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Preface

In 1973 F. Black and M. Scholes published their pathbreaking paper [BS 73]
on option pricing. The key idea — attributed to R. Merton in a footnote of the
Black-Scholes paper — is the use of trading in continuous time and the notion
of arbitrage. The simple and economically very convincing “principle of no-
arbitrage” allows one to derive, in certain mathematical models of financial
markets (such as the Samuelson model, [S 65], nowadays also referred to as the
“Black-Scholes” model, based on geometric Brownian motion), unique prices
for options and other contingent claims.

This remarkable achievement by F. Black, M. Scholes and R. Merton had
a profound effect on financial markets and it shifted the paradigm of deal-
ing with financial risks towards the use of quite sophisticated mathematical
models.

It was in the late seventies that the central role of no-arbitrage argu-
ments was crystallised in three seminal papers by M. Harrison, D. Kreps
and S. Pliska ([HK 79], [HP 81], [K 81]) They considered a general framework,
which allows a systematic study of different models of financial markets. The
Black-Scholes model is just one, obviously very important, example embed-
ded into the framework of a general theory. A basic insight of these papers
was the intimate relation between no-arbitrage arguments on one hand, and
martingale theory on the other hand. This relation is the theme of the “Fun-
damental Theorem of Asset Pricing” (this name was given by Ph. Dybvig
and S. Ross [DR87]), which is not just a single theorem but rather a general
principle to relate no-arbitrage with martingale theory. Loosely speaking, it
states that a mathematical model of a financial market is free of arbitrage if
and only if it is a martingale under an equivalent probability measure; once
this basic relation is established, one can quickly deduce precise information
on the pricing and hedging of contingent claims such as options. In fact, the
relation to martingale theory and stochastic integration opens the gates to
the application of a powerful mathematical theory.
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The mathematical challenge is to turn this general principle into precise
theorems. This was first established by M. Harrison and S. Pliska in [HP 81]
for the case of finite probability spaces. The typical example of a model based
on a finite probability space is the “binomial” model, also known as the “Cox-
Ross-Rubinstein” model in finance.

Clearly, the assumption of finite Ω is very restrictive and does not even
apply to the very first examples of the theory, such as the Black-Scholes model
or the much older model considered by L. Bachelier [B 00] in 1900, namely
just Brownian motion. Hence the question of establishing theorems applying
to more general situations than just finite probability spaces Ω remained open.

Starting with the work of D. Kreps [K 81], a long line of research of increas-
ingly general — and mathematically rigorous — versions of the “Fundamental
Theorem of Asset Pricing” was achieved in the past two decades. It turned
out that this task was mathematically quite challenging and to the benefit
of both theories which it links. As far as the financial aspect is concerned, it
helped to develop a deeper understanding of the notions of arbitrage, trading
strategies, etc., which turned out to be crucial for several applications, such
as for the development of a dynamic duality theory of portfolio optimisation
(compare, e.g., the survey paper [S 01a]). Furthermore, it also was fruitful for
the purely mathematical aspects of stochastic integration theory, leading in
the nineties to a renaissance of this theory, which had originally flourished in
the sixties and seventies.

It would go beyond the framework of this preface to give an account of the
many contributors to this development. We refer, e.g., to the papers [DS 94]
and [DS 98], which are reprinted in Chapters 9 and 14.

In these two papers the present authors obtained a version of the “Fun-
damental Theorem of Asset Pricing”, pertaining to general R

d-valued semi-
martingales. The arguments are quite technical. Many colleagues have asked
us to provide a more accessible approach to these results as well as to several
other of our related papers on Mathematical Finance, which are scattered
through various journals. The idea for such a book already started in 1993
and 1994 when we visited the Department of Mathematics of Tokyo University
and gave a series of lectures there.

Following the example of M. Yor [Y 01] and the advice of C. Byrne of
Springer-Verlag, we finally decided to reprint updated versions of seven of
our papers on Mathematical Finance, accompanied by a guided tour through
the theory. This guided tour provides the background and the motivation for
these research papers, hopefully making them more accessible to a broader
audience.

The present book therefore is organised as follows. Part I contains the
“guided tour” which is divided into eight chapters. In the introductory chap-
ter we present, as we did before in a note in the Notices of the American
Mathematical Society [DS 04], the theme of the Fundamental Theorem of As-
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set Pricing in a nutshell. This chapter is very informal and should serve mainly
to build up some economic intuition.

In Chapter 2 we then start to present things in a mathematically rigourous
way. In order to keep the technicalities as simple as possible we first re-
strict ourselves to the case of finite probability spaces Ω. This implies that
all the function spaces Lp(Ω,F ,P) are finite-dimensional, thus reducing the
functional analytic delicacies to simple linear algebra. In this chapter, which
presents the theory of pricing and hedging of contingent claims in the frame-
work of finite probability spaces, we follow closely the Saint Flour lectures
given by the second author [S 03].

In Chapter 3 we still consider only finite probability spaces and develop
the basic duality theory for the optimisation of dynamic portfolios. We deal
with the cases of complete as well as incomplete markets and illustrate these
results by applying them to the cases of the binomial as well as the trinomial
model.

In Chapter 4 we give an overview of the two basic continuous-time models,
the “Bachelier” and the “Black-Scholes” models. These topics are of course
standard and may be found in many textbooks on Mathematical Finance. Nev-
ertheless we hope that some of the material, e.g., the comparison of Bachelier
versus Black-Scholes, based on the data used by L. Bachelier in 1900, will be
of interest to the initiated reader as well.

Thus Chapters 1–4 give expositions of basic topics of Mathematical Fi-
nance and are kept at an elementary technical level. From Chapter 5 on, the
level of technical sophistication has to increase rather steeply in order to build
a bridge to the original research papers. We systematically study the setting
of general probability spaces (Ω,F ,P). We start by presenting, in Chapter 5,
D. Kreps’ version of the Fundamental Theorem of Asset Pricing involving the
notion of “No Free Lunch”. In Chapter 6 we apply this theory to prove the
Fundamental Theorem of Asset Pricing for the case of finite, discrete time
(but using a probability space that is not necessarily finite). This is the theme
of the Dalang-Morton-Willinger theorem [DMW 90]. For dimension d ≥ 2, its
proof is surprisingly tricky and is sometimes called the “100 meter sprint” of
Mathematical Finance, as many authors have elaborated on different proofs
of this result. We deal with this topic quite extensively, considering several
different proofs of this theorem. In particular, we present a proof based on the
notion of “measurably parameterised subsequences” of a sequence (fn)∞n=1 of
functions. This technique, due to Y. Kabanov and C. Stricker [KS 01], seems
at present to provide the easiest approach to a proof of the Dalang-Morton-
Willinger theorem.

In Chapter 7 we give a quick overview of stochastic integration. Because
of the general nature of the models we draw attention to general stochastic
integration theory and therefore include processes with jumps. However, a
systematic development of stochastic integration theory is beyond the scope
of the present “guided tour”. We suppose (at least from Chapter 7 onwards)
that the reader is sufficiently familiar with this theory as presented in sev-
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eral beautiful textbooks (e.g., [P 90], [RY91], [RW 00]). Nevertheless, we do
highlight those aspects that are particularly important for the applications to
Finance.

Finally, in Chapter 8, we discuss the proof of the Fundamental Theorem
of Asset Pricing in its version obtained in [DS 94] and [DS 98]. These papers
are reprinted in Chapters 9 and 14.

The main goal of our “guided tour” is to build up some intuitive insight into
the Mathematics of Arbitrage. We have refrained from a logically well-ordered
deductive approach; rather we have tried to pass from examples and special
situations to the general theory. We did so at the cost of occasionally being
somewhat incoherent, for instance when applying the theory with a degree
of generality that has not yet been formally developed. A typical example is
the discussion of the Bachelier and Black-Scholes models in Chapter 4, which
is introduced before the formal development of the continuous time theory.
This approach corresponds to our experience that the human mind works
inductively rather than by logical deduction. We decided therefore on several
occasions, e.g., in the introductory chapter, to jump right into the subject
in order to build up the motivation for the subsequent theory, which will be
formally developed only in later chapters.

In Part II we reproduce updated versions of the following papers. We have
corrected a number of typographical errors and two mathematical inaccuracies
(indicated by footnotes) pointed out to us over the past years by several
colleagues. Here is the list of the papers.

Chapter 9: [DS 94] A General Version of the Fundamental Theorem of Asset
Pricing

Chapter 10: [DS 98a] A Simple Counter-Example to Several Problems in the
Theory of Asset Pricing

Chapter 11: [DS 95b] The No-Arbitrage Property under a Change of Numé-
raire

Chapter 12: [DS 95a] The Existence of Absolutely Continuous Local Martin-
gale Measures

Chapter 13: [DS 97] The Banach Space of Workable Contingent Claims in
Arbitrage Theory

Chapter 14: [DS 98] The Fundamental Theorem of Asset Pricing for Un-
bounded Stochastic Processes

Chapter 15: [DS 99] A Compactness Principle for Bounded Sequences of Mar-
tingales with Applications

Our sincere thanks go to Catriona Byrne from Springer-Verlag, who en-
couraged us to undertake the venture of this book and provided the logistic
background. We also thank Sandra Trenovatz from TU Vienna for her infinite
patience in typing and organising the text.
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This book owes much to many: in particular, we are deeply indebted to our
many friends in the functional analysis, the probability, as well as the mathe-
matical finance communities, from whom we have learned and benefitted over
the years.

Zurich, November 2005, Freddy Delbaen
Vienna, November 2005 Walter Schachermayer
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Part I

A Guided Tour to Arbitrage Theory



1

The Story in a Nutshell

1.1 Arbitrage

The notion of arbitrage is crucial to the modern theory of Finance. It is the
corner-stone of the option pricing theory due to F. Black, R. Merton and
M. Scholes [BS 73], [M73] (published in 1973, honoured by the Nobel prize in
Economics 1997).

The idea of arbitrage is best explained by telling a little joke: a professor
working in Mathematical Finance and a normal person go on a walk and the
normal person sees a 100e bill lying on the street. When the normal person
wants to pick it up, the professor says: don’t try to do that. It is absolutely
impossible that there is a 100e bill lying on the street. Indeed, if it were lying
on the street, somebody else would have picked it up before you. (end of joke)

How about financial markets? There it is already much more reasonable to
assume that there are no arbitrage possibilities, i.e., that there are no 100e
bills lying around and waiting to be picked up. Let us illustrate this with an
easy example.

Consider the trading of $ versus e that takes place simultaneously at two
exchanges, say in New York and Frankfurt. Assume for simplicity that in
New York the $/e rate is 1 : 1. Then it is quite obvious that in Frankfurt
the exchange rate (at the same moment of time) also is 1 : 1. Let us have a
closer look why this is the case. Suppose to the contrary that you can buy in
Frankfurt a $ for 0.999e. Then, indeed, the so-called “arbitrageurs” (these
are people with two telephones in their hands and three screens in front of
them) would quickly act to buy $ in Frankfurt and simultaneously sell the same
amount of $ in New York, keeping the margin in their (or their bank’s) pocket.
Note that there is no normalising factor in front of the exchanged amount and
the arbitrageur would try to do this on a scale as large as possible.

It is rather obvious that in the situation described above the market can-
not be in equilibrium. A moment’s reflection reveals that the market forces
triggered by the arbitrageurs will make the $ rise in Frankfurt and fall in
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New York. The arbitrage possibility will disappear when the two prices be-
come equal. Of course, “equality” here is to be understood as an approximate
identity where — even for arbitrageurs with very low transaction costs — the
above scheme is not profitable any more.

This brings us to a first — informal and intuitive — definition of arbitrage:
an arbitrage opportunity is the possibility to make a profit in a financial
market without risk and without net investment of capital. The principle of
no-arbitrage states that a mathematical model of a financial market should
not allow for arbitrage possibilities.

1.2 An Easy Model of a Financial Market

To apply this principle to less trivial cases than the Euro/Dollar example
above, we consider a still extremely simple mathematical model of a financial
market: there are two assets, called the bond and the stock. The bond is
riskless, hence by definition we know what it is worth tomorrow. For (mainly
notational) simplicity we neglect interest rates and assume that the price of
a bond equals 1e today as well as tomorrow, i.e.,

B0 = B1 = 1

The more interesting feature of the model is the stock which is risky: we
know its value today, say (w.l.o.g.)

S0 = 1,

but we don’t know its value tomorrow. We model this uncertainty stochasti-
cally by defining S1 to be a random variable depending on the random element
ω ∈ Ω. To keep things as simple as possible, we let Ω consist of two elements
only, g for “good” and b for “bad”, with probability P[g] = P[b] = 1

2 . We
define S1(ω) by

S1(ω) =
{

2 for ω = g
1
2 for ω = b.

Now we introduce a third financial instrument in our model, an option on
the stock with strike price K: the buyer of the option has the right — but
not the obligation — to buy one stock at time t = 1 at a predefined price K.
To fix ideas let K = 1. A moment’s reflexion reveals that the price C1 of the
option at time t = 1 (where C stands for “call”) equals

C1 = (S1 −K)+,

i.e., in our simple example

C1(ω) =
{

1 for ω = g
0 for ω = b.
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Hence we know the value of the option at time t = 1, contingent on the
value of the stock. But what is the price of the option today?

The classical approach, used by actuaries for centuries, is to price con-
tingent claims by taking expectations. In our example this gives the value
C0 := E[C1] = 1

2 . Although this simple approach is very successful in many
actuarial applications, it is not at all satisfactory in the present context. In-
deed, the rationale behind taking the expected value is the following argument
based on the law of large numbers: in the long run the buyer of an option will
neither gain nor lose in the average. We rephrase this fact in a more finan-
cial lingo: the performance of an investment into the option would in average
equal the performance of the bond (for which we have assumed an interest rate
equal to zero). However, a basic feature of finance is that an investment into
a risky asset should in average yield a better performance than an investment
into the bond (for the sceptical reader: at least, these two values should not
necessarily coincide). In our “toy example” we have chosen the numbers such
that E[S1] = 1.25 > 1 = S0, so that in average the stock performs better than
the bond. This indicates that the option (which clearly is a risky investment)
should not necessarily have the same performance (in average) as the bond.
It also shows that the old method of calculating prices via expectation is not
directly applicable. It already fails for the stock and hence there is no reason
why the price of the option should be given by its expectation E[C1].

1.3 Pricing by No-Arbitrage

A different approach to the pricing of the option goes like this: we can buy at
time t = 0 a portfolio Π consisting of 2

3 of stock and −1
3 of bond. The reader

might be puzzled about the negative sign: investing a negative amount into a
bond — “going short” in the financial lingo — means borrowing money.

Note that — although normal people like most of us may not be able to
do so — the “big players” can go “long” as well as “short”. In fact they can
do so not only with respect to the bond (i.e. to invest or borrow money at a
fixed rate of interest) but can also go “long” as well as “short” in other assets
like shares. In addition, they can do so at (relatively) low transaction costs,
which is reflected by completely neglecting transaction costs in our present
basic modelling.

Turning back to our portfolio Π one verifies that the value Π1 of the
portfolio at time t = 1 equals

Π1(ω) =
{

1 for ω = g
0 for ω = b.

The portfolio “replicates” the option, i.e.,

C1 ≡ Π1, (1.1)
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or, written more explicitly,

C1(g) = Π1(g), (1.2)
C1(b) = Π1(b). (1.3)

We are confident that the reader now sees why we have chosen the above
weights 2

3 and −1
3 : the mathematical complexity of determining these weights

such that (1.2) and (1.3) hold true, amounts to solving two linear equations
in two variables.

The portfolio Π has a well-defined price at time t = 0, namely Π0 =
2
3S0− 1

3B0 = 1
3 . Now comes the “pricing by no-arbitrage” argument: equality

(1.1) implies that we also must have

C0 = Π0 (1.4)

whence C0 = 1
3 . Indeed, suppose that (1.4) does not hold true; to fix ideas,

suppose we have C0 = 1
2 as we had proposed above. This would allow an

arbitrage by buying (“going long in”) the portfolio Π and simultaneously
selling (“going short in”) the option C. The difference C0 −Π0 = 1

6 remains
as arbitrage profit at time t = 0, while at time t = 1 the two positions cancel
out independently of whether the random element ω equals g or b.

Of course, the above considered size of the arbitrage profit by applying
the above scheme to one option was only chosen for expository reasons: it is
important to note that you may multiply the size of the above portfolios with
your favourite power of ten, thus multiplying also your arbitrage profit.

At this stage we see that the story with the 100e bill at the beginning
of this chapter did not fully describe the idea of an arbitrage: The correct
analogue would be to find instead of a single 100e bill a “money pump”, i.e.,
something like a box from which you can take one 100e bill after another.
While it might have happened to some of us, to occasionally find a 100e bill
lying around, we are confident that nobody ever found such a “money pump”.

Another aspect where the little story at the beginning of this chapter did
not fully describe the idea of arbitrage is the question of information. We shall
assume throughout this book that all agents have the same information (there
are no “insiders”). The theory changes completely when different agents have
different information (which would correspond to the situation in the above
joke). We will not address these extensions.

These arguments should convince the reader that the “no-arbitrage princi-
ple” is economically very appealing: in a liquid financial market there should
be no arbitrage opportunities. Hence a mathematical model of a financial
market should be designed in such a way that it does not permit arbitrage.

It is remarkable that this rather obvious principle yielded a unique price
for the option considered in the above model.
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1.4 Variations of the Example

Although the preceding “toy example” is extremely simple and, of course, far
from reality, it contains the heart of the matter: the possibility of replicating
a contingent claim, e.g. an option, by trading on the existing assets and to
apply the no-arbitrage principle.

It is straightforward to generalise the example by passing from the time
index set {0, 1} to an arbitrary finite discrete time set {0, . . . , T}, and by
considering T independent Bernoulli random variables. This binomial model
is called the Cox-Ross-Rubinstein model in finance (see Chap. 3 below).

It is also relatively simple — at least with the technology of stochastic
calculus, which is available today — to pass to the (properly normalised)
limit as T tends to infinity, thus ending up with a stochastic process driven
by Brownian motion (see Chap. 4 below). The so-called geometric Brownian
motion, i.e., Brownian motion on an exponential scale, is the celebrated Black-
Scholes model which was proposed in 1965 by P. Samuelson, see [S 65]. In fact,
already in 1900 L. Bachelier [B 00] used Brownian motion to price options in
his remarkable thesis “Théorie de la spéculation” (a member of the jury and
rapporteur was H. Poincaré).

In order to apply the above no-arbitrage arguments to more complex mod-
els we still need one additional, crucial concept.

1.5 Martingale Measures

To explain this notion let us turn back to our “toy example”, where we have
seen that the unique arbitrage free price of our option equals C0 = 1

3 . We also
have seen that, by taking expectations, we obtained E[C1] = 1

2 as the price of
the option, which was a “wrong price” as it allowed for arbitrage opportunities.
The economic rationale for this discrepancy was that the expected return of
the stock was higher than that of the bond.

Now make the following mind experiment: suppose that the world were
governed by a different probability than P which assigns different weights to
g and b, such that under this new probability, let’s call it Q, the expected
return of the stock equals that of the bond. An elementary calculation reveals
that the probability measure defined by Q[g] = 1

3 and Q[b] = 2
3 is the unique

solution satisfying EQ[S1] = S0 = 1. Mathematically speaking, the process S
is a martingale under Q, and Q is a martingale measure for S.

Speaking again economically, it is not unreasonable to expect that in a
world governed by Q, the recipe of taking expected values should indeed give
a price for the option which is compatible with the no-arbitrage principle.
After all, our original objection, that the average performance of the stock
and the bond differ, now has disappeared. A direct calculation reveals that in
our “toy example” these two prices for the option indeed coincide as
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EQ[C1] = 1
3 .

Clearly we suspect that this numerical match is not just a coincidence.
At this stage it is, of course, the reflex of every mathematician to ask: what
is precisely going on behind this phenomenon? A preliminary answer is that
the expectation under the new measure Q defines a linear function of the
span of B1 and S1. The price of an element in this span should therefore
be the corresponding linear combination of the prices at time 0. Thus, using
simple linear algebra, we get C0 = 2

3S0 − 1
3B0 and moreover we identify this

as EQ[C1].

1.6 The Fundamental Theorem of Asset Pricing

To make a long story very short: for a general stochastic process (St)0≤t≤T ,
modelled on a filtered probability space (Ω, (Ft)0≤t≤T ,P), the following
statement essentially holds true. For any “contingent claim” CT , i.e. an
FT -measurable random variable, the formula

C0 := EQ[CT ] (1.5)

yields precisely the arbitrage-free prices for CT , when Q runs through the
probability measures on FT , which are equivalent to P and under which the
process S is a martingale (“equivalent martingale measures”). In particular,
when there is precisely one equivalent martingale measure (as it is the case in
the Cox-Ross-Rubinstein, the Black-Scholes and the Bachelier model), formula
(1.5) gives the unique arbitrage free price C0 for CT . In this case we may
“replicate” the contingent claim CT as

CT = C0 +
∫ T

0

HtdSt, (1.6)

where (Ht)0≤t≤T is a predictable process (a “trading strategy”) and where Ht

models the holding in the stock S during the infinitesimal interval [t, t + dt].
Of course, the stochastic integral appearing in (1.6) needs some care; fortu-

nately people like K. Itô and P.A. Meyer’s school of probability in Strasbourg
told us very precisely how to interpret such an integral.

The mathematical challenge of the above story consists of getting rid of
the word “essentially” and to turn this program into precise theorems.

The central piece of the theory relating the no-arbitrage arguments with
martingale theory is the so-called Fundamental Theorem of Asset Pricing. We
quote a general version of this theorem, which is proved in Chap. 14.

Theorem 1.6.1 (Fundamental Theorem of Asset Pricing). For an Rd-
valued semi-martingale S = (St)0≤t≤T t.f.a.e.:
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(i) There exists a probability measure Q equivalent to P under which S is a
sigma-martingale.

(ii) S does not permit a free lunch with vanishing risk.

This theorem was proved for the case of a probability space Ω consisting
of finitely many elements by Harrison and Pliska [HP 81]. In this case one
may equivalently write no-arbitrage instead of no free lunch with vanishing
risk and martingale instead of sigma-martingale.

In the general case it is unavoidable to speak about more technical con-
cepts, such as sigma-martingales (which is a generalisation of the notion of
a local martingale) and free lunches. A free lunch (a notion introduced by
D. Kreps [K 81]) is something like an arbitrage, where — roughly speaking —
agents are allowed to form integrals as in (1.6), to subsequently “throw away
money” (if they want do so), and finally to pass to the limit in an appropriate
topology. It was the — somewhat surprising — insight of [DS 94] (reprinted
in Chap. 9) that one may take the topology of uniform convergence (which
allows for an economic interpretation to which the term “with vanishing risk”
alludes) and still get a valid theorem.

The remainder of this book is devoted to the development of this theme,
as well as to its remarkable scope of applications in Finance.



2

Models of Financial Markets
on Finite Probability Spaces

2.1 Description of the Model

In this section we shall develop the theory of pricing and hedging of derivative
securities in financial markets.

In order to reduce the technical difficulties of the theory of option pricing
to a minimum, we assume throughout this chapter that the probability space
Ω underlying our model will be finite, say, Ω = {ω1, ω2, . . . , ωN} equipped
with a probability measure P such that P[ωn] = pn > 0, for n = 1, . . . , N .
This assumption implies that all functional-analytic delicacies pertaining to
different topologies on L∞(Ω,F ,P), L1(Ω,F ,P), L0(Ω,F ,P) etc. evaporate,
as all these spaces are simply R

N (we assume w.l.o.g. that the σ-algebra F
is the power set of Ω). Hence all the functional analysis, which we shall need
in later chapters for the case of more general processes, reduces in the setting
of the present chapter to simple linear algebra. For example, the use of the
Hahn-Banach theorem is replaced by the use of the separating hyperplane
theorem in finite dimensional spaces.

Nevertheless we shall write L∞(Ω,F ,P), L1(Ω,F ,P) etc. (knowing very
well that in the present setting these spaces are all isomorphic to R

N ) to
indicate, which function spaces we shall encounter in the setting of the general
theory. It also helps to see if an element of R

N is a contingent claim or an
element of the dual space, i.e. a price vector.

In addition to the probability space (Ω,F ,P) we fix a natural number
T ≥ 1 and a filtration (Ft)T

t=0 on Ω, i.e., an increasing sequence of σ-algebras.
To avoid trivialities, we shall always assume that FT = F ; on the other hand,
we shall not assume that F0 is trivial, i.e. F0 = {∅, Ω}, although this will
be the case in most applications. But for technical reasons it will be more
convenient to allow for general σ-algebras F0.

We now introduce a model of a financial market in not necessarily dis-
counted terms. The rest of Sect. 2.1 will be devoted to reducing this situation
to a model in discounted terms which, as we shall see, will make life much
easier.
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Readers who are not so enthusiastic about this mainly formal and elemen-
tary reduction might proceed directly to Definition 2.1.4. On the other hand,
we know from sad experience that often there is a lot of myth and confusion
arising in this operation of discounting; for this reason we decided to devote
this section to the clarification of this issue.

Definition 2.1.1. A model of a financial market is an R
d+1-valued stochastic

process Ŝ = (Ŝt)T
t=0 = (Ŝ0

t , Ŝ1
t , . . . , Ŝd

t )T
t=0, based on and adapted to the filtered

stochastic base (Ω,F , (Ft)T
t=0,P). We shall assume that the zero coordinate

Ŝ0 satisfies Ŝ0
t > 0 for all t = 0, . . . , T and Ŝ0

0 = 1.

The interpretation is the following. The prices of the assets 0, . . . , d are
measured in a fixed money unit, say Euros. For 1 ≤ j ≤ d they are not
necessarily non-negative (think, e.g., of forward contracts). The asset 0 plays
a special role. It is supposed to be strictly positive and will be used as a nu-
méraire. It allows us to compare money (e.g., Euros) at time 0 to money at
time t > 0. In many elementary models, Ŝ0 is simply a bank account which
in case of constant interest rate r is then defined as Ŝ0

t = ert. However, it
might also be more complicated, e.g. Ŝ0

t = exp(r0h+ r1h+ · · ·+ rt−1h) where
h > 0 is the length of the time interval between t− 1 and t (here kept fixed)
and where rt−1 is the stochastic interest rate valid between t− 1 and t. Other
models are also possible and to prepare the reader for more general situations,
we only require Ŝ0

t to be strictly positive. Notice that we only require that
Ŝ0

t to be Ft-measurable and that it is not necessarily Ft−1-measurable. In
other words, we assume that the process Ŝ0 = (Ŝ0

t )T
t=0 is adapted, but not

necessarily predictable.
An economic agent is able to buy and sell financial assets. The decision

taken at time t can only use information available at time t which is modelled
by the σ-algebra Ft.

Definition 2.1.2. A trading strategy (Ĥt)T
t=1 = (Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1 is an

R
d+1-valued process which is predictable, i.e. Ĥt is Ft−1-measurable.

The interpretation is that between time t− 1 and time t, the agent holds
a quantity equal to Ĥj

t of asset j. The decision is taken at time t − 1 and
therefore, Ĥt is required to be Ft−1-measurable.

Definition 2.1.3. A strategy (Ĥt)T
t=1 is called self financing if for every t =

1, . . . , T − 1, we have (
Ĥt, Ŝt

)
=
(
Ĥt+1, Ŝt

)
(2.1)

or, written more explicitly,

d∑
j=0

Ĥj
t Ŝj

t =
d∑

j=0

Ĥj
t+1Ŝ

j
t . (2.2)

The initial investment required for a strategy is V̂0 = (Ĥ1, Ŝ0) =
∑d

j=0 Ĥj
1 Ŝj

0.
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The interpretation goes as follows. By changing the portfolio from Ĥt−1

to Ĥt there is no input/outflow of money. We remark that we assume that
changing a portfolio does not trigger transaction costs. Also note that Ĥj

t may
assume negative values, which corresponds to short selling asset j during the
time interval ]tj−1, tj ].

The Ft-measurable random variable defined in (2.1) is interpreted as the
value V̂t of the portfolio at time t defined by the trading strategy Ĥ:

V̂t = (Ĥt, Ŝt) = (Ĥt+1, Ŝt).

The way in which the value (Ĥt, Ŝt) evolves can be described much easier
when we use discounted prices using the asset Ŝ0 as numéraire. Discounting
allows us to compare money at time t to money at time 0. For instance we
could say that Ŝ0

t units of money at time t are the “same” as 1 unit of money,
e.g., Euros, at time 0. So let us see what happens if we replace prices Ŝ by
discounted prices

(
bS
bS0

)
=
(
bS0

bS0 ,
bS1

bS0 , . . . ,
bSd

bS0

)
. We will use the notation

Sj
t :=

Ŝj
t

Ŝ0
t

, for j = 1, . . . , d and t = 0, . . . , T. (2.3)

There is no need to include the coordinate 0, since obviously S0
t = 1. Let us

now consider (Ĥt)T
t=1 = (Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1 to be a self financing strategy

with initial investment V̂0; we then have

V̂0 =
d∑

j=0

Ĥj
1 Ŝj

0 = Ĥ0
1 +

d∑
j=1

Ĥj
1 Ŝj

0 = Ĥ0
1 +

d∑
j=1

Ĥj
1Sj

0,

since by definition Ŝ0
0 = 1.

We now write (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1 for the R
d-valued process ob-

tained by discarding the 0’th coordinate of the R
d+1-valued process (Ĥt)T

t=1 =
(Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1, i.e., Hj

t = Ĥj
t for j = 1, . . . , d. The reason for dropping

the 0’th coordinate is, as we shall discover in a moment, that the holdings
Ĥ0

t in the numéraire asset S0
t will be no longer of importance when we do the

book-keeping in terms of the numéraire asset, i.e., in discounted terms.

One can make the following easy, but crucial observation: for every R
d-

valued, predictable process (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1 there exists a unique
self financing R

d+1-valued predictable process (Ĥt)T
t=1 = (Ĥ0

t , Ĥ1
t , . . . , Ĥd

t )T
t=1

such that (Ĥj
t )T

t=1 = (Hj
t )T

t=1 for j = 1, . . . , d and Ĥ0
1 = 0. Indeed, one de-

termines the values of Ĥ0
t+1, for t = 1, . . . , T − 1, by inductively applying

(2.2). The strict positivity of (Ŝ0
t )T−1

t=0 implies that there is precisely one func-
tion Ĥ0

t+1 such that equality (2.2) holds true. Clearly such a function Ĥ0
t+1 is
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Ft-measurable. In economic terms the above argument is rather obvious: for
any given trading strategy (Ht)T

t=1 = (H1
t , . . . , Hd

t )T
t=1 in the “risky” assets

j = 1, . . . , d, we may always add a trading strategy (Ĥ0
t )T

t=1 in the numé-
raire asset 0 such that the total strategy becomes self financing. Moreover,
by normalising Ĥ0

1 = 0, this trading strategy becomes unique. This can be
particularly well visualised when interpreting the asset 0 as a cash account,
into which at all times t = 1, . . . , T − 1, the gains and losses occurring from
the investments in the d risky assets are absorbed and from which the in-
vestments in the risky assets are financed. If we normalise this procedure by
requiring Ĥ0

1 = 0, i.e., by starting with an empty cash account, then clearly
the subsequent evolution of the holdings in the cash account is uniquely de-
termined by the holdings in the “risky” assets 1, . . . , d. From now on we fix
two processes (Ĥt)T

t=1 = (Ĥ0
t , Ĥ1

t , . . . , Ĥd
t )T

t=1 and (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1

corresponding uniquely one to each other in the above described way.
Now one can make a second straightforward observation: the investment

(Ĥ0
t )T

t=1 in the numéraire asset does not change the discounted value (Vt)T
t=0

of the portfolio. Indeed, by definition — and rather trivially — the numéraire
asset remains constant in discounted terms (i.e., expressed in units of itself).

Hence the discounted value Vt of the portfolio

Vt =
V̂t

Ŝ0
t

, t = 0, . . . , T,

depends only on the R
d-dimensional process (Ht)T

t=1 = (H1
t , . . . , Hd

t )T
t=1.

More precisely, in view of the normalisation Ŝ0
0 = 1 and Ĥ0

1 = 0 we have

V̂0 = V0 =
d∑

j=1

Hj
1Sj

0.

For the increment ΔVt+1 = Vt+1 − Vt we find, using (2.2),

ΔVt+1 = Vt+1 − Vt =
V̂t+1

Ŝ0
t+1

− V̂t

Ŝ0
t

=
d∑

j=0

Ĥj
t+1

Ŝj
t+1

Ŝ0
t+1

−
d∑

j=0

Ĥj
t+1

Ŝj
t

Ŝ0
t

= Ĥ0
t+1(1− 1) +

d∑
j=1

Ĥj
t+1

(
Sj

t+1 − Sj
t

)

=
(
Hj

t+1, ΔSj
t+1

)
,

where ( . , . ) now denotes the inner product in R
d.

In particular, the final value VT of the portfolio becomes (in discounted
units)
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VT = V0 +
T∑

t=1

(Ht, ΔSt) = V0 + (H · S)T ,

where (H · S)T =
∑T

t=1 (Ht, ΔSt) is the notation for a stochastic integral
familiar from the theory of stochastic integration. In our discrete time frame-
work the “stochastic integral” is simply a finite Riemann sum.

In order to know the value VT of the portfolio in real money, we still
would have to multiply by Ŝ0

T , i.e., we have V̂T = VT Ŝ0
T . This, however, is

rarely needed.
We can therefore replace Definition 2.1.2 by the following definition in

discounted terms, which will turn out to be much easier to handle.

Definition 2.1.4. Let S = (S1, . . . , Sd) be a model of a financial market
in discounted terms. A trading strategy is an R

d-valued process (Ht)T
t=1 =

(H1
t , H2

t , . . . , Hd
t )T

t=1 which is predictable, i.e., each Ht is Ft−1-measurable.
We denote by H the set of all such trading strategies.

We then define the stochastic integral H · S as the R-valued process ((H ·
S)t)T

t=0 given by

(H · S)t =
t∑

u=1

(Hu, ΔSu), t = 0, . . . , T, (2.4)

where ( . , . ) denotes the inner product in R
d. The random variable

(H · S)t =
t∑

u=1

(Hu, ΔSu)

models — when following the trading strategy H — the gain or loss occurred
up to time t in discounted terms.

Summing up: by following the good old actuarial tradition of discounting,
i.e. by passing from the process Ŝ, denoted in units of money, to the process S,
denoted in terms of the numéraire asset (e.g., the cash account), things become
considerably simpler and more transparent. In particular the value process V
of an agent starting with initial wealth V0 = 0 and subsequently applying the
trading strategy H, is given by the stochastic integral Vt = (H · S)t defined
in (2.4).

We still emphasize that the choice of the numéraire is not unique; only
for notational convenience we have fixed it to be the asset indexed by 0. But
it may be chosen as any traded asset, provided only that it always remains
strictly positive. We shall deal with this topic in more detail in Sect. 2.5 below.

From now on we shall work in terms of the discounted R
d-valued process,

denoted by S.
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2.2 No-Arbitrage and the Fundamental Theorem
of Asset Pricing

Definition 2.2.1. We call the subspace K of L0(Ω,F ,P) defined by

K = {(H · S)T | H ∈ H} ,

the set of contingent claims attainable at price 0, where H denotes the set of
predictable, R

d-valued processes H = (Ht)T
t=1.

We leave it to the reader to check that K is indeed a vector space.
The economic interpretation is the following: the random variables f =

(H · S)T are precisely those contingent claims, i.e., the pay-off functions at
time T , depending on ω ∈ Ω, that an economic agent may replicate with zero
initial investment by pursuing some predictable trading strategy H.

For a ∈ R, we call the set of contingent claims attainable at price a the
affine space Ka = a + K, obtained by shifting K by the constant function a,
in other words, the space of all the random variables of the form a+(H ·S)T ,
for some trading strategy H. Again the economic interpretation is that these
are precisely the contingent claims that an economic agent may replicate with
an initial investment of a by pursuing some predictable trading strategy H.

Definition 2.2.2. We call the convex cone C in L∞(Ω,F ,P) defined by

C = {g ∈ L∞(Ω,F ,P) | there exists f ∈ K with f ≥ g} .

the set of contingent claims super-replicable at price 0.

Economically speaking, a contingent claim g ∈ L∞(Ω,F ,P) is super-
replicable at price 0, if we can achieve it with zero net investment by pursuing
some predictable trading strategy H. Thus we arrive at some contingent claim
f and if necessary we “throw away money” to arrive at g. This operation of
“throwing away money” or “free disposal” may seem awkward at this stage,
but we shall see later that the set C plays an important role in the develop-
ment of the theory. Observe that C is a convex cone containing the negative
orthant L∞

− (Ω,F ,P). Again we may define Ca = a + C as the contingent
claims super-replicable at price a, if we shift C by the constant function a.

Definition 2.2.3. A financial market S satisfies the no-arbitrage condition
(NA) if

K ∩ L0
+(Ω,F ,P) = {0}

or, equivalently,
C ∩ L0

+(Ω,F ,P) = {0}

where 0 denotes the function identically equal to zero.
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Recall that L0(Ω,F ,P) denotes the space of all F-measurable real-valued
functions and L0

+(Ω,F ,P) its positive orthant.
We now have formalised the concept of an arbitrage possibility: it means

the existence of a trading strategy H such that — starting from an initial in-
vestment zero — the resulting contingent claim f = (H · S)T is non-negative
and not identically equal to zero. Such an opportunity is of course the dream
of every arbitrageur. If a financial market does not allow for arbitrage oppor-
tunities, we say it satisfies the no-arbitrage condition (NA).

Proposition 2.2.4. Assume S satisfies (NA) then

C ∩ (−C) = K.

Proof. Let g ∈ C ∩ (−C) then g = f1 − h1 with f1 ∈ K, h1 ∈ L∞
+ and

g = f2 + h2 with f2 ∈ K and h2 ∈ L∞
+ . Then f1 − f2 = h1 + h2 ∈ L∞

+ and
hence f1− f2 ∈ K ∩L∞

+ = {0}. It follows that f1 = f2 and h1 +h2 = 0, hence
h1 = h2 = 0. This means that g = f1 = f2 ∈ K. �

Definition 2.2.5. A probability measure Q on (Ω,F) is called an equivalent
martingale measure for S, if Q ∼ P and S is a martingale under Q, i.e.,
EQ[St+1|Ft] = St for t = 0, . . . , T − 1.

We denote by Me(S) the set of equivalent martingale measures and by
Ma(S) the set of all (not necessarily equivalent) martingale probability mea-
sures. The letter a stands for “absolutely continuous with respect to P” which
in the present setting (finite Ω and P having full support) automatically holds
true, but which will be of relevance for general probability spaces (Ω,F ,P)
later. Note that in the present setting of a finite probability space Ω with
P[ω] > 0 for each ω ∈ Ω, we have that Q ∼ P iff Q[ω] > 0, for each ω ∈ Ω. We
shall often identify a measure Q on (Ω,F) with its Radon-Nikodým derivative
dQ
dP ∈ L1(Ω,F ,P). In the present setting of finite Ω, this simply means

dQ
dP

(ω) =
Q[ω]
P[ω]

.

In statistics this quantity is also called the likelihood ratio.

Lemma 2.2.6. For a probability measure Q on (Ω,F) the following are equiv-
alent:

(i) Q ∈Ma(S),
(ii) EQ[f ] = 0, for all f ∈ K,
(iii) EQ[g] ≤ 0, for all g ∈ C.

Proof. The equivalences are rather trivial. (ii) is tantamount to the very defi-
nition of S being a martingale under Q, i.e., to the validity of

EQ[St | Ft−1] = St−1, for t = 1, . . . , T. (2.5)
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Indeed, (2.5) holds true iff for each Ft−1-measurable set A we have EQ[χA(St−
St−1)] = 0 ∈ R

d, in other words EQ[(xχA, ΔSt)] = 0, for each x. By linearity
this relation extends to K which shows (ii).

The equivalence of (ii) and (iii) is straightforward. �
After having fixed these formalities we may formulate and prove the central

result of the theory of pricing and hedging by no-arbitrage, sometimes called
the “Fundamental Theorem of Asset Pricing”, which in its present form (i.e.,
finite Ω) is due to M. Harrison and S.R. Pliska [HP 81].

Theorem 2.2.7 (Fundamental Theorem of Asset Pricing). For a fi-
nancial market S modelled on a finite stochastic base (Ω,F , (Ft)T

t=0,P), the
following are equivalent:

(i) S satisfies (NA),
(ii)Me(S) 	= ∅.

Proof. (ii) ⇒ (i): This is the obvious implication. If there is some Q ∈Me(S)
then by Lemma 2.2.6 we have that

EQ[g] ≤ 0, for g ∈ C.

On the other hand, if there were g ∈ C∩L∞
+ , g 	= 0, then, using the assumption

that Q is equivalent to P, we would have

EQ[g] > 0,

a contradiction.

(i) ⇒ (ii) This implication is the important message of the theorem which
will allow us to link the no-arbitrage arguments with martingale theory. We
give a functional analytic existence proof, which will be extendable — in spirit
— to more general situations.

By assumption the space K intersects L∞
+ only at 0. We want to separate

the disjoint convex sets L∞
+ \ {0} and K by a hyperplane induced by a linear

functional Q ∈ L1(Ω,F ,P). In order to get a strict separation of K and
L∞

+ \{0} we have to be a little careful since the standard separation theorems
do not directly apply.

One way to overcome this difficulty (in finite dimension) is to consider the
convex hull of the unit vectors

(
1{ωn}

)N
n=1

in L∞(Ω,F ,P) i.e.

P :=

{
N∑

n=1

μn1{ωn}

∣∣∣∣∣ μn ≥ 0,

N∑
n=1

μn = 1

}
.

This is a convex, compact subset of L∞
+ (Ω,F ,P) and, by the (NA) assump-

tion, disjoint from K. Hence we may strictly separate the convex compact set
P from the convex closed set K by a linear functional Q ∈ L∞(Ω,F ,P)∗ =
L1(Ω,F ,P), i.e., find α < β such that
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(Q, f) ≤ α, for f ∈ K,

(Q, h) ≥ β, for h ∈ P.

Since K is a linear space, we have α ≥ 0 and may replace α by 0. Hence
β > 0. Defining by I the constant vector I = (1, . . . , 1), we have (Q, I ) > 0.
We may normalise Q such that (Q, I ) = 1. As Q is strictly positive on each
1{ωn}, we therefore have found a probability measure Q on (Ω,F) equivalent
to P such that condition (ii) of Lemma 2.2.6 holds true. In other words, we
found an equivalent martingale measure Q for the process S. �

The name “Fundamental Theorem of Asset Pricing” was, as far as we are
aware, first used in [DR87]. We shall see that it plays a truly fundamental role
in the theory of pricing and hedging of derivative securities (or, synonymously,
contingent claims, i.e., elements of L0(Ω,F ,P)) by no-arbitrage arguments.

It seems worthwhile to discuss the intuitive interpretation of this basic
result: a martingale S (say, under the original measure P) is a mathematical
model for a perfectly fair game. Applying any strategy H ∈ H we always have
E[(H · S)T ] = 0, i.e., an investor can neither win nor lose in expectation.

On the other hand, a process S allowing for arbitrage, is a model for an
utterly unfair game: choosing a good strategy H ∈ H, an investor can make
“something out of nothing”. Applying H, the investor is sure not to lose, but
has strictly positive probability to gain something.

In reality, there are many processes S which do not belong to either of
these two extreme classes. Nevertheless, the above theorem tells us that there
is a sharp dichotomy by allowing to change the odds. Either a process S is
utterly unfair, in the sense that it allows for arbitrage. In this case there is
no remedy to make the process fair by changing the odds: it never becomes
a martingale. In fact, the possibility of making an arbitrage is not affected
by changing the odds, i.e., by passing to an equivalent probability Q. On the
other hand, discarding this extreme case of processes allowing for arbitrage,
we can always pass from P to an equivalent measure Q under which S is a
martingale, i.e., a perfectly fair game. Note that the passage from P to Q
may change the probabilities (the “odds”) but not the impossible events (i.e.
the null sets).

We believe that this dichotomy is a remarkable fact, also from a purely
intuitive point of view.

Corollary 2.2.8. Let S satisfy (NA) and let f ∈ L∞(Ω,F ,P) be an attain-
able contingent claim. In other words f is of the form

f = a + (H · S)T , (2.6)

for some a ∈ R and some trading strategy H. Then the constant a and the
process (H · S)t are uniquely determined by (2.6) and satisfy, for every Q ∈
Me(S),

a = EQ[f ], and a + (H · S)t = EQ[f | Ft], for 0 ≤ t ≤ T. (2.7)


