Algorithms and Computation in Mathematics • Volume 17

Editors
Arjeh M. Cohen Henri Cohen
David Eisenbud Bernd Sturmfels

Gabriele Nebe
Eric M. Rains
Neil J.A. Sloane

Self-Dual Codes and Invariant Theory

With io Figures and 34 Tables

Springer

Authors

Gabriele Nebe

Lehrstuhl D für Mathematik
Rheinisch-Westfälische
Technische Hochschule Aachen
Templergraben 64
52062 Aachen
Germany
e-mail: nebe@math.rwth-aachen.de

Neil J.A. Sloane

Internet and Network Systems Research
AT\&T Shannon Labs
i8o Park Avenue
Florham Park, NJ 07932-097I
USA
e-mail: njas@research.att.com

Eric M. Rains

Department of Mathematics
University of California at Davis
I Shields Ave
Davis, CA 95616
USA
e-mail: rains@math.ucdavis.edu

Library of Congress Control Number: 2005937507

Mathematics Subject Classification (2000): 94Bo5, 94B60, I3A50, I6Pio, 20Go5; I5A66, I6D90, 68Q99, 8I R99

ISSN 143 I -I 550
ISBN-io 3-540-30729-X Springer Berlin Heidelberg New York
ISBN-I3 978-3-540-30729-7 Springer Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springer.com
(C) Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Typesetting: by the authors and TechBooks using a Springer IATEX macro package Cover design: design \& production GmbH , Heidelberg
Printed on acid-free paper SPIN: II587170 I7/TechBooks 5432 IO

Preface

This book has two goals. On the one hand it develops a completely new unifying theory of self-dual codes that enables us to prove a far-reaching generalization of Gleason's theorem on weight enumerators of self-dual codes. On the other hand it is an encyclopedia that gives a very extensive list of "Types" of self-dual codes and their properties - the associated Clifford-Weil groups and their invariants, in particular. For the most important Types we give bounds on their minimal distance and updated tables of the best codes.

One of the most remarkable theorems in coding theory is Gleason's 1970 theorem [191] that the weight enumerator of a binary doubly-even self-dual code is an element of the polynomial ring generated by the weight enumerators of the Hamming code of length 8 and the Golay code of length 24. In the past thirty-five years a number of different proofs of this theorem have been given, as well as many generalizations that apply to other families of self-dual codes (see for example [34], [359], [361], [383], [454], [500]). One reason for the interest in self-dual codes is that they include some of the nicest and bestknown error-correcting codes, and there are strong connections with other areas of combinatorics, group theory and (as we will mention in a moment) lattices. Self-dual codes are also of considerable practical importance, although that is outside the scope of this book.

In the past, analogues of Gleason's theorem have been derived for each new family of codes on a case-by-case basis. One of the main goals of this book is to present a generalization of Gleason's theorem that applies simultaneously to weight enumerators of self-dual codes over many different alphabets. The codes we consider are linear, which for us means that the alphabet is a module V over a ring R, and a code of length N is an R-submodule of V^{N}. Our theorem applies to any alphabet that is a finite module over a quasi-chain ring - a quasi-chain ring is a product of matrix rings over chain rings, and a chain ring is a ring in which the left ideals are linearly ordered by inclusion. Quasi-chain rings include finite fields, the integers $\bmod m($ e.g. $\mathbb{Z} / 4 \mathbb{Z})$, and more generally any finite Galois ring, as well as finite quotient rings of maximal orders in quaternion algebras. It would be incorrect to say that our theory
applies to self-dual codes over any finite ring or module, but it certainly applies to any in which the reader is likely to be interested for the foreseeable future. ${ }^{1}$

The weight enumerator of a classical binary code C is a homogeneous polynomial that gives the number of codewords in C of each Hamming weight. For binary doubly-even self-dual codes this polynomial belongs to the invariant ring of a certain complex matrix group of order 192, and the fact that this ring has a very simple structure leads to Gleason's theorem: the ring is a polynomial ring with two generators, and as generators one can take the weight enumerators of the Hamming and Golay codes.

Our approach provides a general setting for this connection between selfdual codes and invariant theory. To a self-dual code C over an alphabet of size v we associate a polynomial $p_{C} \in \mathbb{C}\left[x_{1}, \ldots, x_{v}\right]$, the "complete weight enumerator" of C. Properties of C translate into invariance properties of p_{C}. For example, if the length of C is even, p_{C} must be invariant under the transformation $x_{i} \mapsto-x_{i}(i=1, \ldots, v)$. The polynomials with the given invariance properties then belong to a finitely generated graded ring. This makes it much easier to determine the possible p_{C}, and may allow one to deduce new properties of the codes, for instance to give bounds on the minimal distance.

We will define a general notion of Type of a self-dual code. Attached to each Type ρ is a finite complex matrix group $\mathcal{C}(\rho)$, the associated "CliffordWeil group", and our main theorem (Theorem 5.5.7 and Corollary 5.7.5) shows that the invariant ring of $\mathcal{C}(\rho)$ is generated by the weight enumerators p_{C} of codes C of Type ρ. On the one hand this provides information about the possible codes of this Type (divisibility criteria for the length, bounds on the minimal distance, etc.), and on the other hand it makes it easier to compute the invariant ring of $\mathcal{C}(\rho)$. In fact our original investigations in [383] began as an attempt to generalize Sidelnikov's theorem [490], [491], [492], [493] that, for $m \geq 3$, the lowest degree harmonic invariant of the group \mathcal{C}_{m} has degree 8 . Since the invariant ring of \mathcal{C}_{m} is spanned by the genus- m weight-enumerators of self-dual binary codes, this observation is reflected in the fact that 8 is the first length where there are two inequivalent Type I codes, i_{2}^{4} and the Hamming code e_{8} (see Chapter 6).

Our theory also applies to higher-order weight enumerators (sometimes called multiple or higher-genus weight enumerators), which consider m-tuples of codewords rather than single codewords. This leads to the higher-genus Clifford-Weil groups $\mathcal{C}_{m}(\rho) \leq G L_{v^{m}}(\mathbb{C})$. For $m=1,2, \ldots$ these groups form an infinite series for which the sequence of Molien series converges monotonically to the generating function $\sum_{N \geq 0} a_{N} t^{N}$ for the numbers a_{N} of equivalence classes of codes of Type ρ and length N (Cor. 5.7.7, Cor. 6.2.4). Note that this
${ }^{1}$ As an example, self-dual codes over the ring $\binom{\mathbb{Z} / 4 \mathbb{Z} \mathbb{Z} / 4 \mathbb{Z}}{2 \mathbb{Z} / 4 \mathbb{Z} \mathbb{Z} / 4 \mathbb{Z}}$ are not covered by Theorem 5.5.7. Nor are codes over the group ring $\mathbb{F}_{3} S_{3}$, where S_{3} is the symmetric group of order 6 .
leads to a surjection $\operatorname{Inv}\left(\mathcal{C}_{m}(\rho)\right) \longrightarrow \operatorname{Inv}\left(\mathcal{C}_{m-1}(\rho)\right)$, analogous to the famous Siegel Φ-operator in the theory of Siegel modular forms (cf. Freitag [176]), which is presumably worth investigating further (see [381] for some initial investigations along these lines).

The Clifford-Weil groups are often very nice groups. In the case of genusm weight enumerators (for $m \geq 1$) of self-dual binary codes, $\mathcal{C}_{m}(\rho)$ is the real Clifford group \mathcal{C}_{m} of our earlier paper [383]. For the Type ρ of doublyeven self-dual binary codes, $\mathcal{C}_{m}(\rho)$ is the complex Clifford group \mathcal{X}_{m} of [383]. The case $m=1$ gives the original Gleason theorem (except for the specific identification of codes that generate the ring). In [383] we followed Bolt, Room and Wall [57], [58], [59], [536] in calling these "Clifford" groups. For self-dual codes over \mathbb{F}_{p} containing the all-ones vector (where p is an odd prime), $\mathcal{C}_{m}(\rho)$ is the group $\mathcal{C}_{m}^{(p)}$ of [383, §7]. This is a metaplectic group, as in Weil [546], and explains why we call these "Clifford-Weil" groups in general.

These Clifford-Weil groups are also Jordan subgroups of classical Lie groups (as discussed in Alekseevskii [3], Gross and Nebe [206], Kostrikin and Tiep [334]), and provide an infinite family of examples of maximal finite matrix groups that are closely related to generalized Barnes-Wall lattices.

Besides Gleason's theorem, another remarkable fact in the background to this book is the close relationship between codes and lattices. There are some astonishing parallels between the two theories, as shown in the following list. To each of the following concepts from coding theory there is an analogue from lattice theory:
code
self-dual code
doubly-even self-dual code
weight enumerator
invariant polynomial
MacWilliams identity
Gleason's theorem
Molien's theorem
Hamming code e_{8}
Golay code g_{24}

lattice
unimodular lattice even unimodular lattice
theta series
modular form
Jacobi identity
Hecke's theorem
Selberg trace formula
root lattice E_{8}
Leech lattice Λ_{24}

Items in the left column can be related to those in the right column by "Construction A", or one of its variants [133]. These parallels have been discussed in various articles ([500], [501], [503], Broué and Enguehard [82], [83], and most recently by Elkies [168]). One of the goals in this book, not fully realized, was to extend our main theorem to include lattices, and so to throw some additional light on the connections between codes and lattices. We were only partially successful, but the theory, presented in Chapter 9, has nevertheless led to a number of new results.

As well as lattices, another topic that has a lot in common with self-dual codes is that of quantum error-correcting codes. In fact, the construction of
quantum codes was one of the initial reasons for our interest in the CliffordWeil group. Although our main theorem does not directly apply to these codes, there are many connections to the rest of the book, and they are discussed in the final chapter.

In order to define the Type of a code in sufficient generality, we found it necessary to extend the notion of "form ring" from unitary K-theory (cf. Hahn and O'Meara [226]). In that theory, form rings are not closed under taking quotients, but with our definition, given in Chapter 1, they are. It may be worth investigating this extended notion from a K-theoretical perspective.

A note about finiteness. Although coding theory usually deals with finite alphabets (which in this book mean finite modules over finite rings), a large part of our theory is valid for arbitrary rings. In particular, the theory of form rings applies also to infinite rings. Our particular construction of the Clifford-Weil groups in Chapter 5, however, relies heavily on the finiteness of the R-module V. Consequently the proofs of the main theorems are valid only for finite form rings. On the other hand, the construction of the hyperbolic co-unitary groups applies to arbitrary form rings. We make use of this in particular in Chapter 9, where we see that the hyperbolic co-unitary groups for matrix rings over the integers coincide with Siegel modular groups.

Although this is not a textbook, our treatment is self-contained, and we have defined most of the concepts that we use, both from coding theory and invariant theory. These definitions have been kept short and expressed in our new language of form rings. As a result the book should be accessible to mathematicians, engineers and computer scientists.

The following is a brief description of the individual chapters, with emphasis on what is new. The reader is referred to the introductions to the chapters and to the table of contents for a more detailed list of what is in each chapter.

The introduction to Chapter 1 discusses how the notion of a self-dual code has been enlarged over the years. A major stimulus was the discovery in the early 1990's by Hammons, Kumar, Calderbank, Sloane and Solé [175], [91], [227] that certain notorious nonlinear binary codes could best be understood as arising from linear codes over the Galois ring $\mathbb{Z} / 4 \mathbb{Z}$. Our new notion of Type is defined in $\S 1.8$, after the necessary algebraic machinery has been developed in the earlier sections. In brief, a Type is a representation ρ of a form ring.

Chapter 2 begins by defining various weight enumerators associated with a code, and then follows a long section (§2.3) in which we describe all the families of self-dual codes that have been studied up to the present time as Types, using our new language of form rings. We also introduce (in §2.3.6) many new Types that treat self-dual codes over general Galois rings. Although the latter codes have so far received little attention, this may change, and in any case this section illustrates how our methods could be applied in the future if further classes of self-dual codes arise. A second long section (§2.4) then gives examples of codes and their weight enumerators for the major Types.

Chapter 2 contains two tables, Tables 2.1 (p. 78) and 2.2 (p. 79), which provide a useful list of the principal Types and the sections where they appear in the book. Another useful table appears in Chapter 11: Table 11.1 (p. 325) gives bounds on the minimal distance (used to define "extremal" codes) for the principal Types, as well as numbers ν and c such that the length must be a multiple of ν and the weights must be divisible by c. The latter property is related to the Gleason-Pierce theorem, discussed in the final section (§2.5) of Chapter 2.

Our primary interest in the book is in self-dual codes, satisfying $C^{\perp}=C$. Of course this implies that $C^{\perp \perp}=C$. Codes with this latter property are called closed. In Chapter 3 we attempt to identify just which families of codes are closed. Our main conclusion, which may be new, is that codes in certain finite representations of twisted rings are closed (see §3.3). In particular, the definition of Type given in Chapter 1 is strong enough to guarantee that all codes in a representation of a form ring are closed. Conversely, Theorem 3.2.8 shows that, while the notion of twisted rings may not be the only way to force codes to be closed, it is the only natural way. Our analysis in this chapter may be regarded as a continuation of the work of Wood [552], [553], [554], who concluded that quasi-Frobenius rings are the most general setting in which it makes sense to study codes over rings. Our analysis shows that one can work with the larger family of codes over twisted rings. The extra generality comes about because we consider bilinear forms taking values in a module rather than in a ring.

Chapter 4 examines the objects introduced in Chapter 1 from the point of view of category theory, and develops machinery that will be needed to prove the main theorems in the following chapter. The mathematical techniques used in this chapter are probably the most abstract in the book, and will be the least familiar to coding theorists. The Witt group of representations of a form ring, introduced in §4.6, will play an important role in several later chapters. A more detailed summary can be found in the introduction to this chapter. These results may also be of independent interest to people working in unitary K-theory.

Chapter 5 introduces the Clifford-Weil groups and their invariants. Table 5.1 on page 142 summarizes the principal Clifford-Weil groups and their structure. The main results of this book, Theorems 5.5 .5 and 5.5 .7 , will be found in §5.5. They show that, under quite general conditions, the invariant ring of the Clifford-Weil group associated with a finite representation ρ of a form ring is spanned by the complete weight enumerators of self-dual isotropic codes of Type ρ (and arbitrary length). Although a simplified version was given in our announcement in [385], this is the first time that the complete statement of our main theorems have appeared in print. One of our two main theorems, Theorem 5.5.7 (p. 152), establishes this for self-dual codes defined over quasichain rings. The other main theorem, Theorem 5.5.5 (p. 150), establishes a similar result when the Type is a representation of a finite triangular form ring (defined in §1.9).

In fact we conjecture that a still more powerful theorem should hold, which would include both of the two main theorems as special cases. We state this "Weight Enumerator Conjecture" in two forms, Conjectures 5.5.2 and 5.7.2. An additional piece of evidence for this conjecture is provided by Theorem 5.5.3: an isotropic self-dual code of Type ρ and length N exists if and only if $\mathcal{C}(\rho)$ has an invariant of degree N.

Chapter 6 summarizes some of the results of our earlier paper [383] and relates them to the new situation. We can now give simpler proofs for some of the theorems in [383], including of course the main theorems, which are now special cases of the theorems in Chapter 5. The chief subjects of [383] were the real Clifford group \mathcal{C}_{m} arising from genus- m weight enumerators of binary selfdual codes, and the complex Clifford group \mathcal{X}_{m} arising in a similar way from doubly-even binary self-dual codes. The opening section of Chapter 6 gives some background information about the history of these groups, and the earlier work of several authors including-in roughly historical order-Barnes, Bolt, Room, Wall, Duke, Runge, Oura, Sidelnikov, Calderbank, Kantor, and Shor. This historical section concludes with the story of the amazing coincidence which led to the writing of the papers [92], [95], [96], and eventually to the present book.

In Chapter 7 we continue with the Types of codes defined in Chapter 2, and construct the associated form rings, representations, Clifford-Weil groups, and their invariants and Molien series. Chapters 6 and 7 include all the classical Types of codes.

Chapter 8 treats some further Types that were not covered in the previous two chapters, including codes over Galois rings, such as $\mathbb{Z} / 4 \mathbb{Z}$, and codes over $\mathbb{F}_{q^{2}}+\mathbb{F}_{q^{2}} u$ where $u^{2}=0$. The most important case of the latter family is when $q=2$-such codes were studied by Bachoc [19] and Gaborit [178] in connection with the construction of quaternionic lattices.

Self-dual codes of many of the Types we discuss have been investigated, and their invariant rings determined, by a number of authors, including Bachoc, Bannai, Betsumiya, Bonnecaze, Choie, Conway, Dougherty, Gaborit, Gulliver, Harada, Huffman, Kim, Mallows, Munemasa, Otmani, Ozeki, Pless, Solé, and many others (as well as the present authors). However, this is the first time that these codes and their invariant rings have all been derived in a uniform way. Many of the results in Chapters 6-8 are new.

Chapter 9 presents our attempt to fit self-dual lattices into our framework of Types. The reader is referred to the long introductory section of that chapter for more information about its contents.

In Chapter 10 we apply our theory to study weight enumerators of maximally isotropic codes-that is, codes which, while not self-dual, are maximal subject to being isotropic. Note that, by definition, isotropic codes are also self-orthogonal. The weight enumerators of maximally self-orthogonal codes were first studied from this point of view by Mallows, Pless and Sloane [364], [366]. Our systematic approach enables us to correct some errors and omissions in the earlier work and to extend it to other families of codes. In particular,
we describe the space of weight enumerators of maximal isotropic codes from the following families:

- doubly-even binary codes (Theorem 10.2.1)
- singly-even binary codes (Theorem 10.3.1)
- ternary codes (Theorem 10.4.1)
- ternary codes with $\mathbf{1}$ in the dual (Theorems 10.4.2 and 10.4.2)
- even additive trace-Hermitian self-orthogonal codes over \mathbb{F}_{4} (Theorem 10.5.1)
- doubly-even codes over $\mathbb{Z} / 4 \mathbb{Z}$ (Theorem 10.6.1)

Almost all these results are new. In the second half of the chapter we use the results in Chapter 9 and the first half of the chapter to describe the space of modular forms spanned by the theta series of

- maximal even lattices of determinant 3^{k} (Corollary 10.7.7)
- maximal even lattices of determinant 2^{k} (Theorem 10.7.14)

Again we believe that these results are new.
One of the motivations for calculating these invariant rings is that it may then be possible to apply the linear programming method to obtain bounds on the minimal distance. The general "linear programming bound" for isotropic codes is the subject of $\S 11.1 .1$ of Chapter 11. Section 11.1 summarizes the best upper bounds on codes of the principal Types that have been obtained by the linear programming and other methods; $\S 11.2$ then gives lower bounds.

We follow [454] in using the term extremal to indicate a code which has the highest minimal distance permitted by the appropriate linear programming bound, and optimal to indicate a code which has the actual highest minimal distance of any code of the given Type and length (an extremal code is automatically optimal, but in general no extremal code may exist). Table 11.1 (p. 325) summarizes what extremal means for the principal Types. The final section, $\S 11.3$, gives a summary of what is presently known about the existence of extremal and optimal codes of modest lengths. These are based on earlier tables in [454] and other sources. Although most of the material in this chapter is not new, it has not been collected in one place before. (See also the survey article of Huffman [282].)

In Chapter 12 we discuss what is presently known about the enumeration of self-dual codes of the main Types. Again this is an update of earlier tables. The main tool for these enumerations are the mass formulae given in §12.1.

The final chapter, Chapter 13, gives a brief discussion of quantum codes and their constructions and bounds. The last section, $\S 13.6$ gives a table of the best additive $[[N, k, d]]$ binary codes presently known. This is an updated version of the table in Calderbank, Rains, Shor and Sloane [96]. Again we refer the reader to the introduction to this chapter for a more detailed description of its contents and its relationship to the rest of the book.

The book concludes with an extensive bibliography. This seemed desirable, since few readers will be familiar with all the topics we mention. Furthermore, there are a large number of papers on self-dual codes, which have been scattered throughout the literature on engineering, mathematics and computer science. Besides these conventional references, we have also given cross-references to the On-Line Encyclopedia of Integer Sequences [504] for various number sequences that occur (coefficients of Molien series, minimal distances of optimal codes of various Types, etc.). For an example, see the reference to sequence A001399 in Eq. (5.8.1) on page 169.

A summary of some of the new results appeared in [385].
In this book we will mostly only discuss self-dual codes. Two topics that we will not treat are isodual codes, that is, codes which are equivalent to their duals under an appropriate notion of equivalence (cf. Conway and Sloane [132]), and formally self-dual codes, that is, possibly nonlinear codes which the property that their weight enumerator coincides with its MacWilliams transform (cf. Betsumiya, Gulliver and Harada [40], Betsumiya and Harada [44], [43], and Gulliver and Harada [210]). An isodual code is automatically formally self-dual. However, we do give a definition of formally self-dual in the language of Types at the end of $\S 5.7$.

We will also not say anything about decoding self-dual codes. Most of the existing work on this subject is concerned with classical codes such as the Golay and extended quadratic residue codes; little has been done on decoding self-dual codes over rings, except for the octacode of §2.4.9 (or its alter ego the Nordstrom-Robinson code). Readers interested in decoding are referred to the following papers: Amrani and Beéry [4], Amrani, Beéry and Vardy [5], Amrani, Beéry, Vardy, Sun and van Tilborg [6], Anderson [8], Blaum and Bruck [53], Bossert [69], Conway and Sloane [126], Dodunekov, Zinoviev and Nilsson [145], Esmaeili, Gulliver and Khandani [169], Fekri, McLaughlin, Mersereau and Schafer [171], Gaborit, Kim and Pless [184], Gordon [196], Greferath and Vellbinger [202] Greferath and Viterbo [203] Hammons, Kumar, Calderbank, Sloane and Solé [227], Higgs and Humphreys [264], Kim, Mellinger and Pless [305], Kim and Pless [306], Ping and Yeung [407], Pless [418], [421], Reed, Yin and Truong [456], Rifà [459], Solomon [509], Vardy [532], Wolfmann [549], [550], Yuan and Leung [564].

Acknowledgements

Much of this work was carried out while E.M.R. and N.J.A.S. were together at AT\&T Shannon Labs. We thank AT\&T Shannon Labs for making it possible for G.N. to visit the Labs in 1999 and 2002. Part of the work was done during G.N.'s visit to Harvard University with a Radcliffe Fellowship. G.N. thanks the Radcliffe Institute for its kind invitation. Since 2004, E.M.R. has been supported in part by NSF Grant DMS-0401387. Many of the calculations involving matrix groups and their Molien series and invariants were carried out with the computer algebra system MAGMA [68], [100].

We would like to thank Matthias Künzer, who made valuable comments during the course G.N. gave on the topics of this book in the summer of 2005 at RWTH Aachen. We also thank Koichi Betsumiya, Young-Ju Choie, Philippe Gaborit, Masaaki Harada, Akihiro Munemasa, Patric Östergård, Vera Pless, Heinz-Georg Quebbemann, Patrick Solé and John van Rees for providing helpful comments on the manuscript.

Although we have made every effort to be careful, it is inevitable that there will be errors in a book of this size, for which we apologize in advance. We would appreciate hearing of any corrections, as well as updates to the tables. Such items will be added to the web site for the book, which is www.research.att.com/ njas/doc/cliff2.html. They may be sent to any of the authors. Our email addresses are nebe@math.rwth-aachen.de, rains@math.ucdavis.edu and njas@research.att.com.

Aachen, Davis and Florham Park
Gabriele Nebe .
October, 2005
Eric M. Rains • N. J. A. Sloane

General notation

Unless specified otherwise a ring (usually denoted by R) has an identity element $1 \neq 0$ and may be finite or infinite, commutative or noncommutative. Rings are always associative. Codewords are generally viewed as row vectors and the alphabet is a left R-module. The following table lists symbols that are used throughout the book.

List of Symbols.

Symbol	Meaning	See
I or I_{n}	$n \times n$ unit matrix	
$I \unlhd R$	I is an ideal in R	
Inv	invariant ring	Eq. (5.6.3)
$\operatorname{Inv}(G, S)$	relative invariants	Defn 5.6.5
$\operatorname{Mat}_{m}(R)$	$m \times m$ matrices over R	
$\operatorname{Mat}_{m \times n}(R)$	$m \times n$ matrices over R	
MS	Molien series	Eq. (5.6.1)
$O_{n}\left(\mathbb{F}_{q}\right)$	orthogonal group	
$P(R, \Phi)$	parabolic subgroup of $\mathfrak{U}(R, \Phi)$	Defn 5.1.1
$P(\rho)$	parabolic subgroup of $\mathcal{C}(\rho)$	Defn 5.1.2
\mathbb{Q}	rational numbers	
\mathbb{R}	real numbers	
(R, M, ψ, Φ)	form ring	Defn 1.7.1
$\rho,\left(V, \rho_{M}, \rho_{\Phi}, \beta\right)$	representation of form ring	Defn 1.7.2
$\mathrm{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$	symplectic group	
S_{N}	symmetric group of order N !	
swe $^{\rho}$	symmetrized weight enumerator	Defn 2.1.5
swe $^{\rho}{ }_{m}$	genus- m symmetrized weight enumerator	Defn 2.1.8
$t r$	transposed matrix	
tr, Tr	trace operators	
$T(M)$	triangular twisted ring	Defn 1.5.1
$T(M, \Phi)$	triangular form ring	§1.9
$U_{n}\left(\mathbb{F}_{q^{2}}\right)$	unitary group	
$\mathfrak{U}(R, \Phi)$	hyperbolic co-unitary group	Defn 5.2.4
$\mathfrak{U}_{m}(R, \Phi)$	hyperbolic co-unitary group of genus m	Defn 5.2.8
V^{*}	dual in sense of linear algebra, space of linear functionals	
WAut (ρ)	weak automorphism group	Defn 1.11.2
\mathcal{X}_{m}	complex Clifford group of genus m	§6.2
Z_{n}	cyclic group of order n	
\mathbb{Z}_{n}	n-adic integers	
$\mathbb{Z} / n \mathbb{Z}$	ring of integers mod n	
1	all-ones vector	Ex. 1.8.4
\{ \} \}, 入	structure maps	Defn 1.6.1, 4.1.1

Contents

Preface V
List of Symbols xiv
List of Tables xxy
List of Figures xxvii
1 The Type of a Self-Dual Code 1
1.1 Quadratic maps 2
1.2 Self-dual and isotropic codes 4
1.3 Twisted modules and their representations 5
1.4 Twisted rings and their representations 6
1.5 Triangular twisted rings 9
1.6 Quadratic pairs and their representations 11
1.7 Form rings and their representations 13
1.8 The Type of a code 15
1.9 Triangular form rings 18
1.10 Matrix rings of form rings and their representations 19
1.11 Automorphism groups of codes 22
1.12 Shadows 24
2 Weight Enumerators and Important Types 29
2.1 Weight enumerators of codes 29
2.2 MacWilliams identity and generalizations 35
2.2.1 The weight enumerator of the shadow 39
2.3 Catalogue of important types 39
2.3.1 Binary codes 40
2 40
2 I 41
$2_{\text {II }}$ 41
2 S 41
2.3.2 Euclidean codes 42
4^{E} 42
q^{E} (even) 43
$q_{\text {II }}^{\mathrm{E}}$ 44
3. 45
q^{E} (odd) 46
q_{1}^{E} (odd) 46
2.3.3 Hermitian codes 47
4^{H}. 47
q^{H} 47
q_{1}^{H} 48
2.3.4 Additive codes 48
$4^{\mathrm{H}+}$ 48
$q^{\mathrm{H}+}$ (even) 49
$q_{1}^{\mathrm{H}+}$ (even) 49
$q_{\mathrm{H}}^{\mathrm{H}+}$ (even) 50
$q_{\mathrm{II}, \mathbf{1}}^{\mathrm{H}+}$ (even) 50
$q^{\mathrm{H}+}$ (odd) 50
$q_{1}^{\mathrm{H}+}$ (odd) 51
2.3.5 Codes over Galois rings $\mathbb{Z} / m \mathbb{Z}$ 51
$4^{\mathbb{Z}}$ 52
$m^{\mathbb{Z}}$ 53
$m_{1}^{\mathbb{Z}}$ 54
$m_{\text {II }}^{\mathbb{Z}}$ 54
$m_{\text {II, }}^{\mathbb{Z}}$ 55
$m_{\mathrm{S}}^{\mathbb{Z}}$ 55
2.3.6 Codes over more general Galois rings 55
$\operatorname{GR}\left(p^{e}, f\right)^{\mathrm{E}}$ 55
$\operatorname{GR}\left(p^{e}, f\right)_{1}^{\mathrm{E}}$ 56
$\operatorname{GR}\left(p^{e}, f\right)_{p^{s}}^{\mathrm{E}}$ 56
$\left.\operatorname{GR}\left(2^{e}, f\right)\right)_{2^{s}}$ 57
$\operatorname{GR}\left(2^{e}, f\right)_{\mathrm{II}}^{\mathrm{E}}$ 57
$\mathrm{GR}\left(2^{e}, f\right)_{\mathrm{II}, 2^{s}}^{\mathrm{E}}$ 58
$\operatorname{GR}\left(p^{e}, f\right)^{\mathrm{H}}$. 58
$\operatorname{GR}\left(p^{e}, f\right)_{p^{s}}^{\mathrm{H}}$ 58
$\operatorname{GR}\left(p^{e}, f\right)^{\mathrm{H}+}$ 59
$\operatorname{GR}\left(p^{e}, f\right)_{p^{s}}^{\mathrm{H}+}$ 59
2.3.7 Linear codes over p-adic integers 60
\mathbb{Z}_{p} 60
More general p-adic integers 60
2.4 Examples of self-dual codes 60
2.4.1 2: Binary codes 60
2_{I} : Singly-even binary self-dual codes 61
$2_{\text {II }}$: Doubly-even binary self-dual codes 61
2.4.2 $\quad 4^{\mathrm{E}}$: Euclidean self-dual codes over \mathbb{F}_{4} 64
2.4.3 q^{E} (even or odd): Euclidean self-dual codes over \mathbb{F}_{q} 65
2.4.4 $q_{\text {II }}^{\mathrm{E}}$: Generalized doubly-even self-dual codes 65
2.4.5 3: Euclidean self-dual codes over \mathbb{F}_{3} 67
2.4.6 $4^{\text {H }}$: Hermitian self-dual codes over \mathbb{F}_{4} 68
2.4.7 q^{H} : Hermitian self-dual linear codes over \mathbb{F}_{q} 68
2.4.8 $4^{\mathrm{H}+}$: Trace-Hermitian additive codes over \mathbb{F}_{4} 69
2.4.9 $4^{\mathbb{Z}}$: Self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ 70
2.4.10 Codes over other Galois rings 76
2.4.11 \mathbb{Z}_{p} : Codes over the p-adic numbers 77
2.5 The Gleason-Pierce Theorem 80
3 Closed Codes 83
3.1 Bilinear forms and closed codes 83
3.2 Families of closed codes 86
3.2.1 Codes over commutative rings 88
3.2.2 Codes over quasi-Frobenius rings 89
3.2.3 Algebras over a commutative ring 90
3.2.4 Direct summands 94
3.3 Representations of twisted rings and closed codes 94
3.4 Morita theory 96
3.5 New representations from old 98
3.5.1 Subquotients and quotients 98
3.5.2 Direct sums and products 99
3.5.3 Tensor products 100
4 The Category Quad 103
4.1 The category of quadratic groups 104
4.2 The internal hom-functor IHom 108
4.3 Properties of quadratic rings 113
4.4 Morita theory for quadratic rings 116
4.5 Morita theory for form rings 120
4.6 Witt rings, groups and modules 121
5 The Main Theorems 129
5.1 Parabolic groups 130
5.2 Hyperbolic co-unitary groups 131
5.2.1 Generators for the hyperbolic co-unitary group 136
5.3 Clifford-Weil groups 139
5.4 Scalar elements in $\mathcal{C}(\rho)$ 142
5.5 Clifford-Weil groups and full weight enumerators 149
5.6 Results from invariant theory 155
5.6.1 Molien series 155
5.6.2 Relative invariants. 158
5.6.3 Construction of invariants using differential operators 160
5.6.4 Invariants and designs 161
5.7 Symmetrizations 162
5.8 Example: Hermitian codes over \mathbb{F}_{9} 167
6 Real and Complex Clifford Groups 171
6.1 Background 171
6.2 Runge's theorems 174
6.3 The real Clifford group \mathcal{C}_{m} 177
6.4 The complex Clifford group \mathcal{X}_{m} 182
6.5 Barnes-Wall lattices 184
6.6 Maximal finiteness in real case 188
6.7 Maximal finiteness in complex case 190
6.8 Automorphism groups of weight enumerators 190
7 Classical Self-Dual Codes 193
7.1 Quasisimple form rings 193
7.2 Split type 195
7.2.1 $q^{\text {lin }}$: Linear codes over \mathbb{F}_{q} 196
Clifford-Weil groups 198
\mathbb{F}_{2}, Genus 1 198
\mathbb{F}_{2}, Genus 2 199
7.3 Hermitian type 201
7.3.1 q^{H} : Hermitian self-dual codes over \mathbb{F}_{q} 202
Clifford-Weil groups 202
The case $q=4$ 203
The case $q=9$ 206
7.4 Orthogonal (or Euclidean) type, p odd 207
7.4.1 $\quad q^{\mathrm{E}}$ (odd): Euclidean self-dual codes over \mathbb{F}_{q} 207
Clifford-Weil groups (q odd) 207
The case $q=3$ 209
The case $q=3$, genus 2 210
The case $q=9$ 211
The case $q=5$ 212
7.5 Symplectic type, p odd 213
7.5.1 $q^{\mathrm{H}+}$ (odd): Hermitian \mathbb{F}_{r}-linear codes over $\mathbb{F}_{q}, q=r^{2}$ 214
Clifford-Weil groups (genus g) 214
The case $q=9$, genus 1 215
7.6 Characteristic 2, orthogonal and symplectic types 215
7.6.1 $q^{\mathrm{H}+}$ (even): Hermitian \mathbb{F}_{r}-linear codes over $\mathbb{F}_{q}, q=r^{2}$ 217
Clifford-Weil groups (genus g) 217
The case $q=4$, genus 1 217
The case $q=4$, genus 2 219
The case $q=16$ 220
7.6.2 q^{E} (even): Euclidean self-dual \mathbb{F}_{q}-linear codes 220
Clifford-Weil groups (genus g) 220
The case $q=2$ 221
The case $q=4$ 221
7.6.3 $q_{\mathrm{II}}^{\mathrm{H}+}$ (even): Even Trace-Hermitian \mathbb{F}_{r}-linear codes 222
Clifford-Weil groups (genus g) 222
The case $q=4$, genus 1 223
7.6.4 $q_{\text {II }}^{\mathrm{E}}$ (even): Generalized Doubly-even codes over \mathbb{F}_{q} 224
Clifford-Weil groups (genus g) 224
The case $k=\mathbb{F}_{2}$, arbitrary genus 225
The case $k=\mathbb{F}_{4}$, genus 1 225
The case $k=\mathbb{F}_{8}$ 226
8 Further Examples of Self-Dual Codes 227
$8.1 m^{\mathbb{Z}}$: Codes over $\mathbb{Z} / m \mathbb{Z}$ 227
$8.24^{\mathbb{Z}}$: Self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ 230
8.2.1 $4^{\mathbb{Z}}$: Type I self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ 230
8.2.2 $4_{1}^{\mathbb{Z}}$: Type I self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ containing $\mathbf{1}$ 231
8.2.3 Same, with 1 in the shadow 233
8.2.4 $4_{\mathrm{II}}^{\mathbb{Z}}$: Type II self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ 233
8.2.5 $4_{\mathrm{II}, \mathbf{1}}^{\mathbb{Z}}$: Type II self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ containing $\mathbf{1}$ 234
$8.38^{\mathbb{Z}}$: Self-dual codes over $\mathbb{Z} / 8 \mathbb{Z}$ 234
8.4 Codes over more general Galois rings 235
8.4.1 $\operatorname{GR}\left(p^{e}, f\right)^{\mathrm{E}}$: Euclidean self-dual $\operatorname{GR}\left(p^{e}, f\right)$-linear codes. 236
8.4.2 $\operatorname{GR}\left(p^{e}, f\right)^{\mathrm{H}}$: Hermitian self-dual $\operatorname{GR}\left(p^{e}, f\right)$-linear codes. 238
8.4.3 $\operatorname{GR}\left(p^{e}, 2 l\right)^{\mathrm{H}+}$: Trace-Hermitian $\mathrm{GR}\left(p^{e}, l\right)$-linear codes. 239
8.4.4 Clifford-Weil groups for $\operatorname{GR}(4,2)$. 239
8.5 Self-dual codes over $\mathbb{F}_{q^{2}}+\mathbb{F}_{q^{2}} u$ 243
9 Lattices 249
9.1 Lattices and theta series 252
9.1.1 Preliminary definitions 252
9.1.2 Modular lattices and Atkin-Lehner involutions 255
9.1.3 Shadows 260
9.1.4 Jacobi forms 261
9.1.5 Siegel theta series 261
Jacobi-Siegel theta series and Riemann theta functions 265
Riemann theta functions with Harmonic coefficients 268
9.1.6 Hilbert theta series 269
9.2 Positive definite form \mathbb{R}-algebras 272
9.3 Half-spaces 274
9.4 Form orders and lattices 276
9.5 Even and odd unimodular lattices 278
9.6 Gluing theory for codes 280
9.7 Gluing theory for lattices 282
10 Maximal Isotropic Codes and Lattices 285
10.1 Maximal isotropic codes 286
10.2 Maximal isotropic doubly-even binary codes 290
10.3 Maximal isotropic even binary codes 293
10.4 Maximal isotropic ternary codes 293
10.5 Maximal isotropic additive codes over \mathbb{F}_{4} 298
10.6 Maximal isotropic codes over $\mathbb{Z} / 4 \mathbb{Z}$ 298
10.7 Maximal even lattices 301
10.7.1 Maximal even lattices of determinant 3^{k} 304
10.7.2 Maximal even and integral lattices of determinant 2^{k} 306
11 Extremal and Optimal Codes 313
11.1 Upper bounds 314
11.1.1 Extremal weight enumerators and the LP bound 314
11.1.2 Self-dual binary codes, $2_{\text {II }}$ and 2_{I} 317
11.1.3 Some other types 321
11.1.4 A new definition of extremality 324
11.1.5 Asymptotic upper bounds 326
11.2 Lower bounds 328
11.3 Tables of extremal self-dual codes 331
11.3.1 Binary codes 331
11.3.2 Type 3: Ternary codes 336
11.3.3 Types 4^{E} and $4_{\mathrm{II}}^{\mathrm{E}}$: Euclidean self-dual codes over \mathbb{F}_{4} 338
11.3.4 Type 4^{H} : Hermitian linear self-dual codes over \mathbb{F}_{4} 339
11.3.5 Types $4^{\mathrm{H}+}$ and $4_{\mathrm{II}}^{\mathrm{H}+}$: Trace-Hermitian codes over \mathbb{F}_{4} 340
11.3.6 Type $4^{\mathbb{Z}}$: Self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ 342
11.3.7 Other types 345
12 Enumeration of Self-Dual Codes 347
12.1 The mass formulae 347
12.2 Enumeration of binary self-dual codes 350
Interrelations between types 2_{I} and 2_{II} 356
12.3 Type 3: Ternary self-dual codes 360
12.3.1 Types 4^{E} and $4_{\mathrm{II}}^{\mathrm{E}}$: Euclidean self-dual codes over \mathbb{F}_{4} 363
12.4 Type 4^{H} : Hermitian self-dual codes over \mathbb{F}_{4} 363
12.5 Type $4^{\mathrm{H}+}$: Trace-Hermitian additive codes over \mathbb{F}_{4} 365
12.6 Type $4^{\mathbb{Z}}$: Self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ 366
12.7 Other enumerations 367
13 Quantum Codes 369
13.1 Definitions 370
13.2 Additive and symplectic quantum codes 373
13.3 Hamming weight enumerators 376
13.4 Linear programming bounds 381
13.5 Other alphabets 382
13.6 A table of quantum codes 385
References 391
Index 417

List of Tables

1.1 The principal shadow pairs 27
2.1 The principal Types 78
2.2 The principal Types (cont.) 79
5.1 The most important Clifford-Weil groups 142
5.2 Clifford-Weil groups and reflection groups 158
6.1 Coefficients of t^{12} through t^{26} in Molien series for \mathcal{C}_{m} 180
9.1 The 24-dimensional even unimodular lattices 284
10.1 Genera of maximal even lattices of determinant 2^{k} 310
11.1 Upper bounds used to define extremality 325
11.2 Highest minimal distance of binary self-dual codes 333
11.3 Double circulant binary self-dual codes 335
11.4 Type 3: Highest minimal distance of ternary self-dual codes 337
11.5 Type 4^{E} : Highest minimal Hamming distance 338
11.6 Type $4_{\mathrm{II}}^{\mathrm{E}}$: Highest minimal distances 339
11.7 Type 4^{H} : Highest minimal Hamming distance 340
11.8 Type $4^{\mathrm{H}+}$: Highest minimal Hamming distance 341
11.9 Generators for cyclic additive codes over \mathbb{F}_{4} 341
11.10 Type $4_{\text {II }}^{\mathrm{H}}$: Highest minimal Hamming distance 342
11.11 Type $4^{\mathbb{Z}}$: Highest minimal distances and Euclidean norm 343
12.1 Number of binary self-dual codes of length N 352
12.2 Indecomposable binary self-dual codes of length ≤ 24 355
12.3 Type $2_{\text {II }}$ codes of length 32 (Part 1) 356
12.4 Type $2_{\text {II }}$ codes of length 32 (Part 2) 357
12.5 Type $2_{\text {II }}$ codes of length 32 (Part 3) 358
12.6 The groups G_{0} 360
12.7 Types $2_{\text {I }}$ or $2_{\text {II }}$ codes of lengths $N \leq 22$ and $d \geq 4$ 361
12.8 Types $2_{\text {I }}$ or $2_{\text {II }}$ codes of lengths 24 and $d \geq 4$ 362
12.9 Indecomposable ternary self-dual codes of lengths ≤ 20 363
12.10 Type 4^{H} : indecomposable Hermitian codes of lengths ≤ 16 364
12.11 Number of Type $4^{\mathrm{H}+}$ codes of length N 365
13.1 Cyclic quantum codes 386
13.2 Linear quasi-cyclic quantum codes 386
13.3 Highest minimal distance in an $[[N, k, d]]$ quantum code 388
13.4 Highest minimal distance in an $[[N, k, d]]$ code (cont.) 389

List of Figures

1.1 Structure maps $\}$ and λ for a quadratic pair. 12
2.1 Self-dual codes over $\mathbb{Z} / 4 \mathbb{Z}$ of length $N \leq 8$ 72
3.1 In this situation we say $C \perp D$ 85
4.1 (a) Morphism and (b) weak morphism of quadratic forms. 115
6.1 The two Barnes-Wall lattices in two dimensions 185
6.2 The eight minimal vectors of L_{1} and $\sqrt{2} L_{1}^{\prime}$. 186
9.1 Gluing components together 281
12.1 Generator matrix for the odd Golay code h_{24}^{+}. 353
12.2 Two choices for a hexad (special or umbral) 354
12.3 Generator matrices for certain $[32,16,8]$ Type $2_{\text {II }}$ codes 359

The Type of a Self-Dual Code

To motivate these initial definitions, we begin by remarking that in the classical theory (cf. van Lint [350], MacWilliams and Sloane [361], Pless, Huffman and Brualdi [427], Rains and Sloane [454]) a linear error-correcting code C is a subspace of a vector space V over a finite field \mathbb{F}, with inner products of codewords taking values in \mathbb{F} itself. The classical theory was enlarged in the early 1990's by the discovery by Hammons, Kumar, Calderbank, Sloane and Solé [175], [91], [227] that certain notorious nonlinear binary codes (the Nordstrom-Robinson, Kerdock and Preparata codes) could best be understood as arising from linear codes over the ring $\mathbb{Z} / 4 \mathbb{Z}$, and, in the case of the Kerdock code, from a self-dual linear code over $\mathbb{Z} / 4 \mathbb{Z}$.

A few years later, an important application of coding theory to quantum computers required the use of additive (but nonlinear) codes over \mathbb{F}_{4} (Calderbank, Rains, Shor and Sloane [95], [96] and Chapter 13 below).

Furthermore, codes over rings such as $\mathbb{Z} / 8 \mathbb{Z}$ arise naturally in studying "Phase Shift Keying" or PSK modulation schemes - see for example Anderson [7, §3.4], Piret [408].

Thus it became clear that the theory should consider codes over rings as well as over fields, and that weaker notions of linearity should be permitted.

Concerning the weights of codewords in a self-dual code, it is easy to show that in a self-dual code over \mathbb{F}_{2} the weight of every codeword must be even, in a self-dual code over \mathbb{F}_{3} the weight of every codeword is a multiple of 3, and in a Hermitian self-dual code over \mathbb{F}_{4} the weight of every codeword is even. Furthermore, there are many well-known self-dual codes over \mathbb{F}_{2} whose weights are divisible by 4 . Since these four families were the self-dual codes of main interest in the classical theory, they were called codes of Types I, III, IV and II respectively. In fact, as we will discuss in $\S 2.5$, a theorem of Gleason and Pierce shows that these are essentially the only possible divisibility restrictions that can be placed on the weights of self-dual codes over finite fields.

But once one allows self-dual codes to be defined over rings, there are other possible constraints that can be placed on the weights, and so in [454]
we defined nine different Types of self-dual codes, each with its own separate definition.

One of the goals of this book is to introduce a more formal notion of the Type of a self-dual code, which will allow us to give a unified treatment of all the earlier definitions as well as a number of new ones. The new framework is also broad enough to include both unimodular and even-unimodular lattices, as we shall see in Chapter 9. ${ }^{1}$

In this framework, the symbols in the codewords belong to a left R-module V (the alphabet) where R is a ring, assumed to contain a unit 1 , but which may be commutative or noncommutative, finite or infinite. A code C of length N will be an R-submodule of V^{N} for some positive integer N. A codeword $c \in C$ is an element of V^{N} and R is the ground ring underlying the code, in the sense that if $c \in C$ and $r \in R$ then $r c \in C$.

In the classical theory, inner products of codewords take values in the ground ring (which is usually the field of symbols, or a subfield if a trace is used to define the inner product). Now we allow the additional freedom that inner products of codewords will be defined by bilinear forms taking values in some abelian group A. For finite rings R, this abelian group A is usually a subgroup of \mathbb{Q} / \mathbb{Z}. This makes it possible to describe the MacWilliams transformation with respect to the \mathbb{Q} / \mathbb{Z}-valued bilinear forms as a complex linear transformation.

To specify additional properties of these codes, such as restrictions on the weights of codewords, or that the code contains the all-ones vector, we will use quadratic maps taking values in A; these are sums of quadratic forms and linear maps. We will therefore begin our discussion by defining quadratic maps in $\S 1.1$. In $\S 1.2$ we give the definition of a code and of the notions of dual, self-orthogonal, self-dual and isotropic code. To define a Type we will need the important concept of a form ring: this is defined in §1.7; §§1.3-1.6 contain technical material needed for this definition. Finally, the Type of a self-dual code is defined in $\S 1.8$. In brief, a Type is a representation ρ of a form ring (R, M, ψ, Φ). Equivalences and automorphism groups are defined using the language of Types in $\S 1.11$, and $\S 1.12$ defines the shadow of a code in this language.

1.1 Quadratic maps

Definition 1.1.1. Let V and A be abelian groups (see the preceding paragraphs for motivation). An A-valued bilinear form on V is a \mathbb{Z}-module homomorphism

$$
\beta: V \otimes_{\mathbb{Z}} V \rightarrow A
$$

[^0]If V is a left R-module for some ring R, then the set of all A-valued bilinear forms on V is a right ($R \otimes R$)-module, where the action is defined by

$$
\beta(r \otimes s)(x, y):=\beta(r x, s y) \text { for all } x, y \in V \text { and all } r, s \in R .
$$

This $(R \otimes R)$-module is denoted by $\operatorname{Bil}(V, A)=\operatorname{Bil}_{\mathbb{Z}}(V, A)$. An A-valued quadratic map on V is a map $\phi: V \rightarrow A$ such that

$$
\begin{equation*}
\phi(x+y+z)+\phi(x)+\phi(y)+\phi(z)=\phi(x+y)+\phi(x+z)+\phi(y+z)+\phi(0) ; \tag{1.1.1}
\end{equation*}
$$

or, equivalently, such that the map $\phi: V \times V \rightarrow A$ given by

$$
\begin{equation*}
\phi(x, y):=\phi(x+y)-\phi(x)-\phi(y)+\phi(0) \tag{1.1.2}
\end{equation*}
$$

is \mathbb{Z}-bilinear. A quadratic map ϕ on V is said to be pointed if $\phi(0)=0$, even if $\phi(-x)=\phi(x)$, and homogeneous if it is both pointed and even. We denote the abelian group of quadratic maps from V to A by $\operatorname{Quad}(V, A)$ and the subgroup of pointed maps by $\operatorname{Quad}_{0}(V, A)$.

If 2 acts invertibly on A, for example, then a quadratic map ϕ is the sum of a homogeneous quadratic map (given by $x \mapsto \frac{1}{2}(\phi(x)+\phi(-x))-\phi(0)$), a linear map (given by $x \mapsto \frac{1}{2}(\phi(x)-\phi(-x))$) and the constant $\phi(0)$.
Lemma 1.1.2. Let $\phi: V \rightarrow A$ be a quadratic map. For all $n \in \mathbb{Z}$ and all $x \in V$,

$$
\begin{equation*}
\phi(n x)=\frac{n(n+1)}{2} \phi(x)+\frac{n(n-1)}{2} \phi(-x)+\left(1-n^{2}\right) \phi(0) . \tag{1.1.3}
\end{equation*}
$$

Proof. Applying (1.1.1) with $y=-x$, we find that

$$
\begin{equation*}
\phi(z+x)-2 \phi(z)+\phi(z-x) \tag{1.1.4}
\end{equation*}
$$

is independent of z. By evaluating (1.1.4) at $z=0, x, 2 x, \ldots$ we obtain (1.1.3) for $n \geq 0$; evaluating (1.1.4) at $z=-x,-2 x, \ldots$ we obtain (1.1.3) for $n<0$.

Corollary 1.1.3. If the quadratic map $\phi: V \rightarrow A$ is homogeneous, then

$$
\begin{equation*}
\phi(n x)=n^{2} \phi(x) \tag{1.1.5}
\end{equation*}
$$

for all integers n and all $x \in V$.
In our applications, bilinear forms will arise from the requirement that two vectors in a self-dual code should have inner product zero. Some of the quadratic maps arise from specializations of bilinear forms, others when we impose constraints on the weights of codewords (cf. Example 1.2.2).

The reason we do not use condition (1.1.5) as well as (1.1.1) when defining a quadratic map is that (1.1.5) only applies to homogeneous quadratic
functions, whereas our quadratic maps may also have a linear or constant part, for example when we study codes that must contain the all-ones vector (cf. Example 1.8.4). Furthermore, if the characteristic is 2, (1.1.5) is always satisfied.

Since the obvious action of the underlying ring R on quadratic maps is not linear, we introduce the notion of a "qmodule", generalizing the notion of a linear R-module.

Definition 1.1.4. Let R be a ring. A (right) R-qmodule is an abelian group Φ equipped with a pointed quadratic map $r \mapsto[r]$ from R to $\operatorname{End}(\Phi)$ (with $[r]$ acting on Φ on the right) such that $[1]=1,[r][s]=[r s]$. A homomorphism between qmodules Φ_{1} and Φ_{2} is a map f such that $f\left(\phi_{1}+\phi_{2}\right)=f\left(\phi_{1}\right)+f\left(\phi_{2}\right)$ and $f\left(\phi_{1}[r]_{1}\right)=f\left(\phi_{1}\right)[r]_{2}$ for all $\phi_{1}, \phi_{2} \in \Phi, r \in R$.

Example 1.1.5. The group $\Phi=\operatorname{Quad}_{0}(V, A)$ of all pointed quadratic maps on a left R-module V is a right R-qmodule, with

$$
(\phi[r])(v):=\phi(r v), \quad \text { for } r \in R, \phi \in \Phi, v \in V
$$

Example 1.1.6. If M is a right R-module, then $x[r]=x r$ gives M an R qmodule structure. A qmodule obtained this way is called linear

Example 1.1.7. The abelian group $\mathbb{Z} / 4 \mathbb{Z}$ admits a natural $\mathbb{Z} / 2 \mathbb{Z}$-qmodule structure, given by

$$
\begin{equation*}
x[0]=0, \quad x[1]=x, \text { for } x \in \mathbb{Z} / 4 \mathbb{Z} . \tag{1.1.6}
\end{equation*}
$$

1.2 Self-dual and isotropic codes

We can now define the basic coding-theoretic concepts that will be used throughout the book.

Definition 1.2.1. Let V be a left R-module, A an abelian group, $M \subset$ $\operatorname{Bil}(V, A)$ a set of A-valued \mathbb{Z}-bilinear forms on V, and $\Phi \subset \operatorname{Quad}_{0}(V, A)$ a set of A-valued pointed quadratic maps on V. An R-submodule $C \leq V$ is called a code. Let $C \leq V$ be a code. The dual of C (with respect to M) is

$$
\begin{equation*}
C^{\perp}:=\{v \in V \mid m(c, v)=0, \text { for all } m \in M, c \in C\} \tag{1.2.1}
\end{equation*}
$$

Generalizing the standard terminology (cf. [361], [454]), we call C selforthogonal (with respect to M) if $C \subset C^{\perp}$ and self-dual if $C=C^{\perp}$. Furthermore, C is isotropic (with respect to (M, Φ)) if C is self-orthogonal with respect to M, and also $\phi(c)=0$ for all $\phi \in \Phi, c \in C$. Hence:
$\{$ self-orthogonal codes with respect to $M\}$
$\{$ (self-orthogonal) isotropic codes with respect to $(M, \Phi)\}$
$\{$ self-dual isotropic codes with respect to $(M, \Phi)\}$.

Note that according to this definition, our codes are always "linear": for us this means "an R-submodule of an R-module".

Remark. If $C \leq V$ is an R-submodule and $\beta \in \operatorname{Bil}(V, A)$ is such that $\beta\left(c, c^{\prime}\right)=0$ for all $c, c^{\prime} \in C$ (i.e. C is self-orthogonal with respect to β), then clearly $\beta(r \otimes s)\left(c, c^{\prime}\right)=\beta\left(r c, s c^{\prime}\right)=0$ for all $r, s \in R$ and $c, c^{\prime} \in C$, since C is an R-module. So when defining self-orthogonal codes we may as well assume that M is an ($R \otimes R$)-submodule of $\operatorname{Bil}(V, A)$.

Example 1.2.2. Classical doubly-even self-dual (or Type II) binary codes (self-dual codes in which the weight of every codeword is a multiple of 4) arise in this framework as follows. As usual, x_{i} denotes the i-th component of the vector $x=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{F}_{2}^{N}$. We take $R:=\mathbb{F}_{2}, V:=\mathbb{F}_{2}^{N}, A:=\frac{1}{4} \mathbb{Z} / \mathbb{Z}$,

$$
M:=\left\{0, m_{0}\right\} \subset \operatorname{Bil}\left(V, \frac{1}{4} \mathbb{Z} / \mathbb{Z}\right), \text { where } m_{0}(x, y):=\sum_{i=1}^{N} \frac{1}{2} x_{i} y_{i}
$$

and

$$
\Phi:=\left\{0, \phi_{0}, 2 \phi_{0}, 3 \phi_{0}\right\} \subset \operatorname{Quad}_{0}\left(V, \frac{1}{4} \mathbb{Z} / \mathbb{Z}\right) \text { where } \phi_{0}(x):=\sum_{i=1}^{N} \frac{1}{4} x_{i}^{2} .
$$

Then self-dual isotropic codes with respect to (M, Φ) are precisely the doublyeven self-dual binary codes of length N (for $m_{0}(u, v)=0$ ensures that the mod-2 inner product $u \cdot v$ is zero, and $\phi_{0}(u)=0$ guarantees that the weight of u is a multiple of 4).

As already mentioned, our goal is to give a general definition of the "Type" of a self-dual code. Definition 1.2.1 does not quite do this, since the triple (V, M, Φ) depends on the length of the code, whereas the notion of "Type" should not. To avoid this difficulty we introduce the notion of a representation of a form ring (§1.7). Changing the length of the code will then involve changing only the representation of the form ring by adding orthogonal summands. The appropriate setting for defining isotropic codes is the notion of a "quadratic pair" (M, Φ) over R, which will be introduced in §1.6.

1.3 Twisted modules and their representations

The ($R \otimes R$)-submodules M of $\operatorname{Bil}(V, A)$ used in the previous section have a naturally defined "twist" map τ which interchanges the arguments. More generally, we have:

Definition 1.3.1. A twisted R-module M is a right $(R \otimes R)$-module together with an automorphism $\tau: M \rightarrow M$ such that $\tau(m(r \otimes s))=\tau(m)(s \otimes r)$, for all $m \in M, r \in R, s \in R$, satisfying $\tau^{2}=1$.

Example 1.3.2. If V is an R-module and A an abelian group, then $M:=$ $\operatorname{Bil}(V, A)$ is a twisted R-module, where $\tau: M \rightarrow M$ is given by $\tau(m)(x, y):=$ $m(y, x)$.

Definition 1.3.3. A representation $\rho:=\left(V, \rho_{M}\right)$ of a twisted R-module M consists of an R-module V and a twisted R-module homomorphism $\rho_{M}: M \rightarrow$ $\operatorname{Bil}(V, A)$ (for some abelian group A) that is compatible with the twist τ in Example 1.3.2, i.e. which satisfies

$$
\begin{equation*}
\rho_{M}(\tau(m))(x, y)=\rho_{M}(m)(y, x), \text { for } x, y \in V, m \in M \tag{1.3.1}
\end{equation*}
$$

The representation ρ is said to be finite if R and V are finite sets and $A=\mathbb{Q} / \mathbb{Z}$.
We generalize the notion of dual code with respect to a set of bilinear forms given in the previous section to the dual code in a representation.

Definition 1.3.4. Let $\rho=\left(V, \rho_{M}\right)$ be a representation of a twisted R-module M. Let $C \leq V$ be a code. The dual of C with respect to ρ is defined to be

$$
\begin{equation*}
C^{\perp}:=\left\{v \in V \mid \rho_{M}(m)(c, v)=0, \text { for } m \in M, c \in C\right\} . \tag{1.3.2}
\end{equation*}
$$

We will sometimes write $C^{\perp, \rho}$ when it is necessary to specify ρ. If $C \subset C^{\perp, \rho}$ we say that C is a self-orthogonal code in (the representation) ρ; if $C=C^{\perp, \rho}$ we say C is a self-dual code in (the representation) ρ.

1.4 Twisted rings and their representations

The case when M is isomorphic to R as a right R-module is especially important. One can think of this as specializing only one nonsingular bilinear form β on V and taking M to be the $1 \otimes R$-submodule of $\operatorname{Bil}(V, A)$ spanned by β. (Here we use "nonsingular" in its classical sense. For the formal definition see Definition 3.2.1 in Chapter 3.) If the code C is an R-submodule of V, we have

$$
\begin{equation*}
C^{\perp, \beta}=\{v \in V \mid \beta(v, c)=0 \text { for all } c \in C\} \tag{1.4.1}
\end{equation*}
$$

and for any $v \in C^{\perp, \beta}$ we have $m(v, c)=0$ for all $m \in M$ and $c \in C$.
Definition 1.4.1. A twisted $\operatorname{ring}(R, M, \psi)$ consists of a ring R, a twisted R-module M and a right R-module isomorphism $\psi: R_{R} \rightarrow M_{1 \otimes R}$, such that $\epsilon:=\psi^{-1}(\tau(\psi(1)))$ is a unit in R. Then ϵ is called the associated unit defined by the involution τ.

[^0]: ${ }^{1}$ Although so far "modular" lattices (Quebbemann [439]) do not fit into this framework.

