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Preface 

Measurements through quantitative experiments are one of the most fun-

damental tasks in all areas of science and technology.  Astronomers ana-

lyze data from asteroid sightings to predict orbits.  Computer scientists de-

velop models for recognizing spam mail.  Physicists measure properties of 

materials at low temperatures to understand superconductivity.  Materials 

engineers study the reaction of materials to varying load levels to develop

methods for prediction of failure.  Chemical engineers consider reactions

as functions of temperature and pressure.  The list is endless.  From the 

very small-scale work on DNA to the huge-scale study of black holes, 

quantitative experiments are performed and the data must be analyzed. 

Probably the most popular method of analysis of the data associated with 

quantitative experiments is least squares.  It has been said that the method 

of least squares was to statistics what calculus was to mathematics. Al-

though the method is hardly mentioned in most engineering and science

undergraduate curricula, many graduate students end up using the method 

to analyze the data gathered as part of their research.  There is not a lot of f

available literature on the subject.  Very few books deal with least squares 

at the level of detail that the subject deserves.  Many books on statistics in-

clude a chapter on least squares but the treatment is usually limited to the

simplest cases of linear least squares.  The purpose of this book is to fill

the gaps and include the type of information helpful to scientists and engi-

neers interested in applying the method in their own special fields.

The purpose of many engineering and scientific experiments is to deter-

mine parameters based upon a mathematical model related to the phe-

nomenon under observation.  Even if the data is analyzed using least 

squares, the full power of the method is often overlooked.  For example, 

the data can be weighted based upon the estimated errors associated with 

the data.  Results from previous experiments or calculations can be com-

bined with the least squares analysis to obtain improved estimate of the 

model parameters.  In addition, the results can be used for predicting val-

ues of the dependent variable or variables and the associated uncertainties 

of the predictions as functions of the independent variables. 



The introductory chapter (Chapter 1) includes a review of the basic statis-

tical concepts that are used throughout the book.  The method of least 

squares is developed in Chapter 2.  The treatment includes development of 

mathematical models using both linear and nonlinear least squares.  In

Chapter 3 evaluation of models is considered.  This chapter includes meth-

ods for measuring the "goodness of fit" of a model and methods for com-

paring different models. The subject of candidate predictors is discussed in 

Chapter 4.  Often there are a number of candidate predictors and the task 

of the analyst is to try to extract a model using subspaces of the full candi-

date predictor space.  In Chapter 5 attention is turned towards designing 

experiments that will eventually be analyzed using least squares.  The sub-

ject considered in Chapter 6 is nonlinear least squares software.  Kernel 

regression is introduced in the final chapter (Chapter 7).  Kernel regression 

is a nonparametric modeling technique that utilizes local least squares es-

timates. 

Although general purpose least squares software is available, the subject of 

least squares is simple enough so that many users of the method prefer to 

write their own routines.  Often, the least squares analysis is a part of a lar-

ger program and it is useful to imbed it within the framework of the larger 

program.  Throughout the book very simple examples are included so that 

the reader can test his or her own understanding of the subject.  These ex-

amples are particularly useful for testing computer routines.

The REGRESS program has been used throughout the book as the primary 

least squares analysis tool.  REGRESS is a general purpose nonlinear least 

squares program and I am its author.  The program can be downloaded 

from www.technion.ac.il/wolberg.

I would like to thank David Aronson for the many discussions we have had 

over the years regarding the subject of data modeling.  My first experi-

ences with the development of general purpose nonlinear regression soft-

ware were influenced by numerous conversations that I had with Marshall

Rafal.  Although a number of years have passed, I still am in contact with

Marshall.  Most of the examples included in the book were based upon 

software that I developed with Ronen Kimchi and Victor Leikehman and I

would like to thank them for their advice and help.  I would like to thank 

Ellad Tadmor for getting me involved in the research described in Section 

7.7.  Thanks to Richard Green for introducing me to the first English trans-

lation of Gauss's Theoria Motus in which Gauss developed the foundations 

of the method of least squares.  I would also like to thank Donna Bossin 

for her help in editing the manuscript and teaching me some of the cryptic 

subtleties of WORD. 
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I have been teaching a graduate course on analysis and design of experi-

ments and as a result have had many useful discussions with our students 

throughout the years.  When I decided to write this book two years ago, I 

asked each student in the course to critically review a section in each chap-

ter that had been written up to that point.  Over 20 students in the spring of 

2004 and over 20 students in the spring of 2005 submitted reviews that in-

cluded many useful comments and ideas.  A number of typos and errors

were located as a result of their efforts and I really appreciated their help. 

John R. Wolberg 

Haifa, Israel

July, 2005
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Chapter 1   INTRODUCTION  

1.1 Quantitative Experiments  

Most areas of science and engineering utilize quantitative experiments to 

determine parameters of interest.  Quantitative experiments are character-

ized by measured variables, a mathematical model and unknown parame-

ters.  For most experiments the method of least squares is used to analyze 

the data in order to determine values for the unknown parameters.

As an example of a quantitative experiment, consider the following: meas-

urement of the half-life of a radioactive isotope.  Half-life is defined as the 

time required for the count rate of the isotope to decrease by one half.  The 

experimental setup is shown in Figure 1.1.1.  Measurements of Counts

(i.e., the number of counts observed per time unit) are collected from time 

0 to time tmax.  The mathematical model for this experiment is: 

background
ttantdecay_cons

eamplitudeCounts ++++++++++++++++−−−−−−−−−−−−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅================      (1.1.1)

For this experiment, Counts is the dependent variable and time t is thet

independent variable.  For this mathematical model there are 3 unknown 

parameters (amplitude, decay_constant and background).  Possible dd

sources of the background "noise" are cosmic radiation, noise in the in-

strumentation and sometimes a second much longer lived radioisotope

within the source.  The analysis will yield values for all three parameters 

but only the value of decay_constant is of interest.  The half-life is deter-t

mined from the resulting value of the decay constant:

21 /
life_halftantdecay_cons

e ====⋅⋅⋅⋅−−−−

y_constantdeca
life_half

.====  (1.1.2) 
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The number 0.69315 is the natural logarithm of 2.  This mathematical 

model is based upon the physical phenomenon being observed: the number 

of counts recorded per unit time from the radioactive isotope decreases ex-

ponentially to the point where all that is observable is the background 

noise. 

There are alternative methods for conducting and analyzing this experi-

ment.  For example, the value of background could be measured in a sepa-d

rate experiment.  One could then subtract this value from the observed val-

ues of Counts and then use a mathematical model with only two unknown

parameters (amplitude and decay_constantd ): tt

ttantdecay_cons
eamplitudebackgroundCounts

−−−−−−−−−−−−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅================−−−−−−−−−−−−−−−−  (1.1.3) 

The selection of a mathematical model for a particular experiment might 

be trivial or it might be the main thrust of the work.  Indeed, the purpose of 

many experiments is to either prove or disprove a particular mathematical

model.  If, for example, a mathematical model is shown to agree with ex-

perimental results, it can then be used to make predictions of the dependent 

variable for other values of the independent variables. 

Figure 1.1.1

Another important aspect of experimental work relates to the determina-

tion of the unknown parameters.  Besides evaluation of these parameters

by experiment, there might be an alternative calculation of the parameters 

based upon theoretical considerations.  The purpose of the experiments for 

such cases is to confirm the theoretical results.  Indeed, experiments go

hand-in-hand with theory to improve our knowledge of the world around 

us.

Experiment to Measure Half-life of a Radioisotope
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Equations (1.1.1) and (1.1.3) are examples of mathematical models with

only one independent variable (i.e., time t) and only one dependent vari-t

able (i.e., Counts).  Often the mathematical model requires several inde-

pendent variables and sometimes even several dependent variables.  For 

example, consider classical chemical engineering experiments in which re-

action rates are measured as functions of both pressure and temperature:

),(_ etemperaturpressurefratereaction = (1.1.4)

The actual form of the function f is dependent upon the type of reactionf

being studied. 

The following example relates to an experiment that requires two depend-

ent variables.  This experiment is a variation of the experiment illustrated 

in Figure 1.1.1.  Some radioactive isotopes decay into a second radioiso-

tope.  The decays from both isotopes give off signals of different energies 

and appropriate instrumentation can differentiate between the two different 

signals.  We can thus measure count rates from each isotope simultane-

ously.  If we call them c1 and c2, assuming background radiation is negli-

gible, the appropriate mathematical model would be:

td
eac

⋅−⋅= 1
11  (1.1.5)

( )td
e

td
e

d-d

d
a

td
eac

⋅−−⋅−+⋅−⋅= 21

12

2
1

2
22  (1.1.6)

This model contains four unknown parameters: the two amplitudes (a1 and 

a2) and the two decay constants (d1 and d2dd ).  The two dependent variables 

are c1 and c2, and the single independent variable is time t.  The time de-

pendence of c1 and c2 are shown in Figure 1.1.2 for one set of the parameters.
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Figure 1.1.2 Counts versus Time for Equations 1.1.5 and 1.1.6

a1=1000, a2=100, d1=0.05, d2dd =0.025

The purpose of conducting experiments is not necessarily to prove or dis-

prove a mathematical model or to determine parameters of a model.  For 

some experiments the only purpose is to extract an equation from the data

that can be used to predict values of the dependent variable (or variables) 

as a function of the independent variable (or variables).  For such experi-

ments the data is analyzed using different proposed equations (i.e., mathe-

matical models) and the results are compared in order to select a "best" 

model. 

We see that there are different reasons for performing quantitative experi-

ments but what is common to all these experiments is the task of data 

analysis.  In fact, there is no need to differentiate between physical ex-

periments and experiments based upon computer generated data.  Once

data has been obtained, regardless of its origin, the task of data analysis

commences.  Whether or not the method of least squares is applicable de-

pends upon the applicability of some basic assumptions.  A discussion of 

the conditions allowing least squares analysis is included in Section 1.5:

Basic Assumptions.
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1.2 Dealing with Uncertainty  

The estimation of uncertainty is an integral part of data analysis.  It is not 

enough to just measure something.  We always need an estimate of the ac-

curacy of our measurements.  For example, when we get on a scale in the 

morning, we know that the uncertainty is plus or minus a few hundred 

grams and this is considered acceptable.  If, however, our scale were only

accurate to plus or minus 10 kilograms this would be unacceptable.  For 

other measurements of weight, an accuracy of a few hundred grams would 

be totally unacceptable.  For example, if we wanted to purchase a gold bar,

our accuracy requirements for the weight of the gold bar would be much 

more stringent.  When performing quantitative experiments, we must take 

into consideration uncertainty in the input data.  Also, the output of our 

analysis must include estimates of the uncertainty of the results.  One of 

the most compelling reasons for using least squares analysis of data is that 

uncertainty estimates are obtained quite naturally as a part of the analysis. 

For almost all applications the standard deviation (σσσσ) is the accepted σσσσσσσσσσ
measure of uncertainty.  Let us say we need an estimate of the uncertainty

associated with the measurement of the weight of gold bars.  One method 

for obtaining such an estimate is to repeat the measurement n times and re-

cord the weights wi , i = 1 toi n.  The estimate of σσσσ (the estimated standard σσσ
deviation of the weight measurement) is computed as follows: 

===============
−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
===============

ni ===============

i
avgi

ww
n

1

2

1

12σσσσ (1.2.1)

In this equation wavg is the average value of the g n measurements of w.  The 

need for n-1 in the denominator of this equation is best explained by con-

sidering the case in which only one measurement of w is made (i.e.,w n = 1).  

For this case we have no information regarding the "spread" in the meas-

ured values of w.

Fortunately, for most measurements we don’t have to estimate σσσσ by repeat-

ing the measurement many times.  Often the instrument used to perform 

the measurement is provided with some estimation of the accuracy of the

measurements.  Typically the estimation of σ σ σ σ is provided as a fixed per-

centage (e.g., σσσσ = 1%) or a fixed value (e.g., σσσσ = 0.5 grams).  Sometimes 

the accuracy is dependent upon the value of the quantity being measured in 

a more complex manner than just a fixed percentage or a constant value. 

For such cases the provider of the measurement instrument might supply 
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this information in a graphical format or perhaps as an equation.  For cases 

in which the data is calculated rather than measured, the calculation is in-r

complete unless it is accompanied by some estimate of uncertainty.

Once we have an estimation of σσσσ, how do we interpret it?  In addition to σσσσ,

we have a result either from measurements or from a calculation.  Let us

define the result as x and the true (but unknown value) of what we are try-x

ing to measure or compute as µµµµ.  Typically we assume that our best esti-µµµµµµ
mate of this true value of µµµµ isµµµµµµ x and that µµµµ is located within a region µµµµµµ
around x.  The size of the region is characterized by σσσσ.  A typical assump-σσσσσσ
tion is that the probability of µµµµ being greater or less thanµµµµµµ x is the same.  In x

other words, our measurement or calculation includes a random error char-

acterized by σσσσ. Unfortunately this assumption is not always valid!

Sometimes our measurements or calculations are corrupted by systematic 

errors.  Systematic errors are errors that cause us to either systematically 

under-estimate or over-estimate our measurements or computations.  One

source of systematic errors is an unsuccessful calibration of a measuring

instrument.  Another source is failure to take into consideration external

factors that might affect the measurement or calculation (e.g., temperature

effects).  Data analysis of quantitative experiments is based upon the as-

sumption that the measured or calculated independent and dependent vari-

ables are not subject to systematic errors.  If this assumption is not true, 

then errors are introduced into the results that do not show up in the com-

puted values of the σσσσ s.  One can modify the least squares analysis to study 

the sensitivity of the results to systematic errors but whether or not sys-

tematic errors exist is a fundamental issue in any work of an experimental 

nature.

1.3 Statistical Distributions 

In nature most quantities that are observed are subject to a statistical distri-

bution.  The distribution is often inherent in the quantity being observed 

but might also be the result of errors introduced in the method of observa-

tion.  An example of an inherent distribution can be seen in a study in 

which the percentage of smokers is to be determined.  Let us say that one 

thousand people above the age of 18 are tested to see if they are smokers.  

The percentage is determined from the number of positive responses.  It is 

obvious that if 1000 different people are tested the result will be different. 

If many groups of 1000 were tested we would be in a position to say some-

’s
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thing about the distribution of this percentage.  But do we really need to

test many groups?  Knowledge of statistics can help us estimate the stan-

dard deviation of the distribution by just considering the first group!

As an example of a distribution caused by a measuring instrument, con-

sider the measurement of temperature using a thermometer.  Uncertainty 

can be introduced in several ways: 

1) The persons observing the result of the thermometer can introduce

uncertainty.  If, for example, a nurse observes a temperature of a pa-

tient as 37.4°C, a second nurse might record the same measurement as 

37.5°C.  (Modern thermometers with digital outputs can eliminate this

source of uncertainty.) 

2) If two measurements are made but the time taken to allow the tem-

perature to reach equilibrium is different, the results might be differ-

ent.  (Taking care that sufficient time is allotted for the measurement 

can eliminate this source of uncertainty.)

 
3) If two different thermometers are used, the instruments themselves 

might be the source of a difference in the results.  This source of un-

certainty is inherent in the quality of the thermometers.  Clearly, the 

greater the accuracy, the higher is the quality of the instrument and 

usually, the greater the cost.  It is far more expensive to measure a 

temperature to 0.001°C than 0.1°C! 

We use the symbol ΦΦΦΦ to denote a distribution.  ThusΦΦΦΦΦΦ ΦΦΦΦ (((((ΦΦ ((ΦΦ((((ΦΦΦΦ ((((ΦΦΦ x(((( ) ) ) )))))))))))) is the distribu-

tion of some quantity x.  If x is a discrete variable then the definition of x

ΦΦΦΦ ((((((Φ ((((((Φ ((((x(((( ) ) ) )))))))))))) is: 

 

1)( =
xmax

xmin

x (1.3.1)

If x is a continuous variable: x

1)( =
xmax

xmin

dxx (1.3.2)
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Two important characteristics of all distributions are the mean µµµµ and the

variance σσσσ 2222222222222222.  The standard deviation σσσσσσσσσ is the square root of the variance.

For discrete distributions they are defined as follows: 

=
xmax

xmin

xxµ )( (1.3.3) 

)()( xµx
xmax

xmin

22 −−−−==== (1.3.4) 

For continuous distributions: 

====
xmax

xmin

dxxx )(µµµµ  (1.3.5) 

dxxµx

xmax

xmin

22 −−−−==== )()( (1.3.6)

The normal distribution 

When x is a continuous variable the normal distribution is often applicable.  rr

The normal distribution assumes that the range of x is from -∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ and 

that the distribution is symmetric about the mean value µµµµ.  These assump-µµµµµµ
tions are often reasonable even for distributions of discrete variables, and 

thus the normal distribution can be used for some distributions of discrete 

variables.  The equation for a normal distribution is: 

)(
2

2

21
2

)(

)2(

1
)(

σσσσ
µµµµ

ππππσσσσ
−−−−−−−−====

x
expx

/
(1.3.7) 

The normal distribution is shown in Figure 1.3.1 for various values of the

standard deviation σσσσ.  We often use the term σσσσσσ standard normal distribu-

tion to characterize one particular distribution: a normal distribution with

mean µµµµ = 0 and standard deviation µµµµµµ σσσσ = 1.  The symbol σσσσσσ u is usually used to

denote this distribution.  Any normal distribution can be transformed into a

standard normal distribution by subtracting µµµµ from the values of µµµµµµ x and then x

dividing this difference by σσσσ.
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Figure 1.3.1  ΦΦΦΦ (((((ΦΦ ((ΦΦ(((ΦΦΦΦ ((((ΦΦΦ x((((  ) ))))))))))))))  vs  x-µµµµµµµ for Normal Distribution (σσσσ =0.5, 1 and 2).σσσσσσ

 
We can define the effective range of the distribution as the range in which 

a specified percentage of the data can be expected to fall.  If we specify the 

effective range of the distribution as the range between µµµµ ± σσσσ , then 68.3%

of all measurements would fall within this range.  Extending the range to µµµµ
± 2σσσσ , 95.4% would fall within this range and 99.7% would fall within the

range µµµµ ± 3σσσσ.  The true range of any normal distribution is always -∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞. 

Values of the percentage that fall within 0 to u (i.e., (x(( -µµµµ)/µµµµµµµµµµ σσσσ) are included σσσσσσσσσσ
in tables in many sources [e.g., AB64, FR92].  The standard normal table is

also available online [ST03].  Approximate equations corresponding to a 

given value of probability are also available (e.g., See Appendix B).

The normal distribution is not applicable for all distributions of continuous

variables.  In particular, if the variable x can only assume positive valuesx

and if the mean of the distribution µµµµ is close to zero, then the normal dis-µµµµµµ
tribution might lead to erroneous conclusions.  If however, the value of µµµµ
is large (i.e., µ/σµ/σµ/σµ/σ >> 1) then the normal distribution is usually a good ap-σσσσ
proximation even if negative values of x are impossible.x

We are often interested in understanding how the mean of a sample of n

values of x (i.e.,x xavg) is distributed.  It can be shown that the standard de-

viation of the value of xavg has a standard deviation of g σσσσ / n .  Thus the 

quantity (x(( avg-µµµµ) / (µµµµµµµµµµ σ σ σ σ / n ) follows the standard normal distribution u.  For 
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example, let us consider a population with a mean value of 50 and a stan-

dard deviation of 10.  If we take a sample of n = 100 observations and then

compute the mean of this sample, we would expect that this mean would 

fall in the range 49 to 51 with a probability of about 68%.  In other words, 

even though the population σσσσ is 10, the standard deviation of an average of σσσσσσ
100 observations is only 10/ 100 = 1.

The binomial distribution 

When x is a discrete variable of values 0 to n (where n is a relatively small 

number), the binomial distribution is usually applicable.  The variable x is x

used to characterize the number of successes in n trials where p is the 

probability of a single success for a single trial.  The symbol ΦΦΦΦ(((((Φ((ΦΦ(((ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ((((ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ x(((( ) ) ))))))))))))) is thus

the probability of obtaining exactly x successes.  The number of successes 

can theoretically range from 0 to n.  The equation for the distribution is: 

 

xnx
pp

!xn!x

!n
x −−−−

−−−−
==== )1(

)(
)( (1.3.8)

 
As an example, consider the following problem: what is the probability of 

drawing the Ace of Spades from a deck of cards if the total number of tri-

als is 3.  After each trial the card drawn is reinserted into the deck and the 

deck is shuffled.  For this problem the possible values of x are 0, 1, 2 and x

3.  The value of p is 1/52 as there are 52 different cards in a deck: the Ace

of Spades and 51 other cards.  The probability of not drawing the Ace of 

Spades in any of the 3 trials is:

 

9434.0)
52

51()1(
)!3(!0

!3
)0(

330 ========−−−−==== pp  

The probability of drawing the Ace of Spades once is:

0555.0)
52

51()
52

1(
2

6
)1(

)!2(!1

!3
)1(

2121 ========−−−−==== pp  
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The probability of drawing the Ace of Spades twice is: 

00109.0)
52

51()
52

1(
2

6
)1(

)!1(!2

!3
)2(

1212 ========−−−−==== pp  

The probability of drawing the Ace of Spades all three times is:

000007.0)
52

1()1(
)!0(!3

!3
)3(

303 ========−−−−==== pp  

 
The sum of all 4 of these probable outcomes is one.  The probability of 

drawing the Ace of Spades at least once is 1 - 0.9434 = 0.0566.

The mean value µµµµ and standard deviation σσσσ of the binomial distribution

can be computed from the values of n and p:

 
np=µµµµ (1.3.9)

2/1))1(( pnp −=σσσσ (1.3.10)

 
Equation 1.3.9 is quite obvious.  If, for example, we flip a coin 100 times,

what is the average value of the number of heads we would observe?  For 

this problem, p = ½, so we would expect to see on average 100 * 1/2 = 50 

heads.  The equation for the standard deviation is not obvious, however the

proof of this equation can be found in many elementary textbooks on sta-

tistics.  For this example we compute σσσσ as (100*1/2*1/2)σσσσσσ 1/2  = 5.  Using the

fact that the binomial distribution approaches a normal distribution for 

values of µµµµ  >> 1µµµµµµ , we can estimate that if the experiment is repeated many 

times, the numbers of heads observed will fall within the range 45 to 55

about 68% of the time. 

The Poisson distribution

The binomial distribution (i.e., Equation 1.3.8) becomes unwieldy for large 

values of n.  The Poisson distribution is used for a discrete variable x that x

can vary from 0 to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞.  If we assume that we know the mean value µµµµ of theµµµµµµ
distribution, thenΦΦΦΦ ((((((Φ ((((((ΦΦ ((((x(((( ) ) ) )))))))))))) is computed as:

 

!
)(

x

e
x

xµµµµµµµµµµµµµµµµµµµµ−−−−−−−−−−−−−−−−

====  (1.3.11)
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It can be shown that the standard deviation σσσσ of the Poisson distribution is:σσσσσσ
 

2/1µµµµσσσσ = (1.3.12)

 

If µµµµ is a large value, the normal distribution is an excellent approximation µµµµµµ
of a Poisson distribution. 

As an example of a Poisson distribution, consider the observation of a rare

genetic problem.  Let us assume that the problem is observed on average 

2.3 times per 10000 people.  For practical purposes n is close to ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞ so we

can assume that the Poisson distribution is applicable.  We can compute

the probability of observing x people with the genetic problem out of ax

sample population of 10000 people.  The probability of observing no one 

with the problem is:

 

 1003.0!0/3.2)0(
32032

32 32 ============ ee  

 
The probability of observing one person with the problem is: 

 

 2306.03.2!1/3.2)1(
32132

32 32 ============ ee  

 
The probability of observing two people with the problem is: 

 

 2652.02/3.2!2/3.2)2(
322232

32 32 ============ ee  

 
The probability of observing three people with the problem is: 

 

 2136.06/3.2!3/3.2)3(
323332

32 32 ============ ee  

 

From this point on, the probability ΦΦΦ(((((((Φ((Φ(((ΦΦΦ((((ΦΦΦ x(((( ) ) ))))))))))))) decreases more and more rapidly 

and for all intents and purposes approaches zero for large values of x. 

 
Another application of Poisson statistics is for counting experiments in

which the number of counts is large.  For example, consider observation of 

a radioisotope by an instrument that counts the number of signals emanat-

ing from the radioactive source per unit of time.  Let us say that 10000 

counts are observed.  Our first assumption is that 10000 is our best esti-
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mate of the mean µµµµ of the distribution.  From equation 1.3.12 we can thenµµµµµµ
estimate the standard deviation σσσσ of the distribution as 10000σσσσσσ 1/2 = 100.  In 

other words, in a counting experiment in which 10000 counts are observed,

the accuracy of this observed count rate is approximately 1% (i.e., 

100/10000 = 0.01).  To achieve an accuracy of 0.5% we can compute the

required number of counts: 

 
2/12.1 //005.0 −=== µµµµµµµµµµµµµµµµσσσσ  

 

Solving this equation we get a value of µµµµ = 40000.  In other words to dou-µµµµµµ
ble our accuracy (i.e., halve the value of σσσσ) we must increase the observed σσσσσσσσσσσσ
number of counts by a factor of 4.

The χχχχ2
distribution

The χχχχ 22222222222222 (chi-squared) distribution is22222222  defined using a variable u that is nor-

mally distributed with a mean of 0 and a standard deviation of 1.  This u

distribution is called the standard normal distribution.  The variable χχχ 2χχχχχχ (k) 

is called the χχχχ 222222222222222 value with k degrees of freedom and is defined as follows: k

 

=
ki=

1i=

2

i

2
uk)(  (1.3.13)

 
In other words, if k samples are extracted from a standard normal distribu-k

tion, the value of χχχχ 2222222222222222(k(( ) is the sum of the squares of the kk u values.  The dis-

tribution of these values of χχχχ 222χχχχχχ 22222222χχχχχχχχχχ 2222χχχ (k) is a complicated function:

 

)2/exp(
)2/(2

)(
))((

2

2/

12/2
)2 χχχχχχχχχχχχ −−−−

ΓΓΓΓ
====

k
k

k
(1.3.14)

 

In this equation ΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓΓ is called the gamma function and is defined as follows: 

 

even k for kkk 1*2*3)...22/)(12/()2/( −−=Γ
odd k for kkk

2/1*2/1*2/3)...22/)(12/()2/( ππππ−−=Γ     (1.3.15) 

 
Equation 1.3.14 is complicated and rarely used.  Of much greater interest 

is determination of a range of values from this distribution.  What we are
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more interested in knowing is the probability of observing a value of 

χχχχ 222 222222χχχ 2222 from 0 to some specified value.  This probability can be computed from 

the following equation [AB64]: 

 

dtet
k/22

1
/kP t/2

0

1k/2

k/2

2

2

=
)(

)( (1.3.16) 

 

For small values of k (typically up to k k=30) values of χχχχ 222χχχχχχ 2222222χχχχ 2222
are presented in a 

22222222

tabular format [e.g., AB64, FR92, ST03] but for larger values of k, approxi-

mate values can be computed (using the normal distribution approximation 

described below).  The tables are usually presented in an inverse format 

(i.e., for a given value of k, the values of χχχχ 222χχχχ22222222222
corresponding to various prob-

22222222

ability levels are tabulated).  As an example of the use of this distribution,

let us consider an experiment in which we are testing a process to check if 

something has changed.  Some variable x characterizes the process.  Wex

know from experience that the mean of the distribution of x isx µµµµ and the µµµµµµ
standard deviation is σσσσ.  The experiment consists of measuring 10 valuesσσσσσσ
of x.  An initial check of the computed average value for the 10 values of x

is seen to be close to the historical value of µµµµ but can we make a statement µµµµµµ
regarding the variance in the data?  We would expect that the following

variable would be distributed as a standard normal distribution ((((µµµµ =0, σσσσ =1):

 

σσσσ
µµµµ )( −= x

u  (1.3.17) 

 
Using Equation 1.3.17, 1.3.13 and the 10 values of x we can compute a x

value for χχχχ 22χχχχ .  Let us say that the value obtained is 27.2.  The question that 22

we would like to answer is what is the probability of obtaining this value 

or a greater value by chance?  From [ST03] it can be seen that for k = 10,k

there is a probability of 0.5% that the value of χχχχ 222222222222222
will exceed 25.188.  

222222222

(Note that the value of k f used was 10 and not 9 because the historical value 

of µµµµ was used in Equation 1.3.17 and not the mean value of the 10 µµµµµµ
observations.)  The value observed (i.e., 27.2) is thus on the high end of 

what we might expect by chance and therefore some problem might have

arisen regarding the process under observation. 

Two very useful properties of the χχχχ 222χχ 22222222χχχχ 2222
 distribution are the mean and standard 

22222222

deviation of the distribution.  For k degrees of freedom, the mean is k and k

the standard deviation is k2 .  For large values of k, we can use the fact 
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that this distribution approaches a normal distribution and thus we can eas-

ily compute ranges.  For example, if k = 100, what is the value of k χχχχ 22222222222χχχ 2222 for 22222222

which only 1% of all samples would exceed it by chance?  For a standard 

normal distribution, the 1% limit is 2.326.  The value for the χχχχ 2222222222χχχ 2222 distribution 22222222

would thus be µµµµ + 2.326*µµµµµµ σσσσ =σσσσ k + 2.326*(2k k)1/2 = 100 + 31.2 = 131.2.

An important use for the χχχχ 222χχχχχχ 2222222χχχχ 2222
 distribution is analysis of variance.  The 

22222222
vari-

ance is defined as the standard deviation squared.  We can get an unbi-

ased estimate of the variance of a variable x by using x n observations of 

the variable.  Calling this unbiased estimate as s
2, we compute it as fol-

lows:

==============
−−−−

−−−−
====

n

i

avg)xx(
n

s
1

22

1

1
(1.3.18) 

The quantity (n-1)s2/σσσσ2σσσσσσσσσσσσσσσ  is distributed as χχχχ 222χχχ 222222222χχχχχ 2222
with n-1 degrees of freedom. 

This fact is fundamental for least squares analysis.

The t distributiont

The t distribution (sometimes called the student-t t distribution) is used for 

samples in which the standard deviation is not known.  Using n observa-

tions of a variable x, the mean value xavg and the unbiased estimateg s of the 

standard deviation can be computed.  The variable t is defined as: t

)//()( nsxt avg µµµµ−= (1.3.19) 

The t distribution was derived to explain how this quantity is distributed. t

In our discussion of the normal distribution, it was noted that the quantity 

(x(( avg-µµµµ) / (µµµµµµµµµµ σ σ σ σ / n ) follows the standard normal distribution u.  When σσσσ of σσσσσσ
the distribution is not known, the best that we can do is use s instead.  For 

large values of n the value of s approaches the true value of σσσσ of the distri-σσσσσσ
bution and thus t approaches a standard normal distribution.  The mathe-t

matical form for the t distribution is based upon the observation that Equa-

tion 1.3.19 can be rewritten as:
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sn/

x
t

avg σσσσ
σσσσ

µµµµ−−−−
==== (1.3.20) 

The term σσσσσσσσσσσσσσσσ/σσσσ s// is distributed as ((n-1) //// χ χ χ χ 222222222222222 )22222222 1/2 where χχχχ 222χ 222222222χχχχ 2222 has n-1 degrees of 

freedom.  Thus the mathematical form of the t distribution is derived from 

the product of the standard normal distribution and ((n-1)/  χ χ χ χ 222χχχχχχ 22222222χχ 2222( n-1) )1/2.  

Values of t for various percentage levels for t n-1 up to 30 are included in

tables in many sources [e.g., AB64, FR92].  The t table is also available t

online [ST03].  For values of n > 30, the t distribution is very close to the t

standard normal distribution. 

 
For small values of n the use of the t distribution instead of the standard 

normal distribution is necessary to get realistic estimates of ranges.  For 

example, consider the case of 4 observations of x in which x xavg and g s of the 

measurements are 50 and 10.  The value of s / n is 5.  The value of t for 

n - 1 = 3 degrees of freedom and 1% is 4.541.  We can use these numbers

to determine a range for the true (but unknown value) of µµµµ:µµµµµµµµ

7177554145055414503027 * 775541 775541*541541 ++++=<=<<===<=<<<=<=====<<<<<<<============<=<<===<=<<<=<=====<<<<<<<=========== µµµµ

In other words, the probability of µµµµ being below 27.30 is 1%, above 77.71µµµµµµ
is 1% and within this range is 98%.  Note that the value of 4.541 is consid-

erably larger than the equivalent value of 2.326 for the standard normal 

distribution.  It should be noted, however, that the t distribution approachest

the standard normal rather rapidly.  For example, the 1% limit is 2.764 for 

10 degrees of freedom and 2.485 for 25 degrees of freedom.  These values

are only 19% and 7% above the standard normal 1% limit of 2.326. 

The F distributionF

The F distribution plays an important role in data analysis.  This distribu-F

tion was named to honor R.A. Fisher, one of the great statisticians of the

20th century.  The F distribution is defined as the ratio of two F χχχχ 222χχχχ 2222222χχ 2222
distribu-

22222222

tions divided by their degrees of freedom: 

 

22
2

11
2

)(

)(

k/k

k/k
F

χχχχ
χχχχ==== (1.3.21) 


