5.2.23)
hι,uι,vι

MacWilliams transform in C(ρ) Eq. (5.3.1)
hwe Hamming weight enumerator Defn 2.1.2
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Symbol Meaning See

I or In n× n unit matrix
I � R I is an ideal in R

Inv invariant ring Eq. (5.6.3)
Inv(G,S) relative invariants Defn 5.6.5
Matm(R) m×m matrices over R

Matm×n(R) m× n matrices over R

MS Molien series Eq. (5.6.1)
On(Fq) orthogonal group
P (R,Φ) parabolic subgroup of U(R,Φ) Defn 5.1.1
P (ρ) parabolic subgroup of C(ρ) Defn 5.1.2
Q rational numbers
R real numbers
(R,M,ψ, Φ) form ring Defn 1.7.1
ρ, (V, ρM , ρΦ, β) representation of form ring Defn 1.7.2
Sp2n(Fq) symplectic group
SN symmetric group of order N !
sweρ symmetrized weight enumerator Defn 2.1.5
sweρ

m genus-m symmetrized weight enumerator Defn 2.1.8
tr transposed matrix
tr,Tr trace operators
T (M) triangular twisted ring Defn 1.5.1
T (M,Φ) triangular form ring §1.9
Un(Fq2) unitary group
U(R,Φ) hyperbolic co-unitary group Defn 5.2.4
Um(R,Φ) hyperbolic co-unitary group of genus m Defn 5.2.8
V ∗ dual in sense of linear algebra,

space of linear functionals
WAut(ρ) weak automorphism group Defn 1.11.2
Xm complex Clifford group of genus m §6.2
Zn cyclic group of order n

Zn n-adic integers
Z/nZ ring of integers mod n

1 all-ones vector Ex. 1.8.4
{{ }} , λ structure maps Defn 1.6.1, 4.1.1
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1

The Type of a Self-Dual Code

To motivate these initial definitions, we begin by remarking that in the classi-
cal theory (cf. van Lint [350], MacWilliams and Sloane [361], Pless, Huffman
and Brualdi [427], Rains and Sloane [454]) a linear error-correcting code C
is a subspace of a vector space V over a finite field F, with inner products
of codewords taking values in F itself. The classical theory was enlarged in
the early 1990’s by the discovery by Hammons, Kumar, Calderbank, Sloane
and Solé [175], [91], [227] that certain notorious nonlinear binary codes (the
Nordstrom-Robinson, Kerdock and Preparata codes) could best be under-
stood as arising from linear codes over the ring Z/4Z, and, in the case of the
Kerdock code, from a self-dual linear code over Z/4Z.

A few years later, an important application of coding theory to quantum
computers required the use of additive (but nonlinear) codes over F4 (Calder-
bank, Rains, Shor and Sloane [95], [96] and Chapter 13 below).

Furthermore, codes over rings such as Z/8Z arise naturally in studying
“Phase Shift Keying” or PSK modulation schemes—see for example Anderson
[7, §3.4], Piret [408].

Thus it became clear that the theory should consider codes over rings as
well as over fields, and that weaker notions of linearity should be permitted.

Concerning the weights of codewords in a self-dual code, it is easy to show
that in a self-dual code over F2 the weight of every codeword must be even,
in a self-dual code over F3 the weight of every codeword is a multiple of 3,
and in a Hermitian self-dual code over F4 the weight of every codeword is
even. Furthermore, there are many well-known self-dual codes over F2 whose
weights are divisible by 4. Since these four families were the self-dual codes of
main interest in the classical theory, they were called codes of Types I, III, IV
and II respectively. In fact, as we will discuss in §2.5, a theorem of Gleason and
Pierce shows that these are essentially the only possible divisibility restrictions
that can be placed on the weights of self-dual codes over finite fields.

But once one allows self-dual codes to be defined over rings, there are
other possible constraints that can be placed on the weights, and so in [454]
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we defined nine different Types of self-dual codes, each with its own separate
definition.

One of the goals of this book is to introduce a more formal notion of the
Type of a self-dual code, which will allow us to give a unified treatment of all
the earlier definitions as well as a number of new ones. The new framework is
also broad enough to include both unimodular and even–unimodular lattices,
as we shall see in Chapter 9.1

In this framework, the symbols in the codewords belong to a left R-module
V (the alphabet) where R is a ring, assumed to contain a unit 1, but which
may be commutative or noncommutative, finite or infinite. A code C of length
N will be an R-submodule of V N for some positive integer N . A codeword
c ∈ C is an element of V N and R is the ground ring underlying the code, in
the sense that if c ∈ C and r ∈ R then rc ∈ C.

In the classical theory, inner products of codewords take values in the
ground ring (which is usually the field of symbols, or a subfield if a trace
is used to define the inner product). Now we allow the additional freedom
that inner products of codewords will be defined by bilinear forms taking
values in some abelian group A. For finite rings R, this abelian group A is
usually a subgroup of Q/Z. This makes it possible to describe the MacWilliams
transformation with respect to the Q/Z-valued bilinear forms as a complex
linear transformation.

To specify additional properties of these codes, such as restrictions on the
weights of codewords, or that the code contains the all-ones vector, we will
use quadratic maps taking values in A; these are sums of quadratic forms
and linear maps. We will therefore begin our discussion by defining quadratic
maps in §1.1. In §1.2 we give the definition of a code and of the notions of
dual, self-orthogonal, self-dual and isotropic code. To define a Type we will
need the important concept of a form ring: this is defined in §1.7; §§1.3-1.6
contain technical material needed for this definition. Finally, the Type of a
self-dual code is defined in §1.8. In brief, a Type is a representation ρ of a
form ring (R,M,ψ, Φ). Equivalences and automorphism groups are defined
using the language of Types in §1.11, and §1.12 defines the shadow of a code
in this language.

1.1 Quadratic maps

Definition 1.1.1. Let V and A be abelian groups (see the preceding para-
graphs for motivation). An A-valued bilinear form on V is a Z-module ho-
momorphism

β : V ⊗Z V → A .

1 Although so far “modular” lattices (Quebbemann [439]) do not fit into this frame-
work.
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If V is a left R-module for some ring R, then the set of all A-valued bilinear
forms on V is a right (R⊗R)-module, where the action is defined by

β(r ⊗ s)(x, y) := β(rx, sy) for all x, y ∈ V and all r, s ∈ R .

This (R ⊗ R)-module is denoted by Bil(V,A) = BilZ(V,A). An A-valued
quadratic map on V is a map φ : V → A such that

φ(x+y+z)+φ(x)+φ(y)+φ(z) = φ(x+y)+φ(x+z)+φ(y+z)+φ(0); (1.1.1)

or, equivalently, such that the map φ : V × V → A given by

φ(x, y) := φ(x + y)− φ(x)− φ(y) + φ(0) (1.1.2)

is Z-bilinear. A quadratic map φ on V is said to be pointed if φ(0) = 0, even
if φ(−x) = φ(x), and homogeneous if it is both pointed and even. We denote
the abelian group of quadratic maps from V to A by Quad(V,A) and the
subgroup of pointed maps by Quad0(V,A).

If 2 acts invertibly on A, for example, then a quadratic map φ is the sum
of a homogeneous quadratic map (given by x �→ 1

2 (φ(x) + φ(−x)) − φ(0)), a
linear map (given by x �→ 1

2 (φ(x)− φ(−x))) and the constant φ(0).

Lemma 1.1.2. Let φ : V → A be a quadratic map. For all n ∈ Z and all
x ∈ V ,

φ(nx) =
n(n + 1)

2
φ(x) +

n(n− 1)
2

φ(−x) + (1− n2)φ(0) . (1.1.3)

Proof. Applying (1.1.1) with y = −x, we find that

φ(z + x)− 2φ(z) + φ(z − x) (1.1.4)

is independent of z. By evaluating (1.1.4) at z = 0, x, 2x, . . . we obtain
(1.1.3) for n ≥ 0; evaluating (1.1.4) at z = −x,−2x, . . . we obtain (1.1.3)
for n < 0. �


Corollary 1.1.3. If the quadratic map φ : V → A is homogeneous, then

φ(nx) = n2φ(x) (1.1.5)

for all integers n and all x ∈ V .

In our applications, bilinear forms will arise from the requirement that
two vectors in a self-dual code should have inner product zero. Some of the
quadratic maps arise from specializations of bilinear forms, others when we
impose constraints on the weights of codewords (cf. Example 1.2.2).

The reason we do not use condition (1.1.5) as well as (1.1.1) when defin-
ing a quadratic map is that (1.1.5) only applies to homogeneous quadratic
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functions, whereas our quadratic maps may also have a linear or constant
part, for example when we study codes that must contain the all-ones vector
(cf. Example 1.8.4). Furthermore, if the characteristic is 2, (1.1.5) is always
satisfied.

Since the obvious action of the underlying ring R on quadratic maps is
not linear, we introduce the notion of a “qmodule”, generalizing the notion of
a linear R-module.

Definition 1.1.4. Let R be a ring. A (right) R-qmodule is an abelian group
Φ equipped with a pointed quadratic map r �→ [r] from R to End(Φ) (with
[r] acting on Φ on the right) such that [1] = 1, [r][s] = [rs]. A homomorphism
between qmodules Φ1 and Φ2 is a map f such that f(φ1 +φ2) = f(φ1)+f(φ2)
and f(φ1[r]1) = f(φ1)[r]2 for all φ1, φ2 ∈ Φ, r ∈ R.

Example 1.1.5. The group Φ = Quad0(V,A) of all pointed quadratic maps
on a left R-module V is a right R-qmodule, with

(φ[r])(v) := φ(rv), for r ∈ R,φ ∈ Φ, v ∈ V .

Example 1.1.6. If M is a right R-module, then x[r] = xr gives M an R-
qmodule structure. A qmodule obtained this way is called linear

Example 1.1.7. The abelian group Z/4Z admits a natural Z/2Z-qmodule
structure, given by

x[0] = 0, x[1] = x, for x ∈ Z/4Z . (1.1.6)

1.2 Self-dual and isotropic codes

We can now define the basic coding-theoretic concepts that will be used
throughout the book.

Definition 1.2.1. Let V be a left R-module, A an abelian group, M ⊂
Bil(V,A) a set of A-valued Z-bilinear forms on V , and Φ ⊂ Quad0(V,A) a
set of A-valued pointed quadratic maps on V . An R-submodule C ≤ V is
called a code. Let C ≤ V be a code. The dual of C (with respect to M) is

C⊥ := {v ∈ V | m(c, v) = 0, for all m ∈M, c ∈ C} . (1.2.1)

Generalizing the standard terminology (cf. [361], [454]), we call C self-
orthogonal (with respect to M) if C ⊂ C⊥ and self-dual if C = C⊥. Fur-
thermore, C is isotropic (with respect to (M,Φ)) if C is self-orthogonal with
respect to M , and also φ(c) = 0 for all φ ∈ Φ, c ∈ C. Hence:
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{ self-orthogonal codes with respect to M }⋃

{ (self-orthogonal) isotropic codes with respect to (M,Φ) }⋃

{ self-dual isotropic codes with respect to (M,Φ) } .
Note that according to this definition, our codes are always “linear”: for

us this means “an R-submodule of an R-module”.

Remark. If C ≤ V is an R-submodule and β ∈ Bil(V,A) is such that
β(c, c′) = 0 for all c, c′ ∈ C (i.e. C is self-orthogonal with respect to β),
then clearly β(r ⊗ s)(c, c′) = β(rc, sc′) = 0 for all r, s ∈ R and c, c′ ∈ C,
since C is an R-module. So when defining self-orthogonal codes we may as
well assume that M is an (R⊗R)-submodule of Bil(V,A).

Example 1.2.2. Classical doubly-even self-dual (or Type II) binary codes
(self-dual codes in which the weight of every codeword is a multiple of 4) arise
in this framework as follows. As usual, xi denotes the i-th component of the
vector x = (x1, . . . , xN ) ∈ F

N
2 . We take R := F2, V := F

N
2 , A := 1

4Z/Z,

M := {0,m0} ⊂ Bil(V,
1
4

Z/Z), where m0(x, y) :=
N∑

i=1

1
2
xiyi ,

and

Φ := {0, φ0, 2φ0, 3φ0} ⊂ Quad0(V,
1
4

Z/Z) where φ0(x) :=
N∑

i=1

1
4
x2

i .

Then self-dual isotropic codes with respect to (M,Φ) are precisely the doubly-
even self-dual binary codes of length N (for m0(u, v) = 0 ensures that the
mod-2 inner product u · v is zero, and φ0(u) = 0 guarantees that the weight
of u is a multiple of 4).

As already mentioned, our goal is to give a general definition of the “Type”
of a self-dual code. Definition 1.2.1 does not quite do this, since the triple
(V,M,Φ) depends on the length of the code, whereas the notion of “Type”
should not. To avoid this difficulty we introduce the notion of a representa-
tion of a form ring (§1.7). Changing the length of the code will then involve
changing only the representation of the form ring by adding orthogonal sum-
mands. The appropriate setting for defining isotropic codes is the notion of a
“quadratic pair” (M,Φ) over R, which will be introduced in §1.6.

1.3 Twisted modules and their representations

The (R ⊗ R)-submodules M of Bil(V,A) used in the previous section have
a naturally defined “twist” map τ which interchanges the arguments. More
generally, we have:
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Definition 1.3.1. A twisted R-module M is a right (R⊗R)-module together
with an automorphism τ : M →M such that τ(m(r ⊗ s)) = τ(m)(s⊗ r), for
all m ∈M, r ∈ R, s ∈ R, satisfying τ2 = 1.

Example 1.3.2. If V is an R-module and A an abelian group, then M :=
Bil(V,A) is a twisted R-module, where τ : M →M is given by τ(m)(x, y) :=
m(y, x).

Definition 1.3.3. A representation ρ := (V, ρM ) of a twisted R-module M
consists of an R-module V and a twisted R-module homomorphism ρM : M →
Bil(V,A) (for some abelian group A) that is compatible with the twist τ in
Example 1.3.2, i.e. which satisfies

ρM (τ(m))(x, y) = ρM (m)(y, x), for x, y ∈ V,m ∈M . (1.3.1)

The representation ρ is said to be finite if R and V are finite sets and A = Q/Z.

We generalize the notion of dual code with respect to a set of bilinear
forms given in the previous section to the dual code in a representation.

Definition 1.3.4. Let ρ = (V, ρM ) be a representation of a twisted R-module
M . Let C ≤ V be a code. The dual of C with respect to ρ is defined to be

C⊥ := {v ∈ V | ρM (m)(c, v) = 0, for m ∈M, c ∈ C} . (1.3.2)

We will sometimes write C⊥,ρ when it is necessary to specify ρ. If C ⊂ C⊥,ρ

we say that C is a self-orthogonal code in (the representation) ρ; if C = C⊥,ρ

we say C is a self-dual code in (the representation) ρ.

1.4 Twisted rings and their representations

The case when M is isomorphic to R as a right R-module is especially impor-
tant. One can think of this as specializing only one nonsingular bilinear form
β on V and taking M to be the 1⊗R-submodule of Bil(V,A) spanned by β.
(Here we use “nonsingular” in its classical sense. For the formal definition see
Definition 3.2.1 in Chapter 3.) If the code C is an R-submodule of V , we have

C⊥,β = {v ∈ V | β(v, c) = 0 for all c ∈ C} , (1.4.1)

and for any v ∈ C⊥,β we have m(v, c) = 0 for all m ∈M and c ∈ C.

Definition 1.4.1. A twisted ring (R,M,ψ) consists of a ring R, a twisted
R-module M and a right R-module isomorphism ψ : RR →M1⊗R, such that
ε := ψ−1(τ(ψ(1))) is a unit in R. Then ε is called the associated unit defined
by the involution τ .


