
Solid-State Fermentation Bioreactors



David A. Mitchell · Nadia Krieger
Marin Berovič (Eds.)
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Preface

Although solid-state fermentation (SSF) has been practiced for many centuries in 
the preparation of traditional fermented foods, its application to newer products 
within the framework of modern biotechnology is relatively restricted. It was con-
sidered for the production of enzymes in the early 1900s and for the production of 
penicillin in the 1940s, but interest in SSF waned with the advances in submerged 
liquid fermentation (SLF) technology. The current dominance of SLF is not sur-
prising: For the majority of fermentation products, it gives better yields and is eas-
ier to apply. It is notoriously difficult to control the fermentation conditions in 
SSF; these difficulties are already apparent at small scale in the laboratory and are 
exacerbated with increase in scale. However, there are particular circumstances 
and products for which SSF technology is appropriate. For example, a desire to 
reuse solid organic wastes from agriculture and food processing rather than simply 
discarding them leads naturally to the use of SSF. Further, some microbial prod-
ucts, such as fungal enzymes and spores, amongst others, are produced in higher 
yields or with better properties in the environment provided by SSF systems.  

With recognition of this potential of SSF, a revival of interest began in the mid-
1970s. However, the theoretical base for SSF bioreactor technology only began to 
be established around 1990. Before this, there were many examples of SSF biore-
actors, especially those used in the koji industry, but there was little or no informa-
tion about the efficiency of heat and mass transfer processes within them. The 
work that has been carried out over the last 15 years is sufficient to establish a 
general basis of engineering principles of SSF bioreactors. This book brings to-
gether this work in order to provide this basis. It makes the key point that, given 
the complexity of SSF systems, efficient performance of SSF bioreactors will only 
be achieved through: (1) the use of mathematical models in making design and 
operating decisions for bioreactors and (2) The application of control theory. 

Before proceeding, we must point out that we are quite aware of the potential 
problems that might be used by our use of the word “fermentation”. In this book 
we use it not in its metabolic sense but rather in its more general sense of “con-
trolled cultivation of microorganisms”. Although several terms are used to denote 
this fermentation technique, the most common by far is “solid-state fermentation”.  

This book focuses on SSF bioreactors. It does not aim to introduce SSF itself. 
We assume that readers interested in learning about SSF bioreactors are familiar 
with SSF processes themselves. Even if not, a reader who understands the basic 
principles of SLF processes and SLF bioreactor design will be able to understand 
this book. In any case, readers requiring a general background regarding SSF can 
consult books or review articles (e.g., see the Further Reading section of Chap. 1).  
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Even with this focus on SSF bioreactors, the book deliberately addresses gen-
eral issues and concepts. Specific examples are given to illustrate concepts, but the
book neither considers all types of bioreactors that have been used nor presents all 
mathematical models that have been developed. We do not attempt to present all
the engineering know-how so far generated for SSF bioreactors. Rather, we aim to 
introduce the fundamental concepts and ideas.

The main audience intended for this book is the researcher/worker in SSF who 
is currently developing an SSF process with the intention of eventually commer-
cializing it. Our aim is to give this reader a broad overview of what is involved in
designing a bioreactor and optimizing its performance.

We recognize that many readers may not have the necessary background to set 
up and solve mathematical models of bioreactor performance. This book does not 
attempt to teach the necessary modeling skills. Such a task would require a 
lengthy treatise on various mathematical and engineering fundamentals. A basic
understanding of differential and integral calculus will help readers to understand 
various of the chapters, although it is by no means necessary to be an expert. 

After reading this book, the “non-engineering reader” should:

understand qualitatively the importance of the various mass transfer, heat trans-
fer and biological phenomena that are important in SSF systems, and the inter-
actions amongst these various phenomena;
understand what mathematical models of bioreactors can do. If you understand 
what models can and cannot do, then even if you do not have the skills to de-
velop a model yourself, you will know when it is appropriate to seek the help of 
someone with such modeling skills (a “modeler”);
be able to “talk the same language” as the “modeler”. In other words, you
should be able to define clearly for the modeler what you wish to do, and you
should be able to understand the questions that the modeler poses. In this way
you can interact with modelers, even if they have no experience with SSF.

This book should also be useful for readers with modeling skills but who are 
working in SSF for the first time. In a succinct way, it outlines the important phe-
nomena and the basic principles of SSF bioreactor design and operation.

We welcome comments, suggestions and criticisms about this book. Our aim is 
to help you to understand SSF bioreactors better. We would appreciate knowing
just how well we have achieved this aim. The addresses of the editors and authors
are given after the Table of Contents.

November 2005

David Mitchell   Nadia Krieger     Marin Berovi
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T temperature (°C).  
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rC overall rate of CO2 production (mol-CO2 h-1)
rN overall rate of nutrient consumption (kg-nutrient h-1)
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t time (h)
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enthalpy of vaporization of water (J kg-H2O-1)
subscript density of phase or subsystem indicated by subscript (kg m-3)

Chapter 19 
a fitting parameter of the Antoine equation 
awg gas phase water activity 
aws water activity of the solids 
b fitting parameter of the Antoine equation 
c fitting parameter of the Antoine equation 
CPsubscript heat capacity of phase or subsystem indicated by subscript (J kg-1 °C-1)
d fitting parameter of the Antoine equation 
H humidity (kg-vapor kg-dry-air-1)
H saturation humidity (kg-vapor kg-dry-air-1)
Mg gas molecular weight (kg mol-1)
msubscript mass of the item indicated by subscript (g or kg)
n number of moles (mol) 
P pressure (Pa) 
Pw vapor pressure of water (Pa) 
Psat saturation vapor pressure of water (Pa) 
R universal gas constant (J mol-1 K-1)
S shrinkage factor (m3-dry-bed m-3-moist-bed)  
T temperature (°C) 
TK temperature (K) 
Ts solids temperature (°C) 
VP specific packed volume on a dry basis ( m3 kg-dry-matter-1)
Vsubscript volume of phase or subsystem indicated by subscript (L or m3)
wi mass fraction contributed by component “i”
W solids water content, dry basis (kg- H2O kg-dry-solids-1)

bed porosity (dimensionless) 
enthalpy of vaporization of water (J kg-H2O-1)

b bed packing density (g L-1 or kg m-3)
subscript density of phase or subsystem indicated by subscript (g L-1 or kg m-3)
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Chapter 20 
A area for transfer (m2)
Ag cross-sectional area of headspace normal to gas flow (m2)
cair dimensionless air humidity (as defined by Eq. (20.11)) 
cbed dimensionless saturation water vapor concentration  
CPsubscript heat capacity of phase or subsystem indicated by subscript (J kg-1 °C-1)
CV dimensionless constant associated with the bed viscosity 
d particle diameter (m) 
D bioreactor diameter (m) 
f porosity factor (dimensionless) 
F inlet air flow rate (kg-dry-air s-1)
g gravitational acceleration (m s-2)
G air flux through the bed (kg-air m-2 s-1)
h maximum height of the bed (m) 
ha “volumetric” overall heat transfer coefficient (J s-1 m-3 °C-1)
hsubscript heat transfer coefficient, as indicated by subscript (J s-1 m-2 °C-1)
Hsat saturation humidity (kg-vapor kg-dry-air-1)
Hsubscript humidity of phase indicated by subscript (kg-vapor kg-dry-air-1)
ka scaled water mass transfer coefficient (s-1)
kb thermal conductivity of the bed (J h-1 m-1 °C-1 or J s-1 m-1 °C-1)
kwall thermal conductivity of the wall (J s-1 m-1 °C-1)
K secondary variable calculated by Eq. (20.14) 
Ka “volumetric” overall mass transfer coefficient (kg-dry-solids s-1 m-3)
L bioreactor length (m) 
Lwall wall thickness (m) 
M percentage moisture content, wet basis (% by mass) 
N rotational speed (revolutions per second) 
P pressure (Pa) 
Peeff effective Peclet number 
Rw scaled overall water transfer rate (s-1)
s mobile layer thickness (m) 
S fraction of the critical speed (dimensionless) 
tc time of contact between the solid particles and the bioreactor wall (s) 
Tsubscript temperature of phase or subsystem indicated by subscript (°C) 
uP average particle velocity (m s-1)
W solids water content (kg-H2O kg-dry-solids-1)

b thermal diffusivity of the bed (m2 h-1)
dynamic angle of repose of the solids (degrees) 
diffusivity of water vapor in air (m2 s-1)

b bed density (kg m-3-bed)

Chapter 22 
Also see Tables 22.1 and 22.2. 
The model converts all parameters and variables to a consistent set of units. 
A area for heat transfer across bioreactor side wall (m2)
A1 to A4 fitting parameters of the double-Arrhenius equation (Eq. (22.1)) 



XXXII      Notation

awg gas phase water activity 
awgin inlet air water activity  
awgo initial gas phase water activity  
awg* outlet gas water activity set point for triggering water addition 
aws water activity of the solids 
awso initial water activity of the solids phase 
bo initial biomass content (kg-biomass kg-initial-dry-solids-1)
bm maximum biomass content (kg-biomass kg-initial-dry-solids-1)
B mass of bioreactor wall (kg) 
CPb heat capacity of bioreactor body (J kg-1 °C-1)
CPg heat capacity of dry gas (J kg-1 °C-1)
CPm heat capacity of dry matter (J kg-1 °C-1)
CPv, heat capacity of water vapor (J kg-1 °C-1)
CPw heat capacity of liquid water (J kg-1 °C-1)
D bioreactor diameter (m) 
D1 to D4 fitting parameters of Eq. (22.2) 
Fin flow rate of dry air at the air inlet (kg-dry-air s-1)
fold fold increase in the solids-to-gas heat and mass transfer coefficients 
G mass of dry air held in the inter-particle spaces (kg) 
ha “volumetric” overall heat transfer coefficient (J s-1 m-3 °C-1)
hbw bioreactor-to-cooling-water heat transfer coefficient (J s-1 m-2 °C-1)
hgb gas-to-bioreactor heat transfer coefficient (J s-1 m-2 °C-1)
hsb solids-to-bioreactor heat transfer coefficient (J s-1 m-2 °C-1)
H gas phase humidity (kg-vapor kg-dry-air-1)
HB bioreactor height (m) 
Hin inlet air humidity (kg-vapor kg-dry-air-1)
J proportional gain (dimensionless) 
Ka “volumetric” overall mass transfer coefficient (kg-dry-solids s-1 m-3)
L thickness of the bioreactor wall (mm) 
M total mass of dry solids in the bioreactor (kg) 
Mo initial mass of dry solids in the bioreactor (kg) 
P overall pressure in the bioreactor (mm Hg) 
R universal gas constant (J mol-1 °C-1)
So initial mass of dry substrate in the bed (kg) 
t time (h) 
Type type of relation of growth with solids water activity  
Tb bioreactor body temperature (°C) 
Tg gas phase temperature (°C) 
Tin inlet air temperature (°C) 
Topt optimum temperature for growth (°C) 
Ts solids temperature (°C) 
Tsetpoint set point temperature for the cooling water control scheme (°C) 
Tsys initial temperature of the system (°C) 
Tw cooling water temperature (°C) 
Vbed volume of the bed within the bioreactor (m3)
vvm volumes of air per bed volume per minute (m3-air (m3-bed)-1 min-1)


