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To Margaret, as always



Preface

Namely, because the shape of the whole universe is most perfect and, in fact,
designed by the wisest creator, nothing in all of the world will occur in which
no maximum or minimum rule is somehow shining forth.

Leonhard Euler (1744)

We can treat this firm stand by Euler [411] (“. . . nihil omnino in mundo con-
tingint, in quo non maximi minimive ratio quapiam eluceat”) as the most
fundamental principle of Variational Analysis. This principle justifies a va-
riety of striking implementations of optimization/variational approaches to
solving numerous problems in mathematics and applied sciences that may
not be of a variational nature. Remember that optimization has been a major
motivation and driving force for developing differential and integral calculus.
Indeed, the very concept of derivative introduced by Fermat via the tangent
slope to the graph of a function was motivated by solving an optimization
problem; it led to what is now called the Fermat stationary principle. Besides
applications to optimization, the latter principle plays a crucial role in prov-
ing the most important calculus results including the mean value theorem,
the implicit and inverse function theorems, etc. The same line of development
can be seen in the infinite-dimensional setting, where the Brachistochrone
was the first problem not only of the calculus of variations but of all func-
tional analysis inspiring, in particular, a variety of concepts and techniques in
infinite-dimensional differentiation and related areas.

Modern variational analysis can be viewed as an outgrowth of the calculus
of variations and mathematical programming, where the focus is on optimiza-
tion of functions relative to various constraints and on sensitivity/stability of
optimization-related problems with respect to perturbations. Classical notions
of variations such as moving away from a given point or curve no longer play
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a critical role, while concepts of problem approximations and/or perturbations
become crucial.

One of the most characteristic features of modern variational analysis
is the intrinsic presence of nonsmoothness, i.e., the necessity to deal with
nondifferentiable functions, sets with nonsmooth boundaries, and set-valued
mappings. Nonsmoothness naturally enters not only through initial data of
optimization-related problems (particularly those with inequality and geomet-
ric constraints) but largely via variational principles and other optimization,
approximation, and perturbation techniques applied to problems with even
smooth data. In fact, many fundamental objects frequently appearing in the
framework of variational analysis (e.g., the distance function, value functions
in optimization and control problems, maximum and minimum functions, so-
lution maps to perturbed constraint and variational systems, etc.) are in-
evitably of nonsmooth and/or set-valued structures requiring the development
of new forms of analysis that involve generalized differentiation.

It is important to emphasize that even the simplest and historically earliest
problems of optimal control are intrinsically nonsmooth, in contrast to the
classical calculus of variations. This is mainly due to pointwise constraints on
control functions that often take only discrete values as in typical problems of
automatic control, a primary motivation for developing optimal control theory.
Optimal control has always been a major source of inspiration as well as a
fruitful territory for applications of advanced methods of variational analysis
and generalized differentiation.

Key issues of variational analysis in finite-dimensional spaces have been
addressed in the book “Variational Analysis” by Rockafellar and Wets [1165].
The development and applications of variational analysis in infinite dimen-
sions require certain concepts and tools that cannot be found in the finite-
dimensional theory. The primary goals of this book are to present basic con-
cepts and principles of variational analysis unified in finite-dimensional and
infinite-dimensional space settings, to develop a comprehensive generalized
differential theory at the same level of perfection in both finite and infinite di-
mensions, and to provide valuable applications of variational theory to broad
classes of problems in constrained optimization and equilibrium, sensitivity
and stability analysis, control theory for ordinary, functional-differential and
partial differential equations, and also to selected problems in mechanics and
economic modeling.

Generalized differentiation lies at the heart of variational analysis and
its applications. We systematically develop a geometric dual-space approach
to generalized differentiation theory revolving around the extremal principle,
which can be viewed as a local variational counterpart of the classical convex
separation in nonconvex settings. This principle allows us to deal with noncon-
vex derivative-like constructions for sets (normal cones), set-valued mappings
(coderivatives), and extended-real-valued functions (subdifferentials). These
constructions are defined directly in dual spaces and, being nonconvex-valued,
cannot be generated by any derivative-like constructions in primal spaces (like
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tangent cones and directional derivatives). Nevertheless, our basic nonconvex
constructions enjoy comprehensive calculi, which happen to be significantly
better than those available for their primal and/or convex-valued counter-
parts. Thus passing to dual spaces, we are able to achieve more beauty and
harmony in comparison with primal world objects. In some sense, the dual
viewpoint does indeed allow us to meet the perfection requirement in the
fundamental statement by Euler quoted above.

Observe to this end that dual objects (multipliers, adjoint arcs, shadow
prices, etc.) have always been at the center of variational theory and applica-
tions used, in particular, for formulating principal optimality conditions in the
calculus of variations, mathematical programming, optimal control, and eco-
nomic modeling. The usage of variations of optimal solutions in primal spaces
can be considered just as a convenient tool for deriving necessary optimality
conditions. There are no essential restrictions in such a “primal” approach
in smooth and convex frameworks, since primal and dual derivative-like con-
structions are equivalent for these classical settings. It is not the case any
more in the framework of modern variational analysis, where even nonconvex
primal space local approximations (e.g., tangent cones) inevitably yield, un-
der duality, convex sets of normals and subgradients. This convexity of dual
objects leads to significant restrictions for the theory and applications. More-
over, there are many situations particularly identified in this book, where
primal space approximations simply cannot be used for variational analysis,
while the employment of dual space constructions provides comprehensive
results. Nevertheless, tangentially generated/primal space constructions play
an important role in some other aspects of variational analysis, especially in
finite-dimensional spaces, where they recover in duality the nonconvex sets
of our basic normals and subgradients at the point in question by passing to
the limit from points nearby; see, for instance, the afore-mentioned book by
Rockafellar and Wets [1165]

Among the abundant bibliography of this book, we refer the reader to the
monographs by Aubin and Frankowska [54], Bardi and Capuzzo Dolcetta [85],
Beer [92], Bonnans and Shapiro [133], Clarke [255], Clarke, Ledyaev, Stern and
Wolenski [265], Facchinei and Pang [424], Klatte and Kummer [686], Vinter
[1289], and to the comments given after each chapter for significant aspects of
variational analysis and impressive applications of this rapidly growing area
that are not considered in the book. We especially emphasize the concur-
rent and complementing monograph “Techniques of Variational Analysis” by
Borwein and Zhu [164], which provides a nice introduction to some fundamen-
tal techniques of modern variational analysis covering important theoretical
aspects and applications not included in this book.

The book presented to the reader’s attention is self-contained and mostly
collects results that have not been published in the monographical literature.
It is split into two volumes and consists of eight chapters divided into sections
and subsections. Extensive comments (that play a special role in this book
discussing basic ideas, history, motivations, various interrelations, choice of
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terminology and notation, open problems, etc.) are given for each chapter.
We present and discuss numerous references to the vast literature on many
aspects of variational analysis (considered and not considered in the book)
including early contributions and very recent developments. Although there
are no formal exercises, the extensive remarks and examples provide grist for
further thought and development. Proofs of the major results are complete,
while there is plenty of room for furnishing details, considering special cases,
and deriving generalizations for which guidelines are often given.

Volume I “Basic Theory” consists of four chapters mostly devoted to basic
constructions of generalized differentiation, fundamental extremal and varia-
tional principles, comprehensive generalized differential calculus, and complete
dual characterizations of fundamental properties in nonlinear study related to
Lipschitzian stability and metric regularity with their applications to sensi-
tivity analysis of constraint and variational systems.

Chapter 1 concerns the generalized differential theory in arbitrary Banach
spaces. Our basic normals, subgradients, and coderivatives are directly defined
in dual spaces via sequential weak∗ limits involving more primitive ε-normals
and ε-subgradients of the Fréchet type. We show that these constructions have
a variety of nice properties in the general Banach spaces setting, where the
usage of ε-enlargements is crucial. Most such properties (including first-order
and second-order calculus rules, efficient representations, variational descrip-
tions, subgradient calculations for distance functions, necessary coderivative
conditions for Lipschitzian stability and metric regularity, etc.) are collected
in this chapter. Here we also define and start studying the so-called sequen-
tial normal compactness (SNC) properties of sets, set-valued mappings, and
extended-real-valued functions that automatically hold in finite dimensions
while being one of the most essential ingredients of variational analysis and
its applications in infinite-dimensional spaces.

Chapter 2 contains a detailed study of the extremal principle in variational
analysis, which is the main single tool of this book. First we give a direct vari-
ational proof of the extremal principle in finite-dimensional spaces based on a
smoothing penalization procedure via the method of metric approximations.
Then we proceed by infinite-dimensional variational techniques in Banach
spaces with a Fréchet smooth norm and finally, by separable reduction, in
the larger class of Asplund spaces. The latter class is well-investigated in the
geometric theory of Banach spaces and contains, in particular, every reflexive
space and every space with a separable dual. Asplund spaces play a prominent
role in the theory and applications of variational analysis developed in this
book. In Chap. 2 we also establish relationships between the (geometric) ex-
tremal principle and (analytic) variational principles in both conventional and
enhanced forms. The results obtained are applied to the derivation of novel
variational characterizations of Asplund spaces and useful representations of
the basic generalized differential constructions in the Asplund space setting
similar to those in finite dimensions. Finally, in this chapter we discuss ab-
stract versions of the extremal principle formulated in terms of axiomatically



Preface XI

defined normal and subdifferential structures on appropriate Banach spaces
and also overview in more detail some specific constructions.

Chapter 3 is a cornerstone of the generalized differential theory developed
in this book. It contains comprehensive calculus rules for basic normals, sub-
gradients, and coderivatives in the framework of Asplund spaces. We pay most
of our attention to pointbased rules via the limiting constructions at the points
in question, for both assumptions and conclusions, having in mind that point-
based results indeed happen to be of crucial importance for applications. A
number of the results presented in this chapter seem to be new even in the
finite-dimensional setting, while overall we achieve the same level of perfec-
tion and generality in Asplund spaces as in finite dimensions. The main issue
that distinguishes the finite-dimensional and infinite-dimensional settings is
the necessity to invoke sufficient amounts of compactness in infinite dimen-
sions that are not needed at all in finite-dimensional spaces. The required
compactness is provided by the afore-mentioned SNC properties, which are
included in the assumptions of calculus rules and call for their own calcu-
lus ensuring the preservation of SNC properties under various operations on
sets and mappings. The absence of such a SNC calculus was a crucial obsta-
cle for many successful applications of generalized differentiation in infinite-
dimensional spaces to a range of infinite-dimensions problems including those
in optimization, stability, and optimal control given in this book. Chapter 3
contains a broad spectrum of the SNC calculus results that are decisive for
subsequent applications.

Chapter 4 is devoted to a thorough study of Lipschitzian, metric regularity,
and linear openness/covering properties of set-valued mappings, and to their
applications to sensitivity analysis of parametric constraint and variational
systems. First we show, based on variational principles and the generalized
differentiation theory developed above, that the necessary coderivative condi-
tions for these fundamental properties derived in Chap. 1 in arbitrary Banach
spaces happen to be complete characterizations of these properties in the As-
plund space setting. Moreover, the employed variational approach allows us to
obtain verifiable formulas for computing the exact bounds of the correspond-
ing moduli. Then we present detailed applications of these results, supported
by generalized differential and SNC calculi, to sensitivity and stability analy-
sis of parametric constraint and variational systems governed by perturbed
sets of feasible and optimal solutions in problems of optimization and equi-
libria, implicit multifunctions, complementarity conditions, variational and
hemivariational inequalities as well as to some mechanical systems.

Volume II “Applications” also consists of four chapters mostly devoted
to applications of basic principles in variational analysis and the developed
generalized differential calculus to various topics in constrained optimization
and equilibria, optimal control of ordinary and distributed-parameter systems,
and models of welfare economics.

Chapter 5 concerns constrained optimization and equilibrium problems
with possibly nonsmooth data. Advanced methods of variational analysis
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based on extremal/variational principles and generalized differentiation hap-
pen to be very useful for the study of constrained problems even with smooth
initial data, since nonsmoothness naturally appears while applying penaliza-
tion, approximation, and perturbation techniques. Our primary goal is to de-
rive necessary optimality and suboptimality conditions for various constrained
problems in both finite-dimensional and infinite-dimensional settings. Note
that conditions of the latter – suboptimality – type, somehow underestimated
in optimization theory, don’t assume the existence of optimal solutions (which
is especially significant in infinite dimensions) ensuring that “almost” optimal
solutions “almost” satisfy necessary conditions for optimality. Besides con-
sidering problems with constraints of conventional types, we pay serious at-
tention to rather new classes of problems, labeled as mathematical problems
with equilibrium constraints (MPECs) and equilibrium problems with equilib-
rium constraints (EPECs), which are intrinsically nonsmooth while admitting
a thorough analysis by using generalized differentiation. Finally, certain con-
cepts of linear subextremality and linear suboptimality are formulated in such
a way that the necessary optimality conditions derived above for conventional
notions are seen to be necessary and sufficient in the new setting.

In Chapter 6 we start studying problems of dynamic optimization and op-
timal control that, as mentioned, have been among the primary motivations
for developing new forms of variational analysis. This chapter deals mostly
with optimal control problems governed by ordinary dynamic systems whose
state space may be infinite-dimensional. The main attention in the first part of
the chapter is paid to the Bolza-type problem for evolution systems governed
by constrained differential inclusions. Such models cover more conventional
control systems governed by parameterized evolution equations with control
regions generally dependent on state variables. The latter don’t allow us to
use control variations for deriving necessary optimality conditions. We de-
velop the method of discrete approximations, which is certainly of numerical
interest, while it is mainly used in this book as a direct vehicle to derive op-
timality conditions for continuous-time systems by passing to the limit from
their discrete-time counterparts. In this way we obtain, strongly based on the
generalized differential and SNC calculi, necessary optimality conditions in the
extended Euler-Lagrange form for nonconvex differential inclusions in infinite
dimensions expressed via our basic generalized differential constructions.

The second part of Chap. 6 deals with constrained optimal control systems
governed by ordinary evolution equations of smooth dynamics in arbitrary Ba-
nach spaces. Such problems have essential specific features in comparison with
the differential inclusion model considered above, and the results obtained (as
well as the methods employed) in the two parts of this chapter are generally in-
dependent. Another major theme explored here concerns stability of the max-
imum principle under discrete approximations of nonconvex control systems.
We establish rather surprising results on the approximate maximum principle
for discrete approximations that shed new light upon both qualitative and
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quantitative relationships between continuous-time and discrete-time systems
of optimal control.

In Chapter 7 we continue the study of optimal control problems by appli-
cations of advanced methods of variational analysis, now considering systems
with distributed parameters. First we examine a general class of hereditary
systems whose dynamic constraints are described by both delay-differential
inclusions and linear algebraic equations. On one hand, this is an interesting
and not well-investigated class of control systems, which can be treated as a
special type of variational problems for neutral functional-differential inclu-
sions containing time delays not only in state but also in velocity variables.
On the other hand, this class is related to differential-algebraic systems with
a linear link between “slow” and “fast” variables. Employing the method of
discrete approximations and the basic tools of generalized differentiation, we
establish a strong variational convergence/stability of discrete approximations
and derive extended optimality conditions for continuous-time systems in both
Euler-Lagrange and Hamiltonian forms.

The rest of Chap. 7 is devoted to optimal control problems governed by
partial differential equations with pointwise control and state constraints. We
pay our primary attention to evolution systems described by parabolic and
hyperbolic equations with controls functions acting in the Dirichlet and Neu-
mann boundary conditions. It happens that such boundary control problems
are the most challenging and the least investigated in PDE optimal control
theory, especially in the presence of pointwise state constraints. Employing
approximation and perturbation methods of modern variational analysis, we
justify variational convergence and derive necessary optimality conditions for
various control problems for such PDE systems including minimax control
under uncertain disturbances.

The concluding Chapter 8 is on applications of variational analysis to eco-
nomic modeling. The major topic here is welfare economics, in the general
nonconvex setting with infinite-dimensional commodity spaces. This impor-
tant class of competitive equilibrium models has drawn much attention of
economists and mathematicians, especially in recent years when nonconvex-
ity has become a crucial issue for practical applications. We show that the
methods of variational analysis developed in this book, particularly the ex-
tremal principle, provide adequate tools to study Pareto optimal allocations
and associated price equilibria in such models. The tools of variational analysis
and generalized differentiation allow us to obtain extended nonconvex versions
of the so-called “second fundamental theorem of welfare economics” describ-
ing marginal equilibrium prices in terms of minimal collections of generalized
normals to nonconvex sets. In particular, our approach and variational de-
scriptions of generalized normals offer new economic interpretations of market
equilibria via “nonlinear marginal prices” whose role in nonconvex models is
similar to the one played by conventional linear prices in convex models of
the Arrow-Debreu type.
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The book includes a Glossary of Notation, common for both volumes,
and an extensive Subject Index compiled separately for each volume. Using
the Subject Index, the reader can easily find not only the page, where some
notion and/or notation is introduced, but also various places providing more
discussions and significant applications for the object in question.

Furthermore, it seems to be reasonable to title all the statements of the
book (definitions, theorems, lemmas, propositions, corollaries, examples, and
remarks) that are numbered in sequence within a chapter; thus, in Chap. 5 for
instance, Example 5.3.3 precedes Theorem 5.3.4, which is followed by Corol-
lary 5.3.5. For the reader’s convenience, all these statements and numerated
comments are indicated in the List of Statements presented at the end of each
volume. It is worth mentioning that the list of acronyms is included (in al-
phabetic order) in the Subject Index and that the common principle adopted
for the book notation is to use lower case Greek characters for numbers and
(extended) real-valued functions, to use lower case Latin characters for vectors
and single-valued mappings, and to use Greek and Latin upper case characters
for sets and set-valued mappings.

Our notation and terminology are generally consistent with those in Rock-
afellar and Wets [1165]. Note that we try to distinguish everywhere the notions
defined at the point and around the point in question. The latter indicates
robustness/stability with respect to perturbations, which is critical for most
of the major results developed in the book.

The book is accompanied by the abundant bibliography (with English
sources if available), common for both volumes, which reflects a variety of
topics and contributions of many researchers. The references included in the
bibliography are discussed, at various degrees, mostly in the extensive com-
mentaries to each chapter. The reader can find further information in the
given references, directed by the author’s comments.

We address this book mainly to researchers and graduate students in math-
ematical sciences; first of all to those interested in nonlinear analysis, opti-
mization, equilibria, control theory, functional analysis, ordinary and partial
differential equations, functional-differential equations, continuum mechanics,
and mathematical economics. We also envision that the book will be useful
to a broad range of researchers, practitioners, and graduate students involved
in the study and applications of variational methods in operations research,
statistics, mechanics, engineering, economics, and other applied sciences.

Parts of the book have been used by the author in teaching graduate
classes on variational analysis, optimization, and optimal control at Wayne
State University. Basic material has also been incorporated into many lectures
and tutorials given by the author at various schools and scientific meetings
during the recent years.
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Claude Lemaréchal, Adam Levy, Adrian Lewis, Kazik Malanowski, Michael
Overton, Jong-Shi Pang, Teemu Pennanen, Steve Robinson, Alex Rubinov,
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Basic Theory



1

Generalized Differentiation in Banach Spaces

In this chapter we define and study basic concepts of generalized differentiation
that lies at the heart of variational analysis and its applications considered in
the book. Most properties presented in this chapter hold in arbitrary Banach
spaces (some of them don’t require completeness or even a normed structure,
as one can see from the proofs). Developing a geometric dual-space approach
to generalized differentiation, we start with normals to sets (Sect. 1.1), then
proceed to coderivatives of set-valued mappings (Sect. 1.2), and then to sub-
differentials of extended-real-valued functions (Sect. 1.3).

Unless otherwise stated, all the spaces in question are Banach whose norms
are always denoted by ‖ · ‖. Given a space X , we denote by IBX its closed unit
ball and by X∗ its dual space equipped with the weak∗ topology w∗, where
〈·, ·〉 means the canonical pairing. If there is no confusion, IB and IB∗ stand
for the closed unit balls of the space and dual space in question, while S and
S∗ are usually stand for the corresponding unit spheres ; also Br (x) := x +r IB
with r > 0. The symbol ∗ is used everywhere to indicate relations to dual
spaces (dual elements, adjoint operators, etc.)

In what follows we often deal with set-valued mappings (multifunctions)
F : X →→ X∗ between a Banach space and its dual, for which the notation

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗ ∣∣ ∃ sequences xk → x̄ and x∗
k
w∗
→ x∗

with x∗
k ∈ F(xk) for all k ∈ IN

}
(1.1)

signifies the sequential Painlevé-Kuratowski upper/outer limit with respect to
the norm topology of X and the weak∗ topology of X∗. Note that the symbol
:= means “equal by definition” and that IN := {1, 2, . . .} denotes the set of
all natural numbers.

The linear combination of the two subsets Ω1 and Ω2 of X is defined by

α1Ω1 + α2Ω2 :=
{
α1x1 + α2x2

∣
∣ x1 ∈ Ω1, x2 ∈ Ω2

}
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with real numbers α1, α2 ∈ IR := (−∞,∞), where we use the convention that
Ω + ∅ = ∅, α∅ = ∅ if α ∈ IR \ {0}, and α∅ = {0} if α = 0. Dealing with empty
sets, we let inf ∅ := ∞, sup ∅ := −∞, and ‖∅‖ := ∞.

1.1 Generalized Normals to Nonconvex Sets

Throughout this section, Ω is a nonempty subset of a real Banach space X .
Such a set is called proper if Ω 	= X . In what follows the expressions

clΩ, coΩ, clcoΩ, bdΩ, intΩ

stand for the standard notions of closure, convex hull , closed convex hull,
boundary, and interior of Ω, respectively. The conic hull of Ω is

cone Ω :=
{
αx ∈ X | α ≥ 0, x ∈ Ω

}
.

The symbol cl ∗ signifies the weak∗ topological closure of a set in a dual space.

1.1.1 Basic Definitions and Some Properties

We begin the generalized differentiation theory with constructing generalized
normals to arbitrary sets. To describe basic normals to a set Ω at a given
point x̄ , we use a two-stage procedure: first define more primitive ε-normals
(prenormals) to Ω at points x close to x̄ and then pass to the sequential limit
(1.1) as x → x̄ and ε ↓ 0. Throughout the book we use the notation

x
Ω→ x̄ ⇐⇒ x → x̄ with x ∈ Ω .

Definition 1.1 (generalized normals). Let Ω be a nonempty subset of X .
(i) Given x ∈ Ω and ε ≥ 0, define the set of ε-normals to Ω at x by

N̂ε(x ;Ω) :=
{

x∗ ∈ X∗
∣
∣
∣ lim sup

u
Ω→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

}
. (1.2)

When ε = 0, elements of (1.2) are called Fréchet normals and their col-
lection, denoted by N̂(x ;Ω), is the prenormal cone to Ω at x. If x /∈ Ω,
we put N̂ε(x ;Ω) := ∅ for all ε ≥ 0.

(ii) Let x̄ ∈ Ω. Then x∗ ∈ X∗ is a basic/limiting normal to Ω at x̄ if

there are sequences εk ↓ 0, xk
Ω→ x̄, and x∗

k
w∗
→ x∗ such that x∗

k ∈ N̂εk (xk ;Ω) for
all k ∈ IN . The collection of such normals

N(x̄ ;Ω) := Lim sup
x→x̄
ε↓0

N̂ε(x ;Ω) (1.3)

is the (basic, limiting) normal cone to Ω at x̄. Put N(x̄ ;Ω) := ∅ for x̄ /∈ Ω.



1.1 Generalized Normals to Nonconvex Sets 5

It easily follows from the definitions that

N̂ε(x̄ ;Ω) = N̂ε(x̄ ; clΩ) and N(x̄ ;Ω) ⊂ N(x̄ ; clΩ)

for every Ω ⊂ X , x̄ ∈ Ω, and ε ≥ 0. Observe that both the prenormal cone
N̂(·;Ω) and the normal cone N(·;Ω) are invariant with respect to equivalent
norms on X while the ε-normal sets N̂ε(·;Ω) depend on a given norm ‖ · ‖ if
ε > 0. Note also that for each ε ≥ 0 the sets (1.2) are obviously convex and
closed in the norm topology of X∗; hence they are weak∗ closed in X∗ when
X is reflexive.

In contrast to (1.2), the basic normal cone (1.3) may be nonconvex in very
simple situations as for Ω :=

{
(x1, x2) ∈ IR2| x2 ≥ −|x1|

}
, where

N((0, 0);Ω) =
{
(v, v)

∣
∣ v ≤ 0

}
∪
{
(v,−v)

∣
∣ v ≥ 0

}
(1.4)

while N̂((0, 0);Ω) = {0}. This shows that N(x̄ ;Ω) cannot be dual/polar to
any (even nonconvex) tangential approximation of Ω at x̄ in the primal space
X , since polarity always implies convexity; cf. Subsect. 1.1.2.

One can easily observe the following monotonicity properties of the ε-
normal sets (1.2) with respect to ε as well as with respect to the set order:

N̂ε(x̄ ;Ω) ⊂ N̂ε̃(x̄ ;Ω) if 0 ≤ ε ≤ ε̃ ,

N̂ε(x̄ ;Ω) ⊂ N̂ε(x̄ ; Ω̃) if x̄ ∈ Ω̃ ⊂ Ω and ε ≥ 0 . (1.5)

In particular, the decreasing property (1.5) holds for the prenormal cone
N̂(x̄ ; ·). Note however that neither (1.5) nor the opposite inclusion is valid
for the basic normal cone (1.3). To illustrate this, we consider the two sets

Ω :=
{
(x1, x2) ∈ IR2

∣
∣ x2 ≥ −|x1|

}
and Ω̃ :=

{
(x1, x2) ∈ IR2

∣
∣ x1 ≤ x2

}

with x̄ = (0, 0) ∈ Ω̃ ⊂ Ω. Then

N(x̄ ; Ω̃) =
{
(v,−v)

∣
∣ v ≥ 0

}
⊂ N(x̄ ;Ω) ,

where the latter cone is computed in (1.4). Furthermore, taking Ω as above
and Ω̃ :=

{
(x1, x2) ∈ IR2| x2 ≥ 0

}
⊂ Ω, we have

N(x̄ ;Ω) ∩ N(x̄ ; Ω̃) = {(0, 0)} ,

which excludes any monotonicity relations.

The next property for representing normals to set products is common for
both prenormal and normal cones.
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Proposition 1.2 (normals to Cartesian products). Consider an arbi-
trary point x̄ = (x̄1, x̄2) ∈ Ω1 ×Ω2 ⊂ X1 × X2. Then

N̂(x̄ ;Ω1 ×Ω2) = N̂(x̄1;Ω1) × N̂(x̄2;Ω2) ,

N(x̄ ;Ω1 ×Ω2) = N(x̄1;Ω1) × N(x̄2;Ω2) .

Proof. Since both prenormal and normal cones do not depend on equivalent
norms on X1 and X2, we can fix any norms on these spaces and define a norm
on the product X1 × X2 by

‖(x1, x2)‖ := ‖x1‖ + ‖x2‖ .

Given arbitrary ε ≥ 0 and x = (x1, x2) ∈ Ω := Ω1 ×Ω2, we easily check that

N̂ε(x1;Ω1) × N̂ε(x2;Ω2) ⊂ N̂2ε(x ;Ω) ⊂ N̂2ε(x1;Ω1) × N̂2ε(x2;Ω2) ,

which implies both product formulas in the proposition. �

The prenormal cone N̂(·;Ω) is obviously the smallest set among all the
sets N̂ε(·;Ω). It follows from (1.2) that

N̂ε(x̄ ;Ω) ⊃ N̂(x̄ ;Ω) + ε IB∗

for every ε ≥ 0 and an arbitrary set Ω. If Ω is convex, then this inclusion
holds as equality due to the following representation of ε-normals.

Proposition 1.3 (ε-normals to convex sets). Let Ω be convex. Then

N̂ε(x̄ ;Ω) =
{

x∗ ∈ X∗ ∣∣ 〈x∗, x − x̄〉 ≤ ε‖x − x̄‖ whenever x ∈ Ω
}

for any ε ≥ 0 and x̄ ∈ Ω. In particular, N̂(x̄ ;Ω) agrees with the normal cone
of convex analysis.

Proof. Note that the inclusion “⊃” in the above formula obviously holds for
an arbitrary set Ω. Let us justify the opposite inclusion when Ω is convex.
Consider any x∗ ∈ N̂ε(x̄ ;Ω) and fix x ∈ Ω. Then we have

xα := x̄ + α(x − x̄) ∈ Ω for all 0 ≤ α ≤ 1

due to the convexity of Ω. Moreover, xα → x̄ as α ↓ 0. Taking an arbitrary
γ > 0, we easily conclude from (1.2) that

〈x∗, xα − x̄〉 ≤ (ε + γ )‖xα − x̄‖ for small α > 0 ,

which completes the proof. �
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It follows from Definition 1.1 that

N̂(x̄ ;Ω) ⊂ N(x̄ ;Ω) for any Ω ⊂ X and x̄ ∈ Ω . (1.6)

This inclusion may be strict even for simple sets as the one in (1.4), where
N̂(x̄ ;Ω) = {0} for x̄ = 0 ∈ IR2. The equality in (1.6) singles out a class of
sets that have certain “regular” behavior around x̄ and unify good properties
of both prenormal and normal cones at x̄ .

Definition 1.4 (normal regularity of sets). A set Ω ⊂ X is (normally)
regular at x̄ ∈ Ω if

N(x̄ ;Ω) = N̂(x̄ ;Ω) .

An important example of set regularity is given by sets Ω locally convex
around x̄ , i.e., for which there is a neighborhood U ⊂ X of x̄ such that Ω ∩U
is convex.

Proposition 1.5 (regularity of locally convex sets). Let U be a neigh-
borhood of x̄ ∈ Ω ⊂ X such that the set Ω ∩ U is convex. Then Ω is regular
at x̄ with

N(x̄ ;Ω) =
{

x∗ ∈ X∗ ∣∣ 〈x∗, x − x̄〉 ≤ 0 for all x ∈ Ω ∩ U
}
.

Proof. The inclusion “⊃” follows from (1.6) and Proposition 1.3. To prove
the opposite inclusion, we take any x∗ ∈ N(x̄ ;Ω) and find the corresponding
sequences of (εk, xk, x∗

k ) from Definition 1.1(ii). Thus xk ∈ U for all k ∈ IN
sufficiently large. Then Proposition 1.3 ensures that, for such k,

〈x∗
k , x − xk〉 ≤ εk‖x − xk‖ for all x ∈ Ω ∩ U .

Passing there to the limit as k → ∞, we finish the proof. �

Further results and discussions on normal regularity of sets and related
notions of regularity for functions and set-valued mappings will be presented
later in this chapter and mainly in Chap. 3, where they are incorporated
into calculus rules. We’ll show that regularity is preserved under major cal-
culus operations and ensure equalities in calculus rules for basic normal and
subdifferential constructions. On the other hand, such regularity may fail in
many situations important for the theory and applications. In particular, it
never holds for sets in finite-dimensional spaces related to graphs of non-
smooth locally Lipschitzian mappings; see Theorem 1.46 below. However, the
basic normal cone and associated subdifferentials and coderivatives enjoy de-
sired properties in general “irregular” settings, in contrast to the prenormal
cone N̂(x̄ ;Ω) and its counterparts for functions and mappings.

Next we establish two special representations of the basic normal cone to
closed subsets of the finite-dimensional space X = IRn. Since all the norms in
finite dimensions are equivalent, we always select the Euclidean norm
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‖x‖ :=
√

x2
1 + . . .+ x2

n

on IRn, unless otherwise stated. In this case X∗ = X = IRn.
Given a nonempty set Ω ⊂ IRn, consider the associated distance function

dist(x ;Ω) := inf
u∈Ω

‖x − u‖ (1.7)

and define the Euclidean projector of x to Ω by

Π(x ;Ω) :=
{
w ∈ Ω

∣
∣ ‖x − w‖ = dist(x ;Ω)

}
.

If Ω is closed, the set Π(x ;Ω) is nonempty for every x ∈ IRn. The following
theorem describes the basic normal cone to subsets Ω ⊂ IRn that are locally
closed around x̄ . The latter means that there is a neighborhood U of x̄ for
which Ω ∩ U is closed.

Theorem 1.6 (basic normals in finite dimensions). Let Ω ⊂ IRn be
locally closed around x̄ ∈ Ω. Then the following representations hold:

N(x̄ ;Ω) = Lim sup
x→x̄

N̂(x ;Ω) , (1.8)

N(x̄ ;Ω) = Lim sup
x→x̄

[
cone(x −Π(x ;Ω))

]
. (1.9)

Proof. First we prove (1.8), which means that one can equivalently put ε = 0
in definition (1.3) of basic normals to locally closed sets in finite-dimensions.
The inclusion “⊃” in (1.8) is obvious; let us justify the opposite inclusion.

Fix x∗ ∈ N(x̄ ;Ω) and find, by Definition 1.1(ii), sequences εk ↓ 0, xk → x̄ ,
and x∗

k → x∗ such that xk ∈ Ω and x∗
k ∈ N̂εk (xk ;Ω) for all k ∈ IN . Taking

into account that X = X∗ = IRn and that Ω is locally closed around x̄ , for
each k = 1, 2, . . . we form xk + αx∗

k with some parameter α > 0 and select
wk ∈ Π(xk + αx∗

k ;Ω) from the Euclidean projector. Due to the choice of wk

one has the inequality

‖xk + αx∗
k − wk‖2 ≤ α2‖x∗

k ‖2

and, since the norm is Euclidean,

‖xk + αx∗
k − wk‖2 = ‖xk − wk‖2 + 2α〈x∗

k , xk − wk〉 + α2‖x∗
k ‖2 .

This implies the estimate

‖xk − wk‖2 ≤ 2α〈x∗
k , wk − xk〉 for any α > 0 . (1.10)

Using the convergence wk → xk as α ↓ 0 and the definition of the εk-normals
x∗

k ∈ N̂εk (xk ;Ω), we find a sequence of positive numbers α = αk along which

〈x∗
k , wk − xk〉 ≤ 2εk‖wk − xk‖ for every k ∈ IN .
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This gives ‖xk−wk‖ ≤ 4αkεk due to (1.10); hence wk → x̄ as k → ∞. Moreover,
letting

w∗
k := x∗

k + 1
αk

(xk − wk) ,

we get ‖w∗
k − x∗

k ‖ ≤ 4εk and w∗
k → x∗ as k → ∞.

To justify (1.8), it remains to show that w∗
k ∈ N̂(wk ;Ω) for all k. Indeed,

for every fixed x ∈ Ω we get

0 ≤ ‖xk + αk x∗
k − x‖2 − ‖xk + αk x∗

k − wk‖2

= 〈αk x∗
k + xk − x, αk x∗

k + xk − wk〉 + 〈αk x∗
k + xk − x, wk − x〉

− 〈αk x∗
k + xk − wk, x − wk〉 − 〈αk x∗

k + xk − wk, αk x∗
k + xk − x〉

= −2αk〈w∗
k , x − wk〉 + ‖x − wk‖2 ,

since the norm is Euclidean. The latter implies the estimate

〈w∗
k , x − wk〉 ≤ 1

2αk
‖x − wk‖2 for all x ∈ Ω ,

which obviously ensures that w∗
k ∈ N̂(wk ;Ω) by Definition 1.1(i). Thus we

arrive at the first representation (1.8) of the basic normal cone.
To justify the second representation (1.9), it is sufficient to show that

Lim sup
x→x̄

N̂(x ;Ω) = Lim sup
x→x̄

[
cone(x −Π(x ;Ω))

]
.

Let us first prove the inclusion

N̂(x ;Ω) ⊂ Lim sup
u→x

[
cone(u −Π(u;Ω))

]
for any x ∈ Ω . (1.11)

Given x ∈ Ω and x∗ ∈ N̂(x ;Ω), we put xk := x + 1
k x∗ and pick some wk ∈

Π(xk ;Ω) for each k ∈ IN . The latter is clearly equivalent to

0 ≤ ‖xk − v‖2 − ‖xk − wk‖2 = 〈xk − v, xk − wk〉

+ 〈xk − v,wk − v〉 − 〈xk − wk, v − wk〉 − 〈xk − wk, xk − v〉

= −2〈xk − wk, v − wk〉 + ‖v − wk‖2 for all v ∈ Ω ,

which characterizes the Euclidean projector: wk ∈ Π(xk ;Ω) if and only if

〈xk − wk, v − wk〉 ≤ 1
2‖v − wk‖2 for all v ∈ Ω .

Letting v = x and using the definition of xk , we get
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‖x − wk‖2 + 1
k 〈x

∗, x − wk〉 ≤ 1
2‖x − wk‖2 .

Since x∗ ∈ N̂(x ;Ω), the latter inequality gives

k‖x − wk‖ ≤ 2〈x∗, wk − x〉
‖x − wk‖

→ 0 as k → ∞

and therefore

k(xk − wk) = x∗ + k(x − wk) → x∗ as k → ∞ .

Thus we have (1.11) that implies the inclusion “⊂” in (1.9) by taking the
Painlevé-Kuratowski upper limit as x → x̄ and using (1.8).

It remains to prove the opposite inclusion in (1.9). To furnish this, let us
consider the inverse Euclidean projector

Π−1(x ;Ω) :=
{

z ∈ X
∣
∣ x ∈ Π(z;Ω)

}

to Ω at x ∈ Ω. It follows from the above characterization of the Euclidean
projector and the definition of N̂(x ;Ω) that

cone
[
Π−1(x ;Ω) − x

]
⊂ N̂(x ;Ω) for any x ∈ Ω ,

which implies the inclusion “⊃” in (1.9) by taking the Painlevé-Kuratowski
upper limit as x

Ω→ x̄ and using (1.8). �

Note that, although the proof of representation (1.8) essentially employs
properties of the Euclidean norm , the representation itself doesn’t depend on
a specific norm on IRn all of which are equivalent. In Chap. 2 we show, using
variational arguments, that this representation of the basic normal cone holds
in any Asplund space, i.e., in a Banach space where every convex continuous
function is generically Fréchet differentiable (in particular, in any reflexive
space). In fact, (1.8) is a characterization of Asplund spaces. Note however
that ε > 0 cannot be removed from the definition of basic normals and the
corresponding subdifferential and coderivative constructions without loss of
important properties in the general Banach space setting; see below, in par-
ticular, the next subsection. Moreover, we’ll see that stability with respect to
ε-enlargements plays an essential role in the proof of some principal results in
Asplund spaces and even in finite-dimensions.

On the contrary, representation (1.9) heavily depends on the Euclidean
norm on IRn and is not valid even for convex sets if a norm in non-Euclidean.
For example, we have

N((0, 0);Ω) =
{
(0, v)

∣
∣ v ≤ 0

}
for Ω =

{
x = (x1, x2) ∈ IR2| x2 ≥ 0

}
,

while the cone on the right-hand side of (1.9) equals to
{
(v1, v2)| v2+|v1| ≤ 0

}

when the norm is given by ‖x‖ := max
{
|x1|, |x2|

}
.
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We are not going to consider here special properties of the basic normal
cone in finite-dimensional spaces referring the reader to the books by Mor-
dukhovich [901] and Rockafellar and Wets [1165]. Let us just mention that
this cone enjoys the following robustness property

N(x̄ ;Ω) = Lim sup
x→x̄

N(x ;Ω) for all x̄ ∈ Ω ,

which can be easily obtained via the standard diagonal process in finite di-
mensions. For closed sets Ω ⊂ IRn this means that the graph of the set-valued
mapping N(·;Ω) is closed, which obviously implies that the values N(x ;Ω)
are closed for all x ∈ Ω.

It happens that these properties don’t hold in infinite dimensions, even in
the case of the simplest Hilbert space of sequences X = X∗ = �2. The reason
is that the basic normal cone is defined in terms of sequential limits but the
weak∗ topology of X∗ is not sequential, so the weak∗ sequential closure of a
set may not be weak∗ sequentially closed. The following example, which is
due to Fitzpatrick (1994, personal communication; see also [144]), shows that
values of the basic normal cone may not be even norm closed in X∗, hence
neither weak∗ closed nor weak∗ sequentially closed in the dual space.

Example 1.7 (nonclosedness of the basic normal cone in �2). There
are a closed subset Ω of the Hilbert space �2 and a boundary point x̄ ∈ Ω such
that N(x̄ ;Ω) is not norm closed in �2.

Proof. Consider a complete orthonormal basis {e1, e2, . . .} in the Hilbert
space �2 and form a nonconvex subset of �2 by

Ω :=
{

s(e1 − je j ) + t( je1 − em)
∣
∣ m > j > 1, s, t ≥ 0} ∪ {te1

∣
∣ t ≥ 0

}
,

which is obviously a cone. We can check that Ω is closed in �2. Let us show
that the basic normal cone N(0;Ω) is not closed in the norm topology of �2.
This follows from:

(i) e∗1 + 1
j e∗j ∈ N(0;Ω) for all j = 2, 3, . . . ,

(ii) e∗1 + 1
j e∗j → e∗1 as j → ∞,

(iii) e∗1 /∈ N(0;Ω),

where e∗j are linear functionals generated by e j . To justify (i), we define e∗jm :=
e∗1 + 1

j e∗j + je∗m for 1 < j < m and observe that e∗jm ∈ N̂( 1
m ( je1 − em);Ω). For

each j we have 1
m ( je1 − em) → 0 and e∗jm

w→ e∗1 + 1
j e∗j as m → ∞, which gives

(i). It is easy to check (ii), and so it remains to verify (iii).
Suppose that (iii) doesn’t hold, i.e., e∗1 ∈ N(0;Ω). Then, by the definition

of basic normals with w∗ = w (the weak convergence in X∗ = �2), there are
sequences xk

Ω→ 0, εk ↓ 0, and x∗
k

w→ e∗1 such that x∗
k ∈ N̂εk (xk ;Ω) for all

k ∈ IN . Assume that some of xk are of the form xk = tke1 with tk ≥ 0. Putting
u := xk + re1 with r > 0, we get


