Solid-State Fermentation Bioreactors

David A. Mitchell · Nadia Krieger Marin Berovič (Eds.)

Solid-State Fermentation Bioreactors

Fundamentals of Design and Operation

With 194 Figures and 32 Tables

Dr. David A. Mitchell Federal University of Paraná Department of Biochemistry and Molecular Biology P.O. Box 19046 81531-990 Curitiba-PR, Brazil davidmitchell@ufpr.br Dr. Nadia Krieger Federal University of Paraná Department of Chemistry P.O. Box 19081 81531-990 Curitiba-PR, Brazil nkrieger@ufpr.br

Dr. Marin Berovič University of Ljubljana Department of Chemical, Biochemical and Environmental Engineering Hajdrihova 19 1001 Ljubljana, Slovenia marin.berovic@Uni-Lj.si

Library of Congress Control Number: 2006922414

ISBN-10 3-540-31285-4 Springer Berlin Heidelberg New York ISBN-13 978-3-540-31285-7 Springer Berlin Heidelberg New York e-ISBN 3-540-31286-2 DOI 10.1007/3540312854

This work is subject to copyright. All rights reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com

© Springer-Verlag Berlin Heidelberg 2006 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publisher cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

The instructions given for carrying out practical experiments do not absolve the reader from being responsible for safety precautions. Liability is not accepted by the authors.

Typesetting and Production: LE-T_EX, Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany Coverdesign: design&production, Heidelberg, Germany

Printed on acid-free paper 31/3100/YL - 5 4 3 2 1 0

Preface

Although solid-state fermentation (SSF) has been practiced for many centuries in the preparation of traditional fermented foods, its application to newer products within the framework of modern biotechnology is relatively restricted. It was considered for the production of enzymes in the early 1900s and for the production of penicillin in the 1940s, but interest in SSF waned with the advances in submerged liquid fermentation (SLF) technology. The current dominance of SLF is not surprising: For the majority of fermentation products, it gives better yields and is easier to apply. It is notoriously difficult to control the fermentation conditions in SSF; these difficulties are already apparent at small scale in the laboratory and are exacerbated with increase in scale. However, there are particular circumstances and products for which SSF technology is appropriate. For example, a desire to reuse solid organic wastes from agriculture and food processing rather than simply discarding them leads naturally to the use of SSF. Further, some microbial products, such as fungal enzymes and spores, amongst others, are produced in higher yields or with better properties in the environment provided by SSF systems.

With recognition of this potential of SSF, a revival of interest began in the mid-1970s. However, the theoretical base for SSF bioreactor technology only began to be established around 1990. Before this, there were many examples of SSF bioreactors, especially those used in the *koji* industry, but there was little or no information about the efficiency of heat and mass transfer processes within them. The work that has been carried out over the last 15 years is sufficient to establish a general basis of engineering principles of SSF bioreactors. This book brings together this work in order to provide this basis. It makes the key point that, given the complexity of SSF systems, efficient performance of SSF bioreactors will only be achieved through: (1) the use of mathematical models in making design and operating decisions for bioreactors and (2) The application of control theory.

Before proceeding, we must point out that we are quite aware of the potential problems that might be used by our use of the word "fermentation". In this book we use it not in its metabolic sense but rather in its more general sense of "controlled cultivation of microorganisms". Although several terms are used to denote this fermentation technique, the most common by far is "solid-state fermentation".

This book focuses on SSF bioreactors. It does not aim to introduce SSF itself. We assume that readers interested in learning about SSF bioreactors are familiar with SSF processes themselves. Even if not, a reader who understands the basic principles of SLF processes and SLF bioreactor design will be able to understand this book. In any case, readers requiring a general background regarding SSF can consult books or review articles (e.g., see the Further Reading section of Chap. 1). Even with this focus on SSF bioreactors, the book deliberately addresses general issues and concepts. Specific examples are given to illustrate concepts, but the book neither considers all types of bioreactors that have been used nor presents all mathematical models that have been developed. We do not attempt to present all the engineering know-how so far generated for SSF bioreactors. Rather, we aim to introduce the fundamental concepts and ideas.

The main audience intended for this book is the researcher/worker in SSF who is currently developing an SSF process with the intention of eventually commercializing it. Our aim is to give this reader a broad overview of what is involved in designing a bioreactor and optimizing its performance.

We recognize that many readers may not have the necessary background to set up and solve mathematical models of bioreactor performance. This book does not attempt to teach the necessary modeling skills. Such a task would require a lengthy treatise on various mathematical and engineering fundamentals. A basic understanding of differential and integral calculus will help readers to understand various of the chapters, although it is by no means necessary to be an expert.

After reading this book, the "non-engineering reader" should:

- understand qualitatively the importance of the various mass transfer, heat transfer and biological phenomena that are important in SSF systems, and the interactions amongst these various phenomena;
- understand what mathematical models of bioreactors can do. If you understand
 what models can and cannot do, then even if you do not have the skills to develop a model yourself, you will know when it is appropriate to seek the help of
 someone with such modeling skills (a "modeler");
- be able to "talk the same language" as the "modeler". In other words, you should be able to define clearly for the modeler what you wish to do, and you should be able to understand the questions that the modeler poses. In this way you can interact with modelers, even if they have no experience with SSF.

This book should also be useful for readers with modeling skills but who are working in SSF for the first time. In a succinct way, it outlines the important phenomena and the basic principles of SSF bioreactor design and operation.

We welcome comments, suggestions and criticisms about this book. Our aim is to help you to understand SSF bioreactors better. We would appreciate knowing just how well we have achieved this aim. The addresses of the editors and authors are given after the Table of Contents.

November 2005

Mitchell

i'equ.

David Mitchell

Nadia Kriegei

Marin Berovič

Acknowledgements

As leader of the editorial team and the main contributing author of the book, I would first like to thank my PhD supervisors, Paul Greenfield and Horst Doelle. You set me on a path that I have found both challenging and interesting over the last twenty years or so. In fact, I still remember the moment, in mid-1984, when I decided to do my PhD in the area of solid-state fermentation. Paul Greenfield said to me "I have heard of this area called solid-state fermentation, I think that you can make some contributions in the area". Well Paul, you were right, I have managed something. Thanks! Of course, there is still much to do.

I must also thank my co-editors and co-authors. This book would never have been written without your input. From each of you I have learnt something about solid-state fermentation. Further, I recognize that I am indebted to many colleagues who, while not being co-authors, have helped me to understand solid-state fermentation better. I will not cite names because the list is enormous. It includes not only colleagues with whom I have interacted personally, but also colleagues who have published papers in the area of solid-state fermentation that have helped me to develop my understanding of this area.

This book, in part, represents a synthesis of work undertaken by my research group and supported by various funding agencies. I am indebted to these agencies for funding my research over the last 15 years or so. I received two grants to work on solid-state fermentation bioreactors from the "Australian Research Council Small Grants Scheme". Since my move to Brazil, I have received funding from several state and federal granting bodies. These include (1) the "Araucaria Foundation" (Fundação Araucária), a research agency of the state of Paraná; (2) the Brazilian National Council for Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico) and (3) the Brazilian-Argentinean Biotechnology Committee (CBAB, Comitê Brasileiro-Argentino de Biotechnologia), for which the funds originated from the Brazilian Ministry of Science and Technology (MCT, Ministério de Ciência e Tecnologia) and were administered by CNPq. CNPq has also been kind enough to award me a research scholarship.

Finally, thanks are due to the Springer staff, especially Marion Hertel, Beate Siek, and Joern Mohr, for their patience and guidance.

DMitchell

David Mitchell

Contributing Authors

Prof. Eduardo Agosin Department of Chemical and Bioprocess Engineering Pontificia Universidad Católica de Chile P.O. Box 306, Santiago 22, Post Code 6904411, Chile E-mail: agosin@ing.puc.cl

Prof. Marin Berovič Department of Chemical, Biochemical and Environmental Engineering Faculty of Chemistry and Chemical Technology, University of Ljubljana Askerceva 9, Ljubljana 1000, Slovenia E-mail: marin.berovic@Uni-Lj.si

Dr. Mario Fernández Deparment of Sciences and Engineering, Universidad de Talca Camino Los Niches km 1, Curicó, Chile E-mail: mafernandez@utalca.cl

Dr. Matthew T. Hardin Division of Chemical Engineering, University of Queensland St Lucia 4072, Australia E-mail: matth@cheque.uq.edu.au

Dr. Lilik Ikasari Food Division, Quest International Indonesia Jl. Raya Jakarta-Bogor Km. 35, Cimanggis, Kab. Bogor, West Java, Indonesia E-mail: lilik.ikasari@questintl.com

Dr. Morteza Khanahmadi Agricultural Engineering Research Section Isfahan Center for Research of Agricultural Science & Natural Resources Amirieh, Agriculture Blvd, Isfahan, 81785-199, Iran E-mail: khanahmadi@yahoo.com

Dr. Nadia Krieger Department of Chemistry, Universidade Federal do Paraná Cx. P. 19081 Centro Politécnico, Curitiba 81531-990, Paraná, Brazil E-mail: nkrieger@ufpr.br Dr. Luiz Fernando L. Luz Junior

Department of Chemical Engineering, Universidade Federal do Paraná Cx. P. 19011 Centro Politécnico, Curitiba 81531-990, Paraná, Brazil E-mail: luzjr@ufpr.br

Dr. David A. Mitchell Department of Biochemistry and Molecular Biology Universidade Federal do Paraná Cx. P. 19046 Centro Politécnico, Curitiba 81531-990, Paraná, Brazil E-mail: davidmitchell@ufpr.br

Dr. Montira Nopharatana Department of Food Engineering King Mongkut's University of Technology Thonburi, 91 Prachauthit Rd., Tungkru, Bangkok 10140, Thailand E-mail: montira.nop@kmutt.ac.th

Dr. J. Ricardo Pérez-Correa Department of Chemical and Bioprocess Engineering Pontificia Universidad Católica de Chile P.O. Box 306, Santiago 22, Post Code 6904411, Chile E-mail: perez@ing.puc.cl

Dr. Luis B. Ramos Sánchez Department of Chemical Engineering, University of Camagüey. Circunvalación Norte, km 5 1/2, s/n, Camagüey. CP 74650. Camagüey, Cuba E-mail: lramos@qui.reduc.edu.cu

Dr. Penjit Srinophakun Department of Chemical Engineering, Kasetsart University P.O.Box 1032, Kasetsart Post Office, Bangkok 10903, Thailand E-mail: fengpjs@ku.ac.th

Dr. Deidre M. Stuart School of Environmental Sciences and Natural Resource Management University of New England, Armidale, NSW 2350, Australia E-mail: deidre.stuart@pobox.une.edu.au

Ms. Graciele Viccini MSc Department of Biochemistry and Molecular Biology Universidade Federal do Paraná Cx. P. 19046 Centro Politécnico, Curitiba 81531-990, Paraná, Brazil E-mail: gvic@pop.com.br

Dr. Oscar F. von Meien UN-RIO/ST/EISA – PETROBRÁS, Av. Gen. Canabarro 500 - 5° ad., Maracanã, Rio de Janeiro, RJ 20271-900, Brasil E-mail: meienov@petrobras.com.br

Contents

1 Solid-State Fermentation Bioreactor Fundamentals: Introduction and	
Overview	1
David A. Mitchell, Marin Berovič, and Nadia Krieger	
1.1 What Is "Solid-state Fermentation"?	1
1.2 Why Should We Be Interested in SSF?	3
1.3 What Are the Current and Potential Applications of SSF?	5
1.4 Why Do We Need a Book on the Fundamentals of SSF Bioreactors?	6
1.5 How Is this Book Organized?	8
1.5.1 Introduction to Solid-State Fermentation and Bioreactors	9
1.5.2 Introduction to the Various Classes of SSF Bioreactors	9
1.5.3 Fundamentals of Modeling of SSF Bioreactors	10
1.5.4 Modeling Case Studies of SSF Bioreactors	11
1.5.5 Key Issues Associated with SSF Bioreactors	11
1.5.6 A Final Word	12
Further Reading	12
2 The Bioreactor Step of SSF: A Complex Interaction of Phenomena	13
David A. Mitchell, Marin Berovič, Montira Nopharatana,	
and Nadia Krieger	
2.1 The Need for a Qualitative Understanding of SSF	13
2.2 The General Steps of an SSF Process	14
2.3 The Bioreactor Step of an SSF Process	16
2.4 The Physical Structure of SSF Bioreactor Systems	17
2.4.1 A Macroscale View of the Phases in an SSF Bioreactor	17
2.4.2 A Microscale Snapshot of the Substrate Bed	20
2.5 A Dynamic View of the Processes Occurring	22
2.5.1 A Dynamic View with a Time Scale of Seconds to Minutes	22
2.5.2 A Dynamic View with a Time Scale of Hours to Days	24
2.6 Where Has this Description Led Us?	31
Further Reading	32
3 Introduction to Solid-State Fermentation Bioreactors	33
David A. Mitchell, Marin Berovič, and Nadia Krieger	
3.1 Introduction	33
3.2 Bioreactor Selection and Design: General Questions	34
3.2.1 The Crucial Questions	35
3.2.2 Other Questions to Consider	

3.3 Overview of Bioreactor Types	38
3.3.1 Basic Design Features of the Various Bioreactor Types	38
3.3.2 Overview of Operating Variables.	. 40
3 4 A Guide for Bioreactor Selection	41
Further Reading	43
Turther Reduing	+5
4 Heat and Mass Transfer in Solid-State Fermentation Bioreactors: Basic	
Principles	45
David A. Mitchell, Marin Berovič, Oscar F. von Meien,	
and Luiz F.L. Luz Jr	
4.1 Introduction	45
4.2 An Overall Balance Over the Bioreactor	45
4.3 Looking Within the Bioreactor in More Detail	47
4.3.1 Phenomena Within Subsystems Within the Bioreactor	47
4.3.2 Transfer Between Subsystems When the Substrate Bed Is Treated	
as a Single Pseudo-Homogeneous Phase	50
4 3 3 Transfer Between Subsystems When the Substrate Bed Is Treated	
as Two Separate Phases	51
4.3.4 Bulk Gas Flow Patterns and Pressure Drons	53
4.3.5 Mixing Patterns in Agitated Reds of Solids	55
Further Deading	50
Turtuci Keading	
5 The Scale-up Challenge for SSF Bioreactors	57
David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr.	
and Marin Berovič	
5.1 Introduction	57
5.2 The Challenges Faced at Large Scale in SLF and SSF	57
5.3 The Reason Why Scale-un Is not Simple	58
5.4 Approaches to Scale-up of SSE Bioreactors	63
Further Deading	05 64
Turtuci Keading	04
6 Group I Bioreactors: Unaerated and Unmixed	65
David A Mitchell Nadia Krieger, and Marin Berovič	
6.1 Basic Features Design and Operating Variables for Trav-type	
Bioreactors	65
6.2 Use of Bag Systems in Modern Processes	05 66
6.3 Heat and Mass Transfer in Tray Bioreactors	67
6.2.1 Oxygen Drofiles Within Trave	07
6.2.2 Temperature Drofiles Within Trave	
6.2.2 Insights from Dynamia Modeling of Trave	09 17
6.4 Conclusions	/ I 75
0.4 CONCLUSIONS	/3
Further Keading	/6

7 Group II Bioreactors: Forcefully-Aerated Bioreactors Without Mixing	77
David A. Mitchell, Penjit Srinophakun, Nadia Krieger,	
and Oscar F. von Meien	
7.1 Introduction	77
7.2 Basic Features, Design, and Operating Variables for Packed-Bed	
Bioreactors	77
7.3 Experimental Insights into Packed-Bed Operation	81
7.3.1 Large-Scale Packed-Beds	82
7.3.2 Pilot-Scale Packed-Beds	83
7.3.3 Laboratory-scale Packed-beds	84
7.4 Conclusions on Packed-Bed Bioreactors	93
Further Reading	94
8 Group III: Rotating-Drum and Stirred-Drum Bioreactors	95
David 4 Mitchell Deidre M Stuart Matthew T Hardin	
and Nadia Krieger	
8 1 Introduction	95
8.2 Basic Features, Design, and Operating Variables for Group III	
Bioreactors	95
8.3 Experimental Insights into the Operation of Group III Bioreactors	98
8.3.1 Large-Scale Applications	98
8.3.2 Pilot-Scale Applications	100
8.3.3 Small-Scale Applications	101
8.4 Insights into Mixing and Transport Phenomena in Group III	101
Bioreactors	104
8.4.1 Solids Flow Regimes in Rotating Drums	105
8.4.2 Gas Flow Regimes in the Headspaces of Rotating Drums	110
8.5 Conclusions on Rotating-Drum and Stirred-Drum Bioreactors	112
Further Reading	114
Turtier reduing	
9 Group IVa: Continuously-Mixed, Forcefully-Aerated Bioreactors	115
David A. Mitchell, Nadia Krieger, Marin Berovič, and Luiz F.L. Luz Jr	
9.1 Introduction.	115
9.2 Basic Features, Design, and Operating Variables of Group IVa	
Bioreactors	115
9.3 Where Continuously-Agitated, Forcefully-Aerated Bioreactors Have	
Been Used	117
9.3.1 Stirred Beds with Mechanical Agitators	
9.3.2 Gas-Solid Fluidized Beds	121
9.3.3 Bioreactors Mixed by the Motion of the Bioreactor Body	123
9.4 Insights into Mixing and Transport Phenomena in Group IVa	0
Bioreactors	125
9.5 Conclusions on Group IVa Bioreactors	128
Further Reading	128

10 Group IVb: Intermittently-Mixed Forcefully-Aerated Bioreactors	129
David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr, Nadia Krieger,	
J. Ricardo Pérez-Correa, and Eduardo Agosin	
10.1 Introduction	129
10.2 Basic Features of Group IVb Bioreactors	129
10.3 Experimental Insights into the Performance of Group IVb	
Bioreactors	131
10.3.1 Large-Scale Intermittently-Mixed Bioreactors	131
10.3.2 Pilot-Scale Intermittently-Mixed Bioreactors	135
10.3.3 Laboratory-Scale Intermittently-Mixed Bioreactors	138
10.4 Insights into Mixing and Transport Phenomena in Group IVb	
Bioreactors	138
10.5 Conclusions on Group IVb Bioreactors	140
Further Reading	140
11 Continuous Solid-State Fermentation Bioreactors	141
Luis B. R. Sánchez, Morteza Khanahmadi, and David A. Mitchell	
11.1 Introduction	141
11.2 Basic Features of Continuous SSF Bioreactors	141
11.2.1 Equipment	141
11.2.2 Flow Patterns: Real-Flow Models	146
11.3 Continuous Versus Batch Mode of Operation	148
11.3.1 Reduction of Upstream and Downstream Investment	148
11.3.2 Uniformity of the Product from Batch and Continuous	
Bioreactors	149
11.3.3 Enhanced Production Rates	150
11.3.4 Contamination	150
11.4 Comparison by Simulation of the Three CSSFBs	152
11.4.1 Continuous Tubular Flow Bioreactors (CTFBs) with Recycling.	152
11.4.2 Continuous Rotating Drum Bioreactor (CRDB)	154
11.4.3 Continuous Stirred Tank Bioreactor (CSTB)	155
11.4.4 Evaluation of the Various CSSFB Configurations	156
11.5 Scientific and Technical Challenges for CSSFBs	158
Further Reading	158
12 Approaches to Modeling SSF Bioreactors	159
David A. Mitchell, Luiz F.L. Luz Jr, Marin Berovič, and Nadia Krieger	
12.1 What Are Models and Why Model SSF Bioreactors?	159
12.2 Using Models to Design and Optimize an SSF Bioreactor	161
12.2.1 Initial Studies in the Laboratory	161
12.2.2 Current Bioreactor Models as Tools in Scale-up	163
12.2.3 Use of the Model in Control Schemes	164
12.3 The Anatomy of a Model	164
12.4 The Seven Steps of Developing a Bioreactor Model	167
12.4.1 Step 1: Know What You Want to Achieve and the Effort You	
Are Willing to Put into Achieving It	170

12.4	4.2 Step 2: Draw the System at the Appropriate Level of Detail	
	and Explicitly State Assumptions	170
12.4	4.3 Step 3: Write the Equations	171
12.4	4.4 Step 4: Estimate the Parameters and Decide on Values for the	
	Operating Variables	173
12.4	4.5 Step 5: Solve the Model	174
12.4	4.6 Step 6: Validate the Model	175
12.4	4.7 Step 7: Use the Model	177
Furthe	r Reading	177
13 Annro	nriate Levels of Complexity for Modeling SSF Bioreactors	
David	A Mitchell Luiz F L Luz Jr. Marin Berovič, and Nadia Krieger	
13 1 W	Vhat Level of Complexity Should We Aim for in an SSF	
F	Rioreactor Model?	179
13 2 W	What Level of Detail Should Be Used to Describe the Growth	
15.2 V	Sinetics?	179
13	2.1 Growth Should Be Treated as Depending on Which Factors?	180
13.2	2.2 Is It Worthwhile to Describe the Spatial Distribution of the	
10.1	Biomass at the Microscale?	182
13 3	2 3 Typical Features of the Kinetic Sub-models	183
13 3 W	Vhat Level of Detail Should Be Used to Describe Transport	105
15.5 F	Processes?	183
134 A	t the Moment Fast-Solving Models Are Useful	185
13.11 13.5 H	aving Decided on Fast-Solving Models How to Solve Them?	188
13.6 C	onclusions	188
Furthe	r Reading	189
1 ur ur ur e		107
14 The K	inetic Sub-model of SSF Bioreactor Models: General	
Consi	derations	191
David	A Mitchell and Nadia Krieger	
14 1 W	That Is the Aim of the Kinetic Analysis?	191
14 2 H	low Will Growth Be Measured Experimentally?	194
14 2	2.1 The Problem of Measuring Biomass in SSF	194
14 2	2.2 Indirect Approaches to Monitoring Growth	196
14 3 W	Vhat Units Should Be Used for the Biomass?	197
14 3	3.1 Grams of Biomass per Gram of Fresh Sample	199
14 3	3.2 Grams of Biomass per Gram of Dry Sample	199
14 3	3 Grams of Biomass per Gram of Initial Fresh or Dry Sample	200
14 3	3 4 Which Set of Units Is Best to Use for Expressing the Biomass?	201
14 4 K	inetic Profiles and Appropriate Equations	201
14 5 C	lonclusions	204
Furthe	r Reading	205

15 Growth Kinetics in SSF Systems: Experimental Approaches	207
David A. Mitchell and Nadia Krieger	
15.1 Experimental Systems for Studying Kinetics	207
15.1.1. Flasks in an Incubator	208
15.1.2. Columns in a Waterbath	
15.1.3. Comparison of the Two Systems	211
15.2 Experimental Planning	211
15.3 Estimation of Biomass from Measurements of Biomass	
Components	214
15.3.1 Suitable Systems for Undertaking Calibration Studies	214
15.3.2 Conversion of Measurements of Components of the Biomass.	216
15.3.3 Limitations of these Calibration Methods	217
15.4 Conclusion	217
Further Reading	
16 Basic Features of the Kinetic Sub-model	219
David A. Mitchell, Graciele Viccini, Lilik Ikasari, and Nadia Krieger	• • •
16.1 The Kinetic Sub-model Is Based on a Differential Growth Equation	n219
16.2 The Basic Kinetic Expression	220
16.3 Incorporating the Effect of the Environment on Growth	
16.3.1 Incorporating the Effect of Temperature on Growth	
16.3.2 Incorporating the Effect of Water Activity on Growth	
16.3.3 Combining the Effects of Several Variables	
16.4 Modeling Death Kinetics	231
16.4.1 General Considerations in Modeling of Death Kinetics	231
16.4.2 Approaches to Modeling Death Kinetics that Have Been Used	232
16.5 Conclusion	
Further Reading	234
17 Modeling of the Effects of Growth on the Local Environment	235
David A Mitchell and Nadia Krieger	200
17 1 Introduction	235
17.2 Terms for Heat Water Nutrients and Gases	237
17.2.1 Metabolic Heat Production	237
17.2.2 Water Production	238
17.2.3 Substrate and Nutrient Consumption	238
17.2.4 Oxygen Consumption and Carbon Dioxide Production	239
17.2.5 General Considerations with Respect to Equations for the	
Effects of Growth on the Environment	
17.3 Modeling Particle Size Changes	
17.3.1 An Empirical Equation for Particle Size Reduction	
17.3.2 How to Model Particle Size Changes in Bioreactor Models?	
17.4 Product Formation – Empirical Approaches	
17.5 Conclusions	
Further Reading	

18	Modeling of Heat and Mass Transfer in SSF Bioreactors	249
	David A. Mitchell, Oscar F. von Meien, Luiz F.L. Luz Jr,	
	and Marin Berovič	
	18.1 Introduction	249
	18.2 General Forms of Balance Equations	249
	18.3 Conduction	252
	18.3.1 Conduction Across the Bioreactor Wall	252
	18.3.2 Conduction Within a Phase	253
	18.4 Convection	255
	18.4.1 Convection at the Bioreactor Wall	255
	18.4.2 Convective Heat Removal from Solids to Air	256
	18.4.3 Convective Heat Removal Due to Air Flow Through the Bed	258
	18.5 Evaporation	259
	18.5.1 Evaporation from the Solids to the Air Phase	260
	18.5.2 Water Removal Due to Air Flow Through the Bed	261
	18.6 Conclusions	263
	Further Reading	
19	Substrate, Air, and Thermodynamic Parameters for SSF Bioreactor	265
		205
	Davia A. Mitchell, Oscar F. von Melen, Luiz F.L. Luz Jr,	
	and Marin Berovic	265
	19.1 Introduction.	
	19.2 Substrate Properties	
	19.2.1 Particle Size and Shape	266
	19.2.2 Particle Density	267
	19.2.3 Bed Packing Density	268
	19.2.4 Porosity (Void Fraction)	270
	19.2.5 Water Activity of the Solids	271
	19.3 Air Density	273
	19.4 Thermodynamic Properties	274
	19.4.1 Saturation Humidity	275
	19.4.2 Heat Capacity of the Substrate Bed	276
	19.4.3 Enthalpy of Vaporization of Water	277
	Further Reading	278
20	Estimation of Transfer Coefficients for SSF Bioreactors	279
_ •	David A Mitchell, Oscar F von Meien, Luiz FL, Luz Jr.	
	and Marin Berovič	
	20 1 Introduction	279
	20.2 Thermal Conductivities of Substrate Beds	279
	20.3 Heat Transfer Coefficients Involving the Wall	280
	20.3.1 Bed-to-Wall Heat Transfer Coefficients	200 281
	20.3.1. Det-to-Wall Heat Transfer Coefficients	201 201
	20.3.2 Wall-to-Surroundings Heat Transfer Coefficients	201 282
	20.3.5 wai-to-buildings from fraisfer Coefficients	282

	20.4 Solids-to-Air Heat and Mass Transfer Coefficients Within Beds	283
	20.5 Bed-to-Headspace Transfer Coefficients	284
	20.6 Conclusions	289
	Further Reading	289
21	Bioreactor Modeling Case Studies: Overview	291
	David A. Mitchell	
	21.1 What Can the Models Be Used to Do?	291
	21.2 Limitations of the Models	292
	21.3 The Amount of Detail Provided about Model Development	293
	21.4 The Order of the Case Studies	294
22	A Model of a Well-mixed SSF Bioreactor	295
	David A Mitchell and Nadia Krieger	
	22.1 Introduction	295
	22.2 Synopsis of the Model	295
	22.2.1 The System, Equations, and Assumptions	295
	22.2.2 Values of Parameters and Variables	301
	22.3 Insights the Model Gives into the Operation of Well-Mixed	
	Bioreactors	303
	22.3.1 Insights into Operation at Laboratory Scale	303
	22.3.2 Insights into Operation at Large Scale	307
	22.3.3 Effect of Scale and Operation on Contributions to Cooling of	
	the Solids	310
	22.4 Conclusions on the Operation of Well-Mixed Bioreactors	312
	Further Reading	314
23	A Model of a Rotating-Drum Bioreactor	315
	David A. Mitchell, Deidre M. Stuart, and Nadia Krieger	
	23.1 Introduction	315
	23.2 A Model of a Well-Mixed Rotating-Drum Bioreactor	315
	23.2.1 Synopsis of the Mathematical Model and its Solution	315
	23.2.2 Predictions about Operation at Laboratory Scale	320
	23.2.3 Scale-up of Well-Mixed Rotating-Drum Bioreactors	325
	23.3 What Modeling Work Says about Rotating-Drum Bioreactors	
	Without Axial Mixing	328
	23.4 Conclusions on the Design and Operation of Rotating-Drum	
	Bioreactors	329
	Further reading	330
24	Models of Packed-Bed Bioreactors	331
	David A. Mitchell, Penjit Srinophakun, Oscar F. von Meien,	
	Luiz F.L. Luz Jr, and Nadia Krieger	
	24.1 Introduction	331
	24.2 A Model of a Traditional Packed-Bed Bioreactor	331
	24.2.1 Synopsis of the Mathematical Model and its Solution	333

	24.2.2 Base-Case Predictions	334
	24.2.3 Insights that Modeling Has Given into Optimal Design and	
	Operation of Traditional Packed-Beds	336
	24.3 A model of the Zvmotis Packed-Bed Bioreactor	341
	24.3.1 The Model	
	24.3.2 Insights into Optimal Design and Operation of Zymotis	
	Packed-Beds	342
	24.4 Conclusions on Packed-Bed Bioreactors	347
	Further Reading	347
25	A Model of an Intermittently-Mixed Forcefully-Aerated Bioreactor	349
-0	David A. Mitchell. Oscar F. von Meien. Luiz F.L. Luz Jr.	
	and Nadia Krieger	
	25.1 Introduction	
	25.2 Synopsis of the Model	349
	25.3 Insights the Model Gives into Operation of Intermittently-Mixed	
	Bioreactors	
	25.3.1 Predictions about Operation at Laboratory Scale	353
	25.3.2 Investigation of the Design and Operation of Intermittently-	
	Mixed Forcefully-Aerated Bioreactors at Large Scale	
	25.4 Conclusions on Intermittently-Mixed Forcefully-Aerated	
	Bioreactors	
	Further Reading	362
26	Instrumentation tor Monitoring NNU Vieroaetors	262
26	Instrumentation for Monitoring SSF Bioreactors	363
26	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSE Bioreactors?	363
26	<i>Mario Fernández and J. Ricardo Pérez-Correa</i> 26.1 Why Is It Important to Monitor SSF Bioreactors?	363
26	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On line Measurements	363 363 363
26	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements 26.4 Data Filtering	363 363 365 365
26	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements 26.4 Data Filtering 26.5 How to Measure the Other Variables?	363 363 363 365 369 371
26	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Eurther Reading	363 363 365 369 371 374
26	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading	363 363 363 365 369 371 374
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading	363 363 363 365 369 371 374 375
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading J. Ricardo Pérez-Correa and Mario Fernández	363 363 363 365 369 371 374 375
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading J. Ricardo Pérez-Correa and Mario Fernández 27.1 Main Ideas Underlying Process Control	363 363 363 365 369 371 374 375
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading Fundamentals of Process Control J. Ricardo Pérez-Correa and Mario Fernández 27.1 Main Ideas Underlying Process Control 27.1.1 Feedback	363 363 365 369 374 375 375 375
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering. 26.5 How to Measure the Other Variables? Further Reading <i>Fundamentals of Process Control J. Ricardo Pérez-Correa and Mario Fernández</i> 27.1 Main Ideas Underlying Process Control 27.1.1 Feedback. 27.1.2 Control Loop	363 363 365 369 374 374 375 375 375
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading Fundamentals of Process Control J. Ricardo Pérez-Correa and Mario Fernández 27.1 Main Ideas Underlying Process Control 27.1.1 Feedback. 27.1.2 Control Loop 27.1.3 Computer Control Loop	363 363 365 369 371 374 375 375 375 376 376
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading Fundamentals of Process Control J. Ricardo Pérez-Correa and Mario Fernández 27.1 Main Ideas Underlying Process Control 27.1.2 Control Loop 27.1.3 Computer Control Loop 27.2 Conventional Control Algorithms.	363 363 365 369 371 374 375 375 375 376 376 376 376
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading Fundamentals of Process Control J. Ricardo Pérez-Correa and Mario Fernández 27.1 Main Ideas Underlying Process Control 27.1.2 Control Loop 27.1.3 Computer Control Loop 27.2 Conventional Control Algorithms. 27.2.1 On/Off Control	363 363 365 369 371 374 375 375 376 376 376 377 377
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading <i>J. Ricardo Pérez-Correa and Mario Fernández</i> 27.1 Main Ideas Underlying Process Control 27.1.2 Control Loop 27.1.3 Computer Control Loop 27.2 Conventional Control Algorithms. 27.2.1 On/Off Control 27.2.2 PID Control	363 363 365 369 371 374 375 375 376 376 376 377 377 377
26 27	Instrumentation for Monitoring SSF Bioreactors Mario Fernández and J. Ricardo Pérez-Correa 26.1 Why Is It Important to Monitor SSF Bioreactors? 26.2 Which Variables Would We Like to Measure? 26.3 Available Instrumentation for On-line Measurements. 26.4 Data Filtering 26.5 How to Measure the Other Variables? Further Reading <i>Fundamentals of Process Control J. Ricardo Pérez-Correa and Mario Fernández</i> 27.1 Main Ideas Underlying Process Control 27.1.1 Feedback. 27.1.2 Control Loop 27.2 Conventional Control Algorithms. 27.2.1 On/Off Control 27.2.2 PID Control 27.2.3 Model Predictive Control	363 363 365 369 371 374 375 375 376 376 376 377 377 377 380 385

28	Application of Automatic Control Strategies to SSF Bioreactors	387
	J. Ricardo Pérez-Correa, Mario Fernández, Oscar F. von Meien.	
	Luiz F.L. Luz Jr. and David A. Mitchell	
	28.1 Why Do We Need Automatic Control in SSF Bioreactors?	387
	28.2 How to Control SSF Bioreactors?	
	28 3 Case Studies of Control in SSF Bioreactors	390
	28.3.1 Control of the Bioreactors at PUC Chile	
	28.3.2 Model-Based Evaluation of Control Strategies	
	28 4 Future Challenges in the Control of SSF Bioreactors	400
	Further Reading	401
29	Design of the Air Preparation System for SSF Bioreactors	403
	Oscar F von Meien Luiz FL Luz Jr. J Ricardo Pérez-Correa and	
	David A. Mitchell	
	29 1 Introduction	403
	29.2 An Overview of the Ontions Available	404
	29.3 Blower/Compressor Selection and Flow Rate Control	407
	29.4 Pining and Connections	408
	29 5 Air Sterilization	408
	29.6 Humidification Columns	409
	29.7 Case Study: An Air Prenaration System for a Pilot-Scale Bioreactor	410
	Further Reading	412
30	Future Prospects for SSF Bioreactors	413
	David A. Mitchell. Marin Berovič. and Nadia Krieger	
	30.1 The Increasing Importance of SSF	
	30.2 Present State and Future Prospects	414
	1	
Re	ferences	417
Ap	opendix: Guide to the Bioreactor Programs	429
	A.1 Disclaimer	429
	A.2 General Information and Advice	429
	A.3 Use of the Well-Mixed Bioreactor Model	431
	A.4 Use of the Rotating-Drum Bioreactor Model	433
	A.5 Use of the Traditional Packed-Bed Bioreactor Model	435
	A.6 Use of the Zymotis Packed-Bed Bioreactor Model	436
	A.7 Use of the Model of an Intermittently-Mixed Forcefully-Aerated	
	Bioreactor	439
т.		4.42
in	uex	443

Abbreviations

A/D ASFB a _w	analog-digital air-solid fluidized bed water activity
CER COU CRDB CSSFB CSTB CTFB	CO ₂ evolution rate cumulative O ₂ uptake continuous rotating drum bioreactor continuous-flow solid-state fermentation bioreactor continuous stirred-tank bioreactor continuous tubular flow bioreactor
DM D/A DMC	dry matter digital-analog dynamic matrix control
FCV	flow control valve
GA ₃ GC GC/MS GPM	gibberellic acid gas chromatography gas chromatography coupled with mass spectrometry gallons per minute
HEPA HPLC	high efficiency particulate air high-performance liquid chromatography
IBM IDS IDM INRA ISFET IR IWC	International Business Machines initial dry solids initial dry matter <i>Institut National de la Recherche Agronomique</i> (National Agronomic Research Institute) ion sensitive field effect transistor infrared initial water content
k _F a k _L a	biofilm conductance (used to characterize the efficiency of O_2 transfer between the gas and biofilm phases in SSF) overall mass transfer coefficient (used to characterize the efficiency of O_2 transfer between the gas and liquid phases in SLF)
L/D	length to diameter ratio

MPC	model predictive control
NLMPC	nonlinear model predictive control
ODE OUR	ordinary differential equation O ₂ uptake rate
PDE PI PID PLC PUC	partial differential equation proportional/integral proportional/integral/derivative (as defined in Chap. 27.2.2) Programmable Logic Controller Pontificia Universidad Católica
RTD RQ	resistance temperature detector respiratory quotient
SI SLF SSF	<i>Système International</i> (international metric system) submerged liquid fermentation solid state fermentation (as defined in Chap. 1)
t_{90} TC TDR T_{opt} $T_{subscript}$	time for the biomass to reach 90% of its maximum value thermocouple time domain reflectometry optimum temperature temperature, with the meaning as indicated by the subscript
UV	ultraviolet
vvm	volume per volume per minute
WC wt	water content weight
Х	dry biomass
Z-N	Ziegler and Nichols (in relation to controller tuning rules)

Notation

Please note that, due to the fact that different models use different nomenclature and units, the nomenclature is covered chapter-by-chapter. In most cases the symbols are also explained where they first appear in the text.

Chapter 3

Pr	productivity (kg $h^{-1} m^{-3}$)
tprocess	time between successive harvests (h)
$\dot{V}_{bioreactor}$	bioreactor volume (m ³)
Xharvest	amount of biomass (or product) at the time of harvesting (kg)
X _{initial}	amount of biomass (or product) at zero time (kg)

Chapter 4

T_{subscript}

temperature of phase or subsystem indicated by subscript (°C)

Chapter 5

H^{-}	superficial velocity of the air $(m s^{-1})$
T _{subscript}	temperature of phase or subsystem indicated by subscript (°C)
V_Z	bed height (m)

C	O_2 concentration in the surrounding atmosphere (g cm ⁻³)
D	effective diffusivity of O_2 in the bed (cm ² h ⁻¹)
D_c	critical tray depth (cm)
k	thermal conductivity of the bed (W $m^{-1} \circ C^{-1}$)
N_{Bi}	Biot number
R_O	volumetric heat production rate (W m ⁻³)
$\tilde{R_X}$	overall growth rate (kg-dry-biomass m ⁻³ h ⁻¹)
R_{XM}	maximum growth rate (g-dry-biomass cm ⁻³ -bed h ⁻¹)
T_a	surrounding air temperature (°C)
T_s	bed surface temperature (°C)
Χ	biomass density (kg-dry-biomass m ⁻³)
X_{max}	maximum possible biomass density (kg-dry-biomass m ⁻³)
Y_{XO}	yield coefficient of biomass from O_2 (g-dry-biomass g- O_2^{-1})
Ζ	spatial coordinate as a dimensionless fraction of the total bed height
Ζ	total bed height (m)
α	coefficient for bed-to-air heat transfer at the bed top (W m ⁻² $^{\circ}$ C ⁻¹)
$lpha_b$	coefficient for bed-to-air heat transfer at the bed bottom (W $m^{-2} \circ C^{-1}$)

μ	specific growth rate parameter (h^{-1})
Θ	temperature difference between the bottom of bed and the tray surface
	when no heat transfer through the bottom of the tray (°C)
μ_{FO}	fractional specific growth rate based on O_2 (dimensionless)
μ_{FT}	fractional specific growth rate based on temperature (dimensionless)
μ_{max}	maximum value that the specific growth rate parameter can have (h^{-1})

Chapter o	
A _{subscript}	area, with meaning indicated by subscript (m ²)
D	drum diameter (m)
F_{mix}	volumetric exchange rate between the dead and plug-flow regions rela-
	tive to the drum volume and mean residence time (dimensionless)
h	coefficient for bed-to-headspace heat transfer (W $m^{-2} \circ C^{-1}$)
N_C	critical rotational speed (rpm)
R_B	ratio of exposed surface area of the bed to the bed volume (m^{-1})
R _{conv}	rate of convective heat removal to the headspace gases (W)
T _{subscript}	temperature of phase or subsystem indicated by subscript (°C)
V _{subscript}	volume, with meaning indicated by subscript (m ³)
θ_{ω}	angle subtended at the center of the drum by the bed surface for
	fractional filling ω (radians)
ω	fractional filling of the drum (m ³ -bed m ⁻³ -total-bioreactor-volume)

Chapter 11

F	mass flow of fresh solids $(ka h^{-1})$
ſ	and a flow through wall mixed region (leg h^{-1})
Jm	sonas now unough wen-mixed region (kg n
f_p	solids flow through plug-flow region (kg h ⁻¹)
f_R	recycled solid-flow (kg h ⁻¹)
M	overall mass of solids in the bioreactor (kg)
M_m	mass of solids in the well-mixed region (kg)
M_p	mass of solids in the plug-flow region (kg)
X	biomass content in product and recycle streams (g kg-dry-matter ⁻¹)
X_{max}	maximum possible biomass content (g kg-dry-matter ⁻¹)
X_o	initial biomass content in the fresh feed stream $(g kg-dry-matter^{-1})$
X_o '	biomass content after mixing the fresh feed and recycle streams
	$(g kg-dry-matter^{-1})$
α	fraction of the flow that passes through the plug-flow region (f_p/f_m)
β	fraction of the "in-bioreactor" mass in the plug-flow region (M_p/M_m)
γ	recycle ratio (dimensionless)
<i>'</i>	specific growth rate parameter (h^{-1})
μ	specific growin rate parameter (ii)

а	constant in the double-Arrhenius equation (h ⁻¹)
A	area across which heat transfer takes place (m ²)
b	constant in the double-Arrhenius equation (dimensionless)
C_{Pair}	heat capacity of dry air $(J \text{ kg-dry-air}^{-1} \circ C^{-1})$

C_{PB}	overall bed heat capacity (J kg ⁻¹ °C ⁻¹)
C_{Pvapor}	heat capacity of water vapor (J kg-vapor ⁻¹ °C ⁻¹)
Eal, Ea2	constants in the double-Arrhenius equation (J mol ⁻¹)
F	air flow rate on a dry basis (kg-dry-air h ⁻¹)
h	heat transfer coefficient (J m ⁻² s ⁻¹ $^{\circ}$ C ⁻¹)
Η	outlet air humidity (kg-vapor kg-dry-air ⁻¹)
H_{in}	inlet air humidity (kg-vapor kg-dry-air ⁻¹)
M	total bed mass (kg)
R	universal gas constant $(J \text{ mol}^{-1} \text{ K}^{-1})$
S	dry substrate concentration (kg-dry-substrate m ⁻³).
t	time (h)
Т	temperature of the substrate bed and the outlet air (°C)
T_{in}	inlet air temperature (°C)
T _{surr}	temperature of the surroundings (°C)
W	water content on a dry basis (kg-H ₂ O kg-dry-substrate ⁻¹)
Х	amount of biomass in the bioreactor (kg)
X_{max}	maximum possible amount of biomass in the bioreactor (kg)
Y_O	yield of metabolic heat from growth (J kg-biomass ⁻¹)
μ	specific growth rate parameter (h ⁻¹)
ΔH_{vap}	enthalpy of vaporization of water (J kg-H ₂ O ⁻¹)

\overline{A}	area for heat transfer as indicated by subscript (m ²)
a_w	water activity as indicated by subscript
D_S	diffusivity of the substrate $(m^2 h^{-1})$
h	heat transfer coefficient as indicated by subscript (J $h^{-1} m^{-2} C^{-1}$)
Η	humidity of phase indicated by subscript (kg-vapor kg-dry-air ⁻¹)
k	mass transfer coefficient (kg $m^2 h^{-1}$)
K_S	saturation constant of the Monod equation $(g L^{-1})$
r	radial position (m)
S	substrate concentration (g L^{-1})
$S _r$	substrate concentration at radial position r (g L ⁻¹)
t	time (h)
Т	temperature as indicated by subscript (°C)
X	biomass concentration $(g L^{-1})$
$X _r$	biomass concentration at radial position r (g L ⁻¹)
Y_{XS}	yield of biomass from substrate (g-dry-biomass g-substrate ⁻¹)
μ_{max}	specific growth rate parameter (h ⁻¹)

A	constant of the deceleration growth equation (dimensionless)
С	biomass content (basis not specified)
C_m	maximum biomass content (basis not specified)
C_o	initial biomass content (basis not specified)
C_{XA}	biomass content related to dry matter at zero time
	(g-dry-biomass g-initial-dry-solids ⁻¹)

C_{XM}	biomass content related to fresh matter at time of sampling
	(g-dry-biomass g-moist-solids ⁻¹)
C_{XR}	biomass content related to dry matter at time of sampling
	(g-dry-biomass g-dry-solids ⁻¹)
C_{XW}	biomass content related to fresh matter at zero time
	(g-dry-biomass g-initial-moist-solids ⁻¹)
D	mass of dry solids (g)
D_o	initial mass of dry solids (g)
k	growth equation parameter (g-dry-biomass h ⁻¹ for the linear equation,
	h ⁻¹ for the deceleration equation)
М	mass of moist solids (g)
M_o	initial mass of moist solids (g)
S	mass of dry residual substrate (g)
S_o	initial mass of dry residual substrate (g)
t	time
W	mass of water (g)
W_o	initial mass of water (g)
Χ	mass of dry biomass (g)
μ	specific growth rate parameter (h^{-1})

Chapter	15
C_{XR}	biomass content, relative basis (g-dry-biomass g-dry-solids ⁻¹)
C_{XA}	biomass content, absolute basis (g-dry-biomass g-initial-dry-solids ⁻¹)
C_{CA}	concentration of a biomass component
	(mg-component g-initial-dry-solids ¹)
C_F	content of biomass component within the biomass
	(mg-component g-biomass ⁻¹)
d_i	dry mass of sample removed from the "ith" flask for determination of
	the moisture content (g)
D_i	dry mass of solids in the sample removed for biomass determination
	(g-dry-solids)
d_o	dry mass of sample removed at zero time (g)
G_x	biomass glucosamine content (mg-glucosamine mg-dry-biomass ⁻¹)
IDS_i	dry substrate initially added to the "ith" flask (g)
IWC	initial water content, wet basis (% by mass)
m_i	wet mass of sample removed from the "ith" flash for determination of
	the moisture content (g)
m_o	wet mass of sample removed at zero time (g)
M_i	fresh mass of the sample removed for biomass determination
	(g-moist-solids)
M_{oi}	mass of substrate initially added to the "ith" flask (g)
WC_i	moisture content of the "ith" flask at the time of sampling, wet basis
	(% by mass)
X	mass of biomass or a component (g)
λ	lag time (h)

Chapter 16	
a_o to a_4	fitting parameters for Eq. (16.14)
a_{ws}	water activity of the solid substrate phase
A	parameter of the deceleration equation (dimensionless)
A	fitting parameter of the double-Arrhenius equation (h^{-1})
A_d	frequency factor for the death reaction (h^{-1})
Ă _o	frequency factor for the growth reaction (h^{-1})
A_D	frequency factor for denaturation reaction (dimensionless)
A_S	frequency factor for synthesis reaction (dimensionless)
b	fitting parameter of Eq. (16.16)
В	fitting parameter of the double-Arrhenius equation (dimensionless)
C_m	maximum biomass content (g-biomass 100-g-dry-matter ⁻¹)
C_{XA}	biomass content, absolute basis (g-dry-biomass g-initial-dry solids ⁻¹)
C_{XAM}	maximum biomass content, absolute basis
11111	(g-dry-biomass g-initial-dry-solids ⁻¹)
C_{XAO}	initial biomass content, absolute basis
1110	(g-dry-biomass g-initial-dry-solids ⁻¹)
C_{XAD}	absolute concentration of dead biomass
MID	(g-dry-biomass g-initial-dry solids ⁻¹)
C_{XAT}	absolute concentration of total biomass, i.e., both viable and dead
	(g-dry-biomass g-initial-dry solids ⁻¹)
C_{XAV}	absolute concentration of viable biomass
1117	(g-dry-biomass g-initial-dry solids ⁻¹)
C_{XR}	biomass content, relative basis (g-dry-biomass g-dry-solids ⁻¹)
D_1 to D_4	fitting parameters of Eq. (16.17)
D	total dry mass of solids in the bioreactor (kg)
D_o	initial total dry mass of solids in the bioreactor (kg)
E_{al}, E_{a2}	fitting parameters of the double-Arrhenius equation (J mol ⁻¹)
E_{ad}	activation energy for the death reaction (J mol ⁻¹)
E_{ag}	activation energy for the growth reaction (J mol ⁻¹)
E_{aS}	activation energy for synthesis reaction (J mol ⁻¹)
E_{aD}	activation energy for denaturation reaction (J mol ⁻¹)
f	specific growth rate as a fraction of the specific growth rate under
	optimum conditions (dimensionless)
f_T	specific growth rate as a fraction of the specific growth rate under
	optimum conditions, based on temperature (dimensionless)
f_T	specific growth rate as a fraction of the specific growth rate under
	optimum conditions based on water activity (dimensionless)
F	state of the intracellular "essential enzyme pool" (dimensionless)
F_1 to F_3	fitting constants of Eq. (16.15)
k	growth equation parameter (g-dry-biomass g-initial-dry solids ⁻¹ h ⁻¹ in
	the linear equation, h ⁻¹ in the deceleration equation)
k_d	specific death rate coefficient (h^{-1})
k_D	coefficient of the denaturation reaction (h ⁻¹)
k_S	coefficient of the autocatalytic synthesis reaction (h ⁻¹)
m_S	maintenance coefficient (kg-dry-substrate kg-dry-biomass ⁻¹ h ⁻¹)

r_d	death rate (g-dry-biomass g-initial-dry solids ⁻¹ h ⁻¹)
R	universal gas constant (J mol ⁻¹ $^{\circ}C^{-1}$)
S	total dry mass of residual substrate (kg)
t	time (h)
Т	temperature (°C).
T_{max}	maximum temperature for growth (°C)
T_{min}	minimum temperature for growth (°C)
Topt	optimum temperature for growth (°C)
X	total dry mass of biomass (kg)
X_{max}	maximum total dry mass of biomass (kg)
Y_{XS}	true growth yield (kg-dry-biomass kg-dry-substrate ⁻¹)
μ	specific growth rate parameter (h ⁻¹)
$\mu_{measured}$	measured value of the specific growth rate (h ⁻¹)
μ_{opt}	specific growth rate parameter under optimal growth conditions (h ⁻¹)
μ_T	specific growth rate parameter as a function of temperature (h^{-1})
μ_W	specific growth rate parameter as a function of water activity (h^{-1})

$a_{w(subscript)}$	water activity of phase or subsystem indicated by subscript
CER	carbon dioxide evolution rate (mol- $CO_2 h^{-1}$)
COU	cumulative O_2 uptake (mol- O_2)
C_{in}	inlet O ₂ concentration (typically %volume)
C_{out}	outlet O ₂ concentration (typically %volume)
C_{XA}	absolute biomass concentration (kg-dry-biomass kg-dry-solids ⁻¹)
D	inactivation parameter used in Eqs. (17.8) and (17.9)
D_o	initial mass of dry solids within the bioreactor (kg)
F	dry air flow rate (L h^{-1})
L	initial particle length (m)
l_c	residual particle length at time t (m)
m_A	maintenance coefficient for production or consumption of the species
	indicated by subscript (kg-A kg-dry-biomass ⁻¹ h ⁻¹)
m_c	maintenance coefficient for CO_2 (mol- CO_2 kg-dry-biomass ⁻¹ h ⁻¹)
m_d	fitting constant in Eq. (17.9)
m_o	maintenance coefficient for O_2 (mol- O_2 kg-dry-biomass ⁻¹ h ⁻¹)
m_N	maintenance coefficient for nutrient (kg-nutrient kg-dry-biomass ⁻¹ h ⁻¹)
m_P	coefficient for product formation related to maintenance metabolism
	(kg-product kg-dry-biomass ⁻¹ h ⁻¹)
m_Q	maintenance coefficient for heat production (J kg-dry-biomass ⁻¹ h ⁻¹)
m_S	maintenance coefficient for residual dry substrate
	(kg-dry-substrate kg-dry-biomass ⁻¹ h ⁻¹)
m_W	maintenance coefficient for water production
	$(kg-H_2O kg-dry-biomass^{-1} h^{-1})$.
OUR	oxygen uptake rate (mol- $O_2 h^{-1}$)
Р	mass of product (kg)
P_o	mass of product present at time zero (kg)

<i>r</i> _{subscript}	overall rate of change in a species, with the particular species being
	indicated by the subscript (kg h^{-1} or mol h^{-1})
r_C	overall rate of CO_2 production (mol- CO_2 h ⁻¹)
r_N	overall rate of nutrient consumption (kg-nutrient h ⁻¹)
r_P	overall rate of product formation (kg h ⁻¹)
r_O	overall rate of O_2 consumption (mol- O_2 h ⁻¹)
r_{O}	overall rate of metabolic waste heat production (J h ⁻¹)
$\tilde{r_W}$	overall rate of metabolic water production (kg-H ₂ O h ⁻¹
t	time (h)
t_d	time at which inactivation kinetics appear (h)
t_r	time at which inactivation kinetics disappear (h)
Т	time for complete particle degradation in Eq. (17.10)
X	total mass of biomass within the bioreactor (kg-dry-biomass)
X_m	maximum possible biomass, logistic equation (kg-dry-biomass)
X_o	initial biomass (kg-dry-biomass)
Y_{AB}	stoichiometric relationship between two species as indicated by sub-
	scripts A and B (kg-A kg-B ⁻¹)
Y_{CX}	yield of CO ₂ from biomass (mol-CO ₂ kg-dry-biomass ⁻¹)
Y_{PX}	yield of product from growth (kg-product kg-dry-biomass ⁻¹)
Y_{QC}	yield of heat from CO_2 production (J kg- CO_2^{-1})
Y_{QX}	yield of heat from the growth reaction (J kg-dry-biomass ⁻¹)
Y_{WX}	yield of water from the growth reaction (kg-H ₂ O kg-dry-biomass ⁻¹)
Y_{XN}	yield of biomass from a nutrient (kg-dry-biomass kg-nutrient ⁻¹)
Y_{XO}	yield of biomass from O_2 (kg-dry-biomass mol- O_2^{-1})
Y_{XS}	yield of biomass based on overall residual dry substrate
	(kg-dry-biomass kg-dry-substrate ⁻¹)
λ	fractional particle length (i.e., l_c/L) in Eq. (17.10) (dimensionless)
λ	time at which product begins to be produced (h), used in Eq. (17.14)
μ	specific growth rate parameter (h^{-1})

Chapter 1	0
A _{subscript}	area of the transfer surface indicated by subscript (m ²)
$a_{wsolid}*$	water activity for solids to be in equilibrium with the gas phase
$a_{w(subscript)}$	water activity of phase or subsystem indicated by subscript
C_{Pbed}	overall heat capacity of the bed $(J \text{ kg}^{-1} \circ \text{C}^{-1})$
C _{Psubscript}	heat capacity of phase or subsystem indicated by subscript $(J \text{ kg}^{-1} \circ \text{C}^{-1})$
D	total mass of dry solids in the bed (kg-dry-solids)
G	mass flux of dry air (kg-dry-air $m^{-2} h^{-1}$)
h _{subscript}	heat transfer coefficient as indicated by subscript (J h ⁻¹ m ⁻² °C ⁻¹)
hA	global heat transfer coefficient (J $h^{-1} \circ C^{-1}$)
H_{sat}	saturation humidity (kg-vapor kg-dry-air ⁻¹)
H _{subscript}	humidity of a subsystem or phase as indicated by subscript
	(kg-vapor kg-dry-air ⁻¹)
k	thermal conductivity $(J m^{-1} h^{-1} °C^{-1})$
k_w	mass transfer coefficient for water (kg-H ₂ O m ⁻² h ⁻¹)
m _{bed}	mass of the bed (kg)

M_{water}	overall mass of water in the bed (kg)
r_O	rate of metabolic heat production (J h ⁻¹)
$\tilde{r_W}$	rate of metabolic water production (kg h ⁻¹)
<i>R</i> _{subscript}	rate of a mass transfer phenomenon that involves water (kg-H ₂ O h^{-1})
Q _{subscript}	rate of a heat transport phenomenon as indicated by subscript (J h ⁻¹)
t	time (h)
T _{subscript}	temperature of phase or subsystem indicated by subscript (°C)
V_Z	air superficial velocity (m h ⁻¹)
W	water content of the bed (kg-H ₂ O kg-dry-solids ⁻¹)
W_{sat}	water content that the solids would have if they were in equilibrium
	with the gas phase, dry basis (kg-H ₂ O kg-dry solid ⁻¹)
x	distance, usually horizontal distance within the phase (m)
Ζ	distance, usually vertical (axial) distance within the phase (m)
λ	enthalpy of vaporization of water (J kg-H ₂ O ⁻¹)
$ ho_{subscript}$	density of phase or subsystem indicated by subscript (kg m ⁻³)

а	fitting parameter of the Antoine equation
a_{wg}	gas phase water activity
a_{ws}	water activity of the solids
b	fitting parameter of the Antoine equation
С	fitting parameter of the Antoine equation
$C_{Psubscript}$	heat capacity of phase or subsystem indicated by subscript $(J \text{ kg}^{-1} \circ \text{C}^{-1})$
d	fitting parameter of the Antoine equation
Н	humidity (kg-vapor kg-dry-air ⁻¹)
Н	saturation humidity (kg-vapor kg-dry-air ⁻¹)
M_g	gas molecular weight (kg mol ⁻¹)
m _{subscript}	mass of the item indicated by subscript (g or kg)
n	number of moles (mol)
Р	pressure (Pa)
P_w	vapor pressure of water (Pa)
P_{sat}	saturation vapor pressure of water (Pa)
R	universal gas constant $(J \text{ mol}^{-1} \text{ K}^{-1})$
S	shrinkage factor (m ³ -dry-bed m ⁻³ -moist-bed)
Т	temperature (°C)
T_K	temperature (K)
T_s	solids temperature (°C)
V_P	specific packed volume on a dry basis (m ³ kg-dry-matter ⁻¹)
$V_{subscript}$	volume of phase or subsystem indicated by subscript (L or m ³)
W_i	mass fraction contributed by component " <i>i</i> "
W	solids water content, dry basis (kg- H ₂ O kg-dry-solids ⁻¹)
ε	bed porosity (dimensionless)
λ	enthalpy of vaporization of water (J kg-H ₂ O ⁻¹)
$ ho_b$	bed packing density $(g L^{-1} \text{ or } kg m^{-3})$
$ ho_{subscript}$	density of phase or subsystem indicated by subscript (g L ⁻¹ or kg m ⁻³)

Chapter 2	0
A	area for transfer (m ²)
A_g	cross-sectional area of headspace normal to gas flow (m ²)
Cair	dimensionless air humidity (as defined by Eq. (20.11))
C_{hed}	dimensionless saturation water vapor concentration
$C_{Psubscript}$	heat capacity of phase or subsystem indicated by subscript $(J \text{ kg}^{-1} \circ \text{C}^{-1})$
C_V	dimensionless constant associated with the bed viscosity
d	particle diameter (m)
D	bioreactor diameter (m)
f	porosity factor (dimensionless)
F	inlet air flow rate (kg-dry-air s ⁻¹)
g	gravitational acceleration (m s ⁻²)
G	air flux through the bed (kg-air $m^{-2} s^{-1}$)
h	maximum height of the bed (m)
ha	"volumetric" overall heat transfer coefficient (J $s^{-1} m^{-3} °C^{-1}$)
h _{subscript}	heat transfer coefficient, as indicated by subscript (J $s^{-1} m^{-2} °C^{-1}$)
H_{sat}	saturation humidity (kg-vapor kg-dry-air ⁻¹)
H _{subscript}	humidity of phase indicated by subscript (kg-vapor kg-dry-air ⁻¹)
ka	scaled water mass transfer coefficient (s ⁻¹)
k_b	thermal conductivity of the bed $(J h^{-1} m^{-1} \circ C^{-1})$ or $J s^{-1} m^{-1} \circ C^{-1}$
k_{wall}	thermal conductivity of the wall $(J s^{-1} m^{-1} °C^{-1})$
Κ	secondary variable calculated by Eq. (20.14)
Ka	"volumetric" overall mass transfer coefficient (kg-dry-solids s ⁻¹ m ⁻³)
L	bioreactor length (m)
L_{wall}	wall thickness (m)
M	percentage moisture content, wet basis (% by mass)
N	rotational speed (revolutions per second)
Р	pressure (Pa)
Pe_{eff}	effective Peclet number
R_w	scaled overall water transfer rate (s ⁻¹)
S	mobile layer thickness (m)
S	fraction of the critical speed (dimensionless)
t_c	time of contact between the solid particles and the bioreactor wall (s)
T _{subscript}	temperature of phase or subsystem indicated by subscript (°C)
u_P	average particle velocity (m s ⁻¹)
W	solids water content (kg-H ₂ O kg-dry-solids ⁻¹)
$lpha_b$	thermal diffusivity of the bed $(m^2 h^{-1})$
γ	dynamic angle of repose of the solids (degrees)
δ	diffusivity of water vapor in air $(m^2 s^{-1})$
$ ho_b$	bed density (kg m ⁻³ -bed)

Also see Tables 22.1 and 22.2.

The model converts all parameters and variables to a consistent set of units.

- A area for heat transfer across bioreactor side wall (m^2)
- A_1 to A_4 fitting parameters of the double-Arrhenius equation (Eq. (22.1))

a_{wg}	gas phase water activity
a_{wgin}	inlet air water activity
a_{wgo}	initial gas phase water activity
a_{wg}^*	outlet gas water activity set point for triggering water addition
a_{ws}	water activity of the solids
a_{wso}	initial water activity of the solids phase
b_o	initial biomass content (kg-biomass kg-initial-dry-solids ⁻¹)
b_m	maximum biomass content (kg-biomass kg-initial-dry-solids ⁻¹)
В	mass of bioreactor wall (kg)
C_{Pb}	heat capacity of bioreactor body $(J \text{ kg}^{-1} \circ \text{C}^{-1})$
C_{Pg}	heat capacity of dry gas $(J \text{ kg}^{-1} \circ \text{C}^{-1})$
C_{Pm}	heat capacity of dry matter $(J \text{ kg}^{-1} \circ \text{C}^{-1})$
C_{Pv}	heat capacity of water vapor (J kg ⁻¹ °C ⁻¹)
C_{Pw}	heat capacity of liquid water (J kg ⁻¹ °C ⁻¹)
D	bioreactor diameter (m)
D_1 to D_4	fitting parameters of Eq. (22.2)
F_{in}	flow rate of dry air at the air inlet (kg-dry-air s ⁻¹)
fold	fold increase in the solids-to-gas heat and mass transfer coefficients
G	mass of dry air held in the inter-particle spaces (kg)
ha	"volumetric" overall heat transfer coefficient (J s ⁻¹ m ⁻³ °C ⁻¹)
h_{bw}	bioreactor-to-cooling-water heat transfer coefficient (J $s^{-1} m^{-2} °C^{-1}$)
h_{gb}	gas-to-bioreactor heat transfer coefficient (J s ⁻¹ m ⁻² °C ⁻¹)
h_{sb}	solids-to-bioreactor heat transfer coefficient (J s ⁻¹ m ⁻² °C ⁻¹)
Н	gas phase humidity (kg-vapor kg-dry-air ⁻¹)
H_B	bioreactor height (m)
H_{in}	inlet air humidity (kg-vapor kg-dry-air ⁻¹)
J	proportional gain (dimensionless)
Ka	"volumetric" overall mass transfer coefficient (kg-dry-solids s ⁻¹ m ⁻³)
L	thickness of the bioreactor wall (mm)
M	total mass of dry solids in the bioreactor (kg)
M_o	initial mass of dry solids in the bioreactor (kg)
Р	overall pressure in the bioreactor (mm Hg)
R	universal gas constant (J mol ⁻¹ °C ⁻¹)
S_o	initial mass of dry substrate in the bed (kg)
t	time (h)
Туре	type of relation of growth with solids water activity
T_b	bioreactor body temperature (°C)
T_g	gas phase temperature (°C)
T_{in}	inlet air temperature (°C)
T_{opt}	optimum temperature for growth (°C)
T_s	solids temperature (°C)
T _{setpoint}	set point temperature for the cooling water control scheme (°C)
T_{sys}	initial temperature of the system (°C)
T_w	cooling water temperature (°C)
V_{bed}	volume of the bed within the bioreactor (m ³)
vvm	volumes of air per bed volume per minute (m ² -air (m ² -bed) ⁻¹ min ⁻¹)