Genome Mapping and Molecular Breeding in Plants Volume 3

Series Editor: Chittaranjan Kole

Volumes of the Series Genome Mapping and Molecular Breeding in Plants

Volume 1 Cereals and Millets

Volume 2 Oilseeds

Volume 3 Pulses, Sugar and Tuber Crops

Volume 4 Fruits and Nuts

Volume 5 Vegetables

Volume 6 Technical Crops

Volume 7 Forest Trees

Pulses, Sugar and Tuber Crops

With 45 Illustrations, 8 in Color

CHITTARANJAN KOLE Department of Horticulture 316 Tyson Building The Pennsylvania State University University Park, PA 16802 USA

e-mail: cuk10@psu.edu

Library of Congress Control Number: 2006930258

ISBN-10 3-540-34515-9 Springer Berlin Heidelberg New York ISBN-13 978-3-540-34515-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Editor: Dr. Sabine Schreck, Heidelberg, Germany Desk Editor: Dr. Jutta Lindenborn, Heidelberg, Germany Cover design: WMX Design GmbH, Heidelberg, Germany Typesetting and Production: LE-T_EX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany 39/3100/YL 5 4 3 2 1 0 – Printed on acid-free paper

Preface to the Series

Genome science has emerged unequivocally as the leading discipline of this new millennium. Progress in molecular biology during the last century has provided critical inputs for building a solid foundation for this discipline. However, it has gained fast momentum particularly in the last two decades with the advent of genetic linkage mapping with RFLP markers in humans in 1980. Since then it has been flourishing at a stupendous pace with the development of newly emerging tools and techniques. All these events are due to the concerted global efforts directed at the delineation of genomes and their improvement.

Genetic linkage maps based on molecular markers are now available for almost all plants of significant academic and economic interest, and the list of plants is growing regularly. A large number of economic genes have been mapped, tagged, cloned, sequenced, or characterized for expression and are being used for genetic tailoring of plants through molecular breeding. An array of markers in the arsenal from RFLP to SNP; tools such as BAC, YAC, ESTs, and microarrays; local physical maps of target genomic regions; and the employment of bioinformatics contributing to all the "-omics" disciplines are making the journey more and more enriching. Most naturally, the plants we commonly grow on our farms, forests, orchards, plantations, and labs have attracted emphatic attention, and deservedly so. The two-way shuttling from phenotype to genotype (or gene) and genotypte (gene) to phenotype has made the canvas much vaster. One could have easily compiled the vital information on genome mapping in economic plants within some 50 pages in the 1980s or within 500 pages in the 1990s. In the middle of the first decade of this century, even 5,000 pages would not suffice! Clearly genome mapping is no longer a mere "promising" branch of the life science; it has emerged as a full-fledged subject in its own right with promising branches of its own. Sequencing of the Arabidopsis genome was complete in 2000. The early 21st century witnessed the complete genome sequence of rice. Many more plant genomes are waiting in the wings of the national and international genome initiatives on individual plants or families.

The huge volume of information generated on genome analysis and improvement is dispersed mainly throughout the pages of periodicals in the form of review papers or scientific articles. There is a need for a ready reference for students and scientists alike that could provide more than just a glimpse of the present status of genome analysis and its use for genetic improvement. I personally felt the gap sorely when I failed to suggest any reference works to students and colleagues interested in the subject. This is the primary reason I conceived of a series on genome mapping and molecular breeding in plants.

There is not a single organism on earth that has no economic worth or concern for humanity. Information on genomes of lower organisms is abundant and highly useful from academic and applied points of view. Information on higher animals including humans is vast and useful. However, we first thought to concentrate only on the plants relevant to our daily lives, the agronomic, horticultural and technical crops, and forest trees, in the present series. We will come up soon with commentaries on food and fiber animals, wildlife and companion animals, laboratory animals, fishes and aquatic animals, beneficial and harmful insects, plant- and animal-associated microbes, and primates including humans in our next "genome series" dedicated to animals and microbes. In this series, 82 chapters devoted to plants or their groups have been included. We tried to include most of the plants in which significant progress has been made. We have also included preliminary works on some so-called minor and orphan crops in this series. We would be happy to include reviews on more such crops that deserve immediate national and international attention and support. The extent of coverage in terms of the number of pages, however, has nothing to do with the relative importance of a plant or plant group. Nor does the sequence of the chapters have any correlation to the importance of the plants discussed in the volumes. A simple rule of convenience has been followed.

I feel myself fortunate to have received highly positive responses from nearly 300 scientists of some 30-plus countries who contributed the chapters for this series. Scientists actively involved in analyzing and improving particular genomes contributed each and every chapter. I thank them all profoundly. I made a conscientious effort to assemble the best possible team of authors for certain chapters devoted to the important plants. In general, the lead authors of most chapters organized their teams. I extend my gratitude to them all.

The number of plants of economic relevance is enormous. They are classified from various angles. I have presented them using the most conventional approach. The volumes thus include cereals and millets (Volume I), oilseeds (Volume II), pulse, sugar and tuber crops (Volume III), fruits and nuts (Volume IV), vegetables (Volume V), technical crops including fiber and forage crops, ornamentals, plantation crops, and medicinal and aromatic plants (Volume VI), and forest trees (Volume VII).

A significant amount of information might be duplicated across the closely related species or genera, particularly where results of comparative mapping have been discussed. However, some readers would have liked to have had a chapter on a particular plant or plant group complete in itself. I ask all the readers to bear with me for such redundancy.

Obviously the contents and coverage of different chapters will vary depending on the effort expended and progress achieved. Some plants have received more attention for advanced works. We have included only introductory reviews on fundamental aspects on them since reviews in these areas are available elsewhere. On other plants, including the "orphan" crop plants, a substantial amount of information has been included on the basic aspects. This approach will be reflected in the illustrations as well.

It is mainly my research students and professional colleagues who sparked my interest in conceptualizing and pursuing this series. If this series serves its purpose, then the major credit goes to them. I would never have ventured to take up this huge task of editing without their constant support. Working and interacting with many people, particularly at the Laboratory of Molecular Biology and Biotechnology of the Orissa University of Agriculture and Technology, Bhubaneswar, India as its founder principal investigator; the Indo-Russian Center for Biotechnology, Allahabad, India as its first project coordinator; the then-USSR Academy of Sciences in Moscow; the University of Wisconsin at Madison; and The Pennsylvania State University, among institutions, and at EMBO, EUCARPIA, and Plant and Animal Genome meetings among the scientific gatherings have also inspired me and instilled confidence in my ability to accomplish this job.

I feel very fortunate for the inspiration and encouragement I have received from many dignified scientists from around the world, particularly Prof. Arthur Kornberg, Prof. Franklin W. Stahl, Dr. Norman E. Borlaug, Dr. David V. Goeddel, Prof. Phillip A. Sharp, Prof. Gunter Blobel, and Prof. Lee Hartwell, who kindly opined on the utility of the series for students, academicians, and industry scientists of this and later generations. I express my deep regards and gratitude to them all for providing inspiration and extending generous comments.

I have been especially blessed by God with an affectionate student community and very cordial research students throughout my teaching career. I am thankful to all of them for their regards and feelings for me. I am grateful to all my teachers and colleagues for the blessings, assistance, and affection they showered on me throughout my career at various levels and places. I am equally indebted to the few critics who helped me to become professionally sounder and morally stronger.

My wife Phullara and our two children Sourav and Devleena have been of great help to me, as always, while I was engaged in editing this series. Phullara has taken pains ("pleasure" she would say) all along to assume most of my domestic responsibilities and to allow me to devote maximum possible time to my professional activities, including editing this series. Sourav and Devleena have always shown maturity and patience in allowing me to remain glued to my PC or "printed papers" ("P3" as they would say). For this series, they assisted me with Internet searches, maintenance of all hard and soft copies, and various timely inputs.

Some figures included by the authors in their chapters were published elsewhere previously. The authors have obtained permission from the concerned publishers or authors to use them again for their chapters and expressed due acknowledgement. However, as an editor I record my acknowledgements to all such publishers and authors for their generosity and good will.

I look forward to your valuable criticisms and feedback for further improvement of the series.

Publishing a book series like this requires diligence, patience, and understanding on the part of the publisher, and I am grateful to the people at Springer for having all these qualities in abundance and for their dedication to seeing this series through to completion. Their professionalism and attention to detail throughout the entire process of bringing this series to the reader made them a genuine pleasure to work with. Any enjoyment the reader may derive from this books is due in no small measure to their efforts.

Pennsylvania, 10 January 2006 Chittaranjan Kole

Preface to the Volume

The number of "groups" of economic plant species is too many! This caused a serious problem in terms of allocating them under the seven planned volumes of the series with consideration of uniformity of size and inclusion of all relevant groups. Certain groups, for example cereals and millets, oilseeds, fruits, vegetables, and forest trees, have enough economic species those attracted the attention of molecular biologists and biotechnologists. In comparison, the number of pulse crops is too few to deserve an entire volume to itself. We had to accommodate pulse crops, sugar crops, and tuber crops together in volume 3 to maintain a more or less uniform coverage across all volumes. Except for the common bean, pea, and cowpea, most pulse crops are grown mainly in developing countries and have attracted relatively little attention of scientists from developed countries. These include the "orphan crops" such as chickpea, pigeonpea, mungbean, lentil, Lathyrus, etc. Thanks to certain labs in the USA and Australia, appreciable work has been done on these crops. There are still some more neglected pulse crops, we could easily ascribe the term "beggar crops" to them, such as urdbean, rice bean, adzuki bean, etc. in which almost no molecular work has been done. We must wait for future editions for their inclusion in this series. However, we have included two not-so-well-known pulse crops, quinoa and bambara groundnut, on which considerable work has been done. This volume can boast of introducing these two crops with comprehensive reviews for the first time.

Pulse crops will play a crucial role in global agriculture in the near future. Their shorter duration, docility for adaptation to several cropping schemes, tolerance to abiotic stresses particularly drought, and the preference by people in developing countries for vegetable protein to animal sources will definitely make an impact sooner rather than later. The research on these crops will fill an entire volume in a year or two!

Sugarcane has been included in this volume as well. This cash crop has generated much interest, particularly for its genomic proximity to other members of the "grass family" that comprises extensively studied crop plants like rice and maize. Sugar beet could be included here as well, but we will deal with it under beets in volume 5, which is dedicated to "vegetables".

The tuber crops included in this volume are potato, sweetpotato, cassava, and yam. Granted, potato could have been included under vegetables in volume 5, but that would have forced us to consider another "subvolume" for vegetable crops!

The contents of the chapters in this volume may appear somewhat contrasting. Crops like common bean, pea, cowpea, potato, and sugarcane contain elaborate deliberations on molecular aspects. For others, fundamental information besides preliminary molecular efforts are also discussed in depth. I hope the reader will appreciate the relative importance attached to the formulation of the contents.

In the last few years, my own research interests and research projects of my students and staff in India have mostly related to pulse crops. This gave me access to the literature accumulated on the pulse crops. For sugarcane and the tuber crops included in this volume, I had to be a student again before being an editor. The first two volumes of this series have been well received by readers. We hope this volume will also earn their appreciation.

If this volume finds favor with readers, credit must go to the authors and the publisher. The mistakes are mine alone, and I will rectify them upon the readers' welcome suggestions for improvement.

Pennsylvania, 3 March 2006

Chittaranjan Kole

Contents

Cont Abbr	ributors	(VII XXI
1 (0	mmon Bean	
	Miklas S. P. Singh	1
1 1	Introduction	1
1.1	1.1.1 History of the Crop	1
	1.1.1 Instory of the Crop	1
	1.1.2 Botanical Description	2
		3
	1.1.4 Objectives and Achievements of Classical Breeding	4
1.2	Genetic Linkage Maps	5
	1.2.1 Linkage Mapping Prior to 1990	5
	1.2.2 Linkage Mapping After 1990	6
	1.2.3 Map Integration	8
1.3	Tagging and Mapping Favorable Genes and QTLs	
	of Economic Importance	12
1.4	Marker-Assisted Selection	20
1.5	Future Prospects	22
Refer	rences	22
2 Pe		
K.E.	McPhee	33
2.1	Introduction	33
2.2	Construction of Genetic Maps	36
2.3	Gene Mapping	37
2.4	QTLs Detected	39
2.5	Marker-Assisted Breeding	43
2.6	Map-Based Cloning	44
2.7	Advanced Works	44
2.8	Future Scope of Works	45
Refer	rences	45
3 Co	wpea	
M. P.	Timko, J. D. Ehlers, P. A. Roberts	49
3.1	Introduction	49
	3.1.1 Brief History: Origin and Distribution	49
	3.1.2 Morphological and Phenological Characteristics	50
	3.1.3 Production Systems and Economic Importance	51
	3.1.4 Nutritional Composition	52
	3.1.5 Classical Genetics and Breeding	53
	3.1.6 Germplasm Collections	54
3.2	Molecular Phylogeny and Genome Organization	54
3.3	Genetic Maps	56
3.4	Transgenic Cowpea	59
3.5	Marker-Assisted Cowpea Breeding	59
3.6	Future Prospects for Crop Improvement	63
Refer		63
Refer		03

4 Mu	ngbean		
C.J. La	ambride	s, I.D. Godwin	69
4.1	Introdu	ction	69
	4.1.1	Morphological Description and Growth Characteristics	69
	4.1.2	Center of Origin, Botanical Origin, Domestication	
		and Dissemination and Gene Pools	70
	4.1.3	Uses and Nutritional Information	71
	4.1.4	Economic Importance	72
	4.1.5	Karyotype, Genome Size, DNA Content,	
		Genome Organization	73
	4.1.6	Cytoplasmic Genomes	73
	4.1.7	Breeding Priorities	74
4.2	Constru	action of Genetic Maps	74
	4.2.1	Mungbean Maps	74
	4.2.2	Other Vigna Maps	78
	4.2.3	Microsatellites and Single Nucleotide Polymorphisms (SNPs)	78
	4.2.4	Comparative Mapping	79
4.3	Gene M	lapping	79
	4.3.1	Bruchid Resistance	79
	4.3.2	Powdery Mildew Resistance	81
	4.3.3	MYMV Mungbean Yellow Mosaic Virus	82
	4.3.4	Seed Weight	83
	4.3.5	Hard-Seededness	83
	4.3.6	Seed Appearance Traits	84
4.4	Tissue (Culture and Transgenic Approaches	85
4.5	Future	Scope of Research	85
Refere	nces		86

5 Lentil

R. Ford, Rubeena, R. J. Redden, M. Materne, P. W. J. Taylor			
5.1	Introdu	ction	91
	5.1.1	Origin, Domestication and Taxonomy	91
	5.1.2	Botany and Ecology	92
	5.1.3	Genetic Resources	92
	5.1.4	Economic Importance and Current Breeding Objectives	93
	5.1.5	Limitations of Classical Breeding Approaches and the Need	
		for Molecular Breeding	95
5.2	Genetic	Markers and Lentil Genome Mapping	95
	5.2.1	Morphological and Biochemical Markers	95
	5.2.2	DNA-Based Markers	96
	5.2.3	Lens Genome Mapping	96
	5.2.4	Towards a Lens Consensus Map	99
5.3	Marker-	Assisted Trait Mapping and Selection	100
	5.3.1	Trait Mapping	100
	5.3.2	Quantitative Trait Loci Mapping	100
	5.3.3	Marker-Assisted Selection and Trait Pyramiding	102
5.4	Future S	Scope of Works	103
Refere	nces		104

6 Chi	ckpea	
P. W. J.	Taylor,	R. Ford
6.1	Introdu	ction 109
	6.1.1	Classification, Nomenclature and Origin 109
	6.1.2	Traditional and Current Breeding Objectives 110
6.2	Constru	action of Genetic Maps 11
	6.2.1	A Brief History of Cicer Mapping Efforts 11
	6.2.2	First-Generation Maps 112
	6.2.3	Second-Generation Maps 11
6.3	Gene M	apping and QTL Detection for Disease Resistance 11
6.4	Future	Scope of Works 118
Refere	nces	

7 Genome Mapping and Molecular Breeding in Lathyrus

B. Skil	ba, A.M.	Gurung, E. C. K. Pang 123			
7.1	Introduction				
	7.1.1	History of Crop 123			
	7.1.2	Botanical Descriptions 123			
	7.1.3	Economic Importance 124			
	7.1.4	Breeding Objectives			
	7.1.5	Germplasm Screening 125			
7.2	Constru	ction of Genetic Maps 126			
7.3	Gene M	apping 127			
7.4	QTL De	tection			
7.5	Marker	Assisted Breeding 129			
7.6	New To	ols and Future Directions 129			
Refere	nces				

8 Pigeonpea

M.B. 1	Ratnapai	rkhe, V.S. Gupta	133		
8.1	Introdu	ction	133		
	8.1.1	Classification, Nomenclature, and Origin	134		
	8.1.2	Yield Constraints and Breeding Objectives in Pigeonpea	135		
8.2	Pigeonp	bea Genome Structure	137		
8.3	Employ	ment of Molecular Markers	137		
	8.3.1	First-Generation DNA Markers	138		
	8.3.2	Retrotransposons and Microsatellite Markers:			
		The Second Generation of Molecular Markers	140		
8.4	Pigeonp	pea Transformation	140		
8.5	Pigeon	bea Research at ICRISAT	141		
8.6	Future Outlook: Comparative Mapping and Genomics in Legumes 14				
Refere	ences	-	142		

9 Quinoa (Chenopodium quinoa)

P. J.	Maughan, A. Bonifacio, C.E. Coleman, E.N. Jellen, M.R. Stevens,	
D. J.	Fairbanks	147
9.1	Brief History of Crop	147
9.2	Botanical Description	148
9.3	Breeding Value of Other Chenopodium Species	
	for Quinoa Improvement	150
9.4	Economic Importance	150

9.5	Breedi	ng Objectives	151
9.6	Quino	a Molecular Marker Studies: Introduction	151
	9.6.1	First-Generation Genetic Linkage Map	152
	9.6.2	Simple Sequence Repeat (SSR) Markers	152
	9.6.3	Expressed Sequence Tags and Single Nucleotide	
		Polymorphism Markers	152
	9.6.4	Quinoa Bacterial Artificial Chromosome Library	155
	9.6.5	Cytogenetics	156
9.7	Future	Scope of Work	157
Refei	ences.	-	157

10 Bambara Groundnut

11.1.5 11.1.6

11.1.7

S. Basu, J.A. Roberts, S.N. Azam-Ali, S. Mayes 15			
10.1	Introdu	ction	159
	10.1.1	The Crop Bambara Groundnut	159
	10.1.2	The Plant	160
	10.1.3	Intraspecific Hybridization for Development	
		of a Mapping Population	161
	10.1.4	Distribution and Domestication	161
	10.1.5	Floral Biology	163
10.2	Evaluat	ion of Genetic Diversity	163
	10.2.1	Genetic Diversity in Vigna	163
	10.2.2	Genetic Diversity within the Bambara Groundnut Gene Pool	164
10.3	Genetic	Linkage Mapping and Breeding in Bambara Groundnut	164
	10.3.1	Choice of Parents	164
	10.3.2	Verification of a Successful Hybridization Event	165
	10.3.3	F ₁ and F ₂ Progenies of Intraspecific Cross	165
	10.3.4	Development of Future Breeding Lines	
		from the Existing Cross	166
	10.3.5	Types of Populations and Their Specific Applications	166
	10.3.6	Genetic Linkage Map of Bambara Groundnut	168
10.4	QTL M	apping in Bambara Groundnut	169
10.5	The Fu	ture Direction	170
	10.5.1	Further Application of AFLPs in Saturation	170
	10.5.2	Development of Microsatellite-Enriched Genomic Libraries .	170
	10.5.3	Oligonucleotide DNA Microarrays	170
	10.5.4	QTL Mapping	171
	10.5.5	The Potential of Marker-Assisted Selection	
		in Bambara Groundnut	171
Refere	ences		171
11 Su	garcane		
G. Co	rdeiro, C	0. Amouyal, F. Eliott, R. Henry	175
11.1	Introdu	ction	175
	11.1.1	History of Sugarcane	175
	11.1.2	Morphology and Taxonomy	175
	11.1.3	Karyotype	178
	11.1.4	Economic Importance	179

Breeding Objectives 179

Classical Breeding Achievements 180

Limitations of Classical Activities 181

	a		
11.2	Genetic	Maps	. 181
	11.2.1	First-Generation Maps	. 181
	11.2.2	Second-Generation Maps	. 181
	11.2.3	Comparative Mapping	. 182
11.3	Detectio	n of QTLs	. 183
	11.3.1	QTLs Associated with Resistance	. 189
	11.3.2	QTLs Associated with Sugar Yield and Content	. 191
11.4	Gene Ma	apping, Marker-Assisted Breeding and Map-Based Cloning	. 196
	11.4.1	Advanced Works	. 198
11.5	Future S	cope of Works	. 199
Refere	ences		. 200
12 P	otato		
D. Mi	lbourne,	B. Pande, G. J. Bryan	. 205
12.1	Introduc	ction	. 205
	12.1.1	History, Taxonomy and Distribution	. 205
	12.1.2	Potato Breeding	. 208
12.2	First-Ge	neration Genetic Linkage Maps of Potato	. 211
12.3	Genetic	Mapping of Agronomically Significant Traits	. 216
	12.3.1	Mapping of Loci Associated with Disease Resistance	. 216
	12.3.2	Mapping of Loci Affecting Tuber Characteristics	. 220
12.4	Second-	Generation Maps:	
	Linkage	and QTL Analysis in Tetraploid Potato	. 224
12.5	Second-	Generation Maps: The Ultra-High Density Map of Potato .	. 226
12.6	Map-Bas	sed Gene Cloning in Potato	. 226
12.7	Physical	Mapping and Sequencing of Potato Genome	. 228
12.8	Associat	ion Genetics	. 228
12.9	Function	nal Genomics Resources	. 230
12.10	MAS in	Potato Breeding	. 230
Refere	ences		. 231
13 Sv	weetpota	to	
U. K.	Reddy, P.	Nimmakayala, G.T. Bates, J. Ryan-Bohac	. 237
13.1	Introduc	tion	. 237
	13.1.1	Importance of Sweetpotato	. 237
	13.1.2	Ipomoea Series Batatas (Convolvulaceae):	
		Phylogenetic Relationships	. 238
	13.1.3	Genetic Diversity Among Cultivars	. 239
13.2	DNA Ma	arkers	. 239
13.3	Sweetpo	tato Genetic Maps	. 240
13.4	Gene Id	entification and Functional Genomics	. 242
13.5	Sweetpo	tato Transformation and Transgene Stacking	. 243
13.6	Conclus	ions	. 243
Refere	ences		. 244
14 Ca	issava		

Y. Lok	cko, E. O	kogbenin, C. Mba, A. Dixon, A. Raji, M. Fregene	249
14.1	Introdu	ction	249
	14.1.1	Brief History of Crop	249
	14.1.2	Botanical Descriptors	249
	14.1.3	Economic Importance	250

	14.1.4	Classical Breeding Objectives	250
	14.1.5	Classical Breeding Achievements	250
	14.1.6	Limitations of Classical Breeding and Utility	
		of Molecular Mapping	251
14.2	Constru	action of Genetic Maps	252
	14.2.1	First-Generation Maps in Cassava	252
	14.2.2	Second-Generation Maps	253
14.3	Gene M	lapping	259
14.4	Quantit	ative Trait Loci Analysis	260
14.5	Marker	Assisted Breeding	262
14.6	Map-Ba	sed Cloning	264
14.7	Advanc	ed Works	265
	14.7.1	Tools: ESTs and Microarrays	265
14.8	Future	Scope of Works	266
Refere	nces		266

15 Yams

H.D.	H.D. Mignouna, M.M. Abang, R. Asiedu 27				
15.1 Introduction					
	15.1.1	Brief History of Crop	271		
	15.1.2	Botanical Description	271		
	15.1.3	Economic Importance	272		
	15.1.4	Breeding Objectives	273		
	15.1.5	Classical Breeding Achievements	275		
	15.1.6	Utility of Molecular Mapping	275		
	15.1.7	Brief History of Mapping	277		
15.2	Construction of Genetic Maps 2				
	15.2.1	Mapping of D. rotundata Genome and Detection of QTLs			
		for YMV Resistance	277		
	15.2.2	Mapping of D. alata Genome and Detection of QTLs			
		for Anthracnose Resistance	283		
15.3	Gene Mapping		289		
	15.3.1	Molecular Markers for YMV Resistance	289		
	15.3.2	Molecular Markers for YAD Resistance	290		
15.4	Future Scope of Works				
Refer	ences		293		
Subj	ect Inde	x	297		

Contributors

Phillip N. Miklas USDA-ARS 24106 N. Bunn Road Prosser, WA 99350-9687, USA

Shree P. Singh Department of Plant, Soil and Entomological Sciences University of Idaho 3793 North 3600 East Kimberly, ID 83341-5076, USA singh@kimberly.uidaho.edu

K.E. McPhee USDA-ARS P.O. Box 646434 Pullman, WA 99164-6434, USA kmcphee@mail.wsu.edu

Michael P. Timko Department of Biology University of Virginia Charlottesville, VA 22904, USA mpt9g@virginia.edu

Jeff D. Ehlers Department of Botany and Plant Sciences University of California Riverside, CA 92521-0124, USA

Philip A. Roberts Department of Nematology University of California Riverside, CA 92521-0124, USA

Christopher J. Lambrides School of Land and Food Sciences Plant Improvement Group The University of Queensland St Lucia, QLD 4072, Australia chris.lambrides@uq.edu.au Ian D. Godwin School of Land and Food Sciences Plant Improvement Group The University of Queensland St Lucia, QLD 4072, Australia

Rebecca Ford BioMarka Faculty of Land and Food Resources The University of Melbourne Victoria 3010, Australia rebeccaf@unimelb.edu.au

Rubeena

Department of Crop and Soil Sciences Washington State University 291 Johnson Hall, PO Box 646420 Pullman, WA 99164, USA

R. J. Redden Australian Temperature Field Crops Collection Department of Primary Industries Horshan, Victoria 3401, Australia

M. Materne Australian Temperature Field Crops Collection Department of Primary Industries Horshan, Victoria 3401, Australia

P. W. J. Taylor BioMarka Faculty of Land and Food Resources The University of Melbourne Victoria 3010, Australia

Beata Skiba School of Medical Sciences RMIT University, Bundoora Victoria 3083, Australia Allison M. Gurung Faculty of Land and Food Resources The University of Melbourne Parkville, Victoria 3010, Australia a.gurung@unimelb.edu.au

Edwin C.K. Pang School of Applied Sciences RMIT University Bundoora, Victoria 3083, Australia

Milind B. Ratnaparkhe Virginia Polytechnique Institute and State University Blacksburg, VA 24061, USA ratnaparkhem@missouri.edu

Vidya S. Gupta National Chemical Laboratory Pune 411008, India

Peter J. Maughan Brigham Young University Provo, UT 84602, USA Jeff_Maughan@byu.edu

Alejandro Bonifacio Fundación PROINPA Edificio Marconi Piso 2 La Paz, Bolivia

Craig E. Coleman Brigham Young University Provo, UT 84602, USA

Eric N. Jellen Brigham Young University Provo, UT 84602, USA

Mikel R. Stevens Brigham Young University Provo, UT 84602, USA

Daniel J. Fairbanks Brigham Young University Provo, UT 84602, USA S. Basu Division of Agricultural and Environmental Sciences School of Biosciences University of Nottingham Sutton Bonington Campus Loughborough Leicestershire, LE12 5RD, UK

J. A. Roberts Division of Plant Sciences School of Biosciences University of Nottingham Sutton Bonington Campus Loughborough Leicestershire, LE12 5RD, UK

S. N. Azam-Ali Division of Agricultural and Environmental Sciences School of Biosciences University of Nottingham Sutton Bonington Campus Loughborough Leicestershire, LE12 5RD, UK Sayed.Azam-ali@nottingham.ac.uk

S. Mayes Division of Agricultural and Environmental Sciences School of Biosciences University of Nottingham Sutton Bonington Campus Loughborough Leicestershire, LE12 5RD, UK

Giovanni Cordeiro Centre for Plant Conservation Genetics Southern Cross University PO Box 157 Lismore, NSW 2480, Australia gcordeir@scu.edu.au

Ouzi Amouyal Centre for Plant Conservation Genetics Southern Cross University PO Box 157 Lismore, NSW 2480, Australia Frances Eliott Centre for Plant Conservation Genetics Southern Cross University PO Box 157 Lismore, NSW 2480, Australia

Robert Henry Centre for Plant Conservation Genetics Southern Cross University PO Box 157 Lismore, NSW 2480, Australia

Dan Milbourne Plant Biotechnology Unit Teagasc Crops Research Centre Oak Park Carlow, Eire dmilbourne@oakpark.teagasc.ie

Barnaly Pande Department of Environmental Horticulture University of California, Davis One Shields Avenue Davis, California 95616, USA

Glenn J. Bryan Genetics Programme Scottish Crop Research Institute Invergowrie Dundee, DD2 5DA, UK

Umesh K. Reddy Department of Biology West Virginia State University Institute, WV 25112, USA ureddy@wvstateu.edu

George T. Bates Alcorn State University Professor Emeritus 118 Bates Rd. Natchez, MS 39120, USA Present address: 1304 E. Pass Road Gulfport, MS 39507, USA

Janice Ryan-Bohac U.S. Vegetable Laboratory USDA, ARS Charleston, SC 29414, USA Padma Nimmakayala Department of Biology West Virginia State University Institute, WV 25112, USA

Y. Lokko International Institute of Tropical Agriculture (IITA) Oyo Road PMB 5320 Ibadan, Nigeria Current address: Plant Breeding & Genetics Section International Atomic Energy Agency Wagramer Straße 5 PO Box 200 A-1400 Vienna, Austria Official.Mail@iaea.org

E. Okogbenin Centro Internacional de Agricultura Tropical Apartado Aéreo 6713 Cali, Colombia

C. Mba Plant Breeding Unit Joint FAO/IAEA Agriculture and Biotechnology Laboratory International Atomic Energy Agency Laboratories A-2444 Seibersdorf, Austria

A. Dixon International Institute of Tropical Agriculture (IITA) Oyo Road PMB 5320 Ibadan, Nigeria

A. Raji International Institute of Tropical Agriculture (IITA) Oyo Road PMB 5320 Ibadan, Nigeria

M. Fregene Centro Internacional de Agricultura Tropical Apartado Aéreo 6713 Cali, Colombia Hodeba D. Mignouna Virginia State University Agricultural Research Station Box 9061 Petersburg, VA 23806, USA jmignoun@vsu.edu Current address: Technical Operations Manager African Agricultural Technology Foundation (AATF) c/o ILRI, P.O. Box 30709 Nairobi, Kenya h.mignouna@aatf-africa.org Mathew M. Abang International Center for Agricultural Research in the Dry Areas (ICARDA) P.O. Box 5466 Aleppo, Syria and IRAD, Root and Tuber Program B.P. 2123 Messa Yaoundé, Cameroon

Robert Asiedu International Institute of Tropical Agriculture (IITA) c/o L.W. Lambourn & Co. Carolyn House 26 Dingwall Road Croydon CR9 3EE, UK

Abbreviations

ABA	Abscisic Acid
ABR	Ascochyta Blight Resistance
AFLP	Amplified Fragment Length Polymorphism
ANOVA	Analysis Of Variance
AP-PCR	Arbitrarily Primed PCR
APR	Adult Plant Resistance
ARS	Agriculture Research Service
ASAP	Allele Specific Associated Primer
AUDPC	Area Under the Disease Progress Curve
AYT	Advanced Yield Trial
BAC	Bacterial Artificial Chromosome
BAMFOOD	Increasing the productivity of Bambara Groundnut (<i>Vigna subterranea</i> L. Verdc) for sustainable food production in Semi-Arid Africa
BC	Backcross
BCMNV	Bean Common Mosaic Necrosis Virus
BCMV	Bean Common Mosaic Virus
BCTV	Beet Curly Top Virus
BGMV	Bean Golden Mosaic Virus
BGYMV	Bean Golden Yellow Mosaic Virus
BICMV	Blackeye Cowpea Mosaic Virus
BLRV	Bean Leaf Roll Virus
Bru1	Brassinosteroid-regulated protein
BSA	Bulked Segregant Analysis
С	Haploid Genome Content
CAPS	Cleaved Amplified Polymorphic Sequences
CC-NBS-LRR	Coiled-Coiled domain-containing NBS-LRR protein
cDNA	Complementary DNA
CIAT	Centro Internacional de Agricultura Tropical (Cali, Colombia)
CID	Carbon Isotope Discrimination
CIM	Composite Interval Mapping
cM	centi-Morgan
CMD	Cassava Mosaic Disease
CMS	Cytoplasmic Male Sterility
CPB	Colorado Potato Beetle
cpDNA	Chloroplast DNA
CRSD	Cowpea Collaborative Research Support Program
cSNP	SNP in coding region
CTCRI	Central Tuber Crops Research Institute (Trivandrum, India)
DAF	DNA Amplification Fingerprinting
DH	Doubled Haploid
DNA	Deoxyribonucleic Acid
DNC	Dry Matter Content
DR	Defense-Related
DS	Drought-Stressed
EBN	Endosperm Balance Number

EM	Expectation Maximization (algorithm)					
EMBRAPA	Empresa Brasileira de Pesquisa Agropecuária (Goiana, Brazil)					
EST	Expressed Sequence Tag					
EU	European Union					
FAO	Food and Agricultural Organization					
FGS	Fast-Growing Salmon					
FISH	Fluorescence In Situ Hybridization					
Foc	Fusarium Wilt Resistance					
GAT	Zentralinstitut für Genetik und Kulturpflanzenforschung (Gatersle-					
	ben, Germany)					
gDNA	Genomic DNA					
GISH	Genomic In Situ hybridisation					
GM	Genetically Modified					
GMO	Genetically Modified Organism					
GMS	Genetic Male Sterility					
GP	Gene Pool					
GP1	Primary Gene Pool					
GP1A	Primary Gene Pool - Domesticated					
GP2	Secondary Gene Pool					
GP3	Tertiary Gene Pool					
GPIB	Primary Gene Pool – Wild					
GRIN	Germplasm Resources Information Network					
GSIRI	Guangzhou Sugarcane Industry Research Institute (China)					
Hs	Average Hardy-Weinberg expected heterozygosity per subpopula-					
	tion					
Ht	Hardy-Weinberg heterozygosity of the total population					
ICARDA	International Center for Agriculture Research in the Dryland					
	Areas (Aleppo, Syria)					
ICRISAT	International Center of Research For Semi-Arid Tropics (Hydera-					
	bad, India)					
IDS	Initial Disease Score					
IITA	International Institute of Tropical Agriculture (Ibadan, Nigeria)					
ILDIS	International Legume Database & Information Service					
IM	Interval Mapping					
indel	insertion/deletion					
IPGRI	The International Plant Genetic Resources Institute (Harare, Zim-					
	babwe)					
ISSR	Inter Simple Sequence Repeat					
ITS	Internal Transcribed Spacer					
JIC	John Innes Center					
LD	Linkage Disequilibrium					
LG	Linkage Group					
LOD	Logarithm Of Odds					
LRR	Leucine Rich Repeat					
LRS	Likelihood Ratio Statistic					
LTR	Long Terminal Repeat					
MAS	Marker-Assisted Selection					
MDSS	Mean Disease Severity Scores					
MIM	Multiple Interval Mapping					
mRNA	Messenger Ribonucleic Acid					
mtDNA	Mitochondrial DNA					

MtGI	Medicago truncatula Gene Index
MYMV	Mungbean Yellow Mosaic Virus
NARS	National Agricultural Research System
NBPGR	National Bureau of Plant Genetic Resources (New Delhi, India)
NBS	Nucleotide Binding Site
NIL	Near Isogenic Lines
NOR	Nucleolar Organizer Region
NPGS	National Plant Germplasm System
NRCRI	National Root Crop Research Institute (Umuahia, Nigeria)
NS	Non-Stressed
ODAP	β-N-Oxalvl-L-a.β-DiaminoPropanoic acid
ORSTOM	Institut Français de la Recherché Scientifique pour le Développe-
onorom	ment en Coopération (now IRD: Montpellier, France)
PCN	Potato Cyst Nematode
PCR	Polymerase Chain Reaction
PFMV	Pea Englion Mosaic Virus
DI	Plant Introduction
	Proteinaceous Inhibitors
	Desticinations
	Post harvest Dhysiological Datarianation
	Post harvest Physiological Deterioration
PPU	PolyPhenoi Oxidase
PKINS	Primed In Situ (DNA Labeling)
PSDIVIV	Pea Seed-Dorne Mosaic Virus
PVX	
PYI	Preliminary field Irial
QIA	
QIL	Quantitative Irait Loci
RAF	Randomly Amplified Fragment
RAPD	Random Amplified Polymorphic DNA
rDNA	Ribosomal DNA
RFLP	Restriction Fragment Length Polymorphism
RGA	Resistant Gene Analog
RI	Recombinant Inbred
RIL	Recombinant Inbred Line
RSD	Ratoon Stunting Disease
SAM	Shoot Apical Meristem
SAT	Semi Arid Tropics
SCAR	Sequence Characterized Amplified Region
SDM	Single Dose Marker
SG	Striga Race
SGG	Slow-Growing Gray
SI	Self Incompatibility
SLA	Specific Leaf Area
SNP	Single Nucleotide Polymorphism
SPLAT	Specific Polymorphic Locus Amplification Test
SR	Specific Resistance
SSD	Single Seed Descent
SSLP	Simple Sequence Length Polymorphism
SSR	Simple Sequence Repeat
STMS	Sequence Tagged Microsatellite Site
STS	Sequence Tagged Sites

SUCEST	Sugarcane EST project
TCA	TriCarboxylic Acid
TIGR	The Institute for Genomic Research
TIR	Toll and Interleukin Receptor
UHD	Ultra-High Density
USAID	United States Agency of International Development
USDA	United States Department of Agriculture
UYT	Uniform Yield Trial
VIGS	Virus Induced Gene Silencing
WASDU	West African Seed Development Union
WHO	World Health Organization
WUE	Water Use Efficiency
YAD	Yam Anthracnose Disease
YMV	Yam Mosaic Virus

1 Common Bean

Phillip N. Miklas¹, Shree P. Singh²

- ¹ USDA-ARS, 24106 N. Bunn Road, Prosser, WA 99350-9687, USA
- ² Department of Plant, Soil and Entomological Sciences, University of Idaho, 3793 North 3600 East, Kimberly, ID 83341-5076, USA, *e-mail*: singh@kimberly.uidaho.edu

1.1 Introduction

A book (Singh 1999a), workshop proceedings (Singh 2000), and two book chapters (Singh 2001b, 2005) on the common bean (Phaseolus vulgaris L.) have been published within the last few years. Also, review articles are available on broadening the genetic base of cultivars (Singh 2001 a), development of integrated linkage map (Gepts 1999), and marker-assisted selection (MAS) (Kelly and Miklas 1999). More recently, Kelly et al. (2003) and Miklas et al. (2006) reviewed tagging and mapping of genes and quantitative trait loci (QTL) of economic importance and molecular MAS. Nonetheless, in this chapter we shall briefly describe the history of the crop, botanical description, economic importance, and breeding objectives and achievements of conventional breeding. The remainder of the chapter will be dedicated to the construction of linkage maps, tagging of genes and QTL of economic importance, and progress achieved by MAS.

1.1.1 History of the Crop

The common bean is among the five domesticated *Phaseolus* species that are native to the Americas (Gepts and Debouck 1991). From its origin and domestication regions in the Andean South America, Central America, and Mexico, the common bean has expanded into other parts of the Americas (from about 35° S to $>50^{\circ}$ N latitude and from sea level to >3000 m altitude) (Gepts et al. 1988; Singh 1992). Subsequently, it was introduced into Africa, Asia, Europe, and Oceania (Gepts and Bliss 1988).

Wild populations of common bean are distributed from northern Mexico (Chihuahua) to northeastern Argentina (San Luis) (Gepts et al. 1986). The common bean is a noncentric crop that had multiple domestications throughout the range of its wild populations (Harlan 1975; Gepts et al. 1986). Hybrids between wild and cultivated beans are fully fertile and no major barriers exist for introgression and exchange of favorable alleles and QTL (Singh et al. 1995; Koinange et al. 1996; Zizumbo-Villarreal et al. 2005).

Through domestication the common bean shifted from extreme indeterminate climbing to determinate bush types; from sensitivity to insensitivity to long photoperiod; from small to large leaves, pods, and seeds; and from a few gray, brown, beige, and cream colored spotted and speckled seeds that mimicked surroundings in wild grassland and oak-pine forest habitats to highly attractive and showy colors except blue and green with solid as well as stripes, spots, speckles, etc. Similarly, the common bean has evolved from having an impermeable to a waterpermeable seed coat, and from types that shatter due to highly fibrous and parchmented pod walls to forms with less fiber that are less subject to shattering (Gepts and Debouck 1991; Gepts 1998). Major alleles and QTLs that influenced common bean domestication have been identified and mapped (Koinange et al. 1996; Freyre et al. 1998; Gepts 1999). These traits are growth habit (fin), photoperiod insensitivity (ppd, hr), pod fiber (St), seed dormancy, and seed size, color, and shape. Existence of a considerably larger variation in the evolutionary marker, phaseolin types (Gepts 1988 a), in wild bean populations compared to cultivars suggests that not all wild beans were domesticated and cultivars may have reduced genetic diversity (Koenig et al. 1990; Gepts 1998; Zizumbo-Villarreal et al. 2005). The Andean South American wild and cultivated common beans differ from those of Central America and Mexico. These differences occur in seed size and other mor-

Genome Mapping and Molecular Breeding in Plants, Volume 3 Pulses, Sugar and Tuber Crops C. Kole (Ed.) © Springer-Verlag Berlin Heidelberg 2007 phological (Singh et al. 1991 c), isozyme (Koenig and Gepts 1989; Singh et al. 1991 b), physiological (White et al. 1992), molecular (Becerra-Velásquez and Gepts 1994; Haley et al. 1994 c), and adaptive traits (Singh 1989). Also, there are occasional incompatibilities between the two groups of wild (Koinange and Gepts 1992) and cultivated (Singh and Gutiérrez 1984; Gepts and Bliss 1985) germplasm such that they are considered two distinct gene pools. Singh et al. (1991a) further divided the Andean and Middle American gene pools into six races: three Andean gene pool (all large-seeded) = Chile, Nueva Granada, and Peru races; and three Middle American gene pool=Durango (medium-seeded semiclimber), Jalisco (medium-seeded climber), and Mesoamerica (all small-seeded) races. Beebe et al. (2000) reported the existence of additional diversity within the Middle American gene pool, especially within a group of Guatemalan climbing bean accessions that were distinct from previously defined races.

1.1.2 Botanical Description

Freytag and Debouck (2002) described in considerable detail the taxonomy, distribution, and ecology of over 25 *Phaseolus* species, including *P. vulgaris*, that are native to North America, Mexico, and Central America. Cultivated and wild *P. vulgaris* (Brücher 1988) and other *Phaseolus* species (Debouck 1999) are also native to Andean South America. The natural habitat of wild common bean ranges between ca. 800 to 2750 m elevations. Indeterminate climbing populations have a perennial tendency in the wild, but when planted in the field they may behave as an annual similar to most cultivated types.

The genus *Phaseolus* belongs to family Leguminosae, subfamily Papilionoideae. *P. vulgaris* belongs to its section Phaseoli. There is continuous variation in growth habit from determinate bush to indeterminate climbing cultivars. Singh (1982), however, classified growth habits into four major classes using the type of terminal bud (vegetative vs. reproductive), stem strength (weak vs. strong), climbing ability (nonclimber vs. strong climber), and fruiting patterns (mostly basal vs. along entire stem length or only in the upper part). These are the Type I=determinate upright bush, Type II=indeterminate, prostate, nonclimbing or semiclimbing, and Type

IV = indeterminate, strong climbers. Roots are generally fibrous with a marked tap or main root. Under most field conditions, especially in cool subtropical and temperate environments, they may bear nitrogen-fixing nodules from a few weeks after emergence through flowering. The main stem derives from the axis of the seed embryo. The number of branches and branching pattern may vary greatly depending upon the genotype and environment. Often more than 50% of the pods are borne on branches. The two unifoliolate leaves borne above the cotyledonary node are opposite to each other followed by one trifoliolate leaf at each node in an alternate phyllotaxy. The fully developed trifoliolate leaf has a long (>7 cm) petiole, a small (<3 cm) petiolule, very small pulvini, and three leaflets of which the central one is often symmetrical and chordate, ovate, or lanceolate. The inflorescence is a pseudoraceme often with several flowers of which only the basal few bear pods; an exception are small-diameter snap bean that bear a profusion of pods. Also, dry bean of outrigger types bearing six or more pods can be rarely found. Papilionaceous flowers can be pink, purple, white, or bicolor with or without stripes at the outer base of a very pronounced standard. Sessile bracteoles often are larger in Middle American compared to Andean genotypes and may be chordate, ovate, or lanceolate. Bilabiate calyx is small (<5 mm) with the upper two teeth united. The two keels may be coiled up to two times. There is a single vexillary stamen on the upper side and nine stamen united into a long sheath or tube around the style. The introrse stigma tends to extend around the tip of the style. Flowers are cleistogamous and normally are highly self-pollinated (<1% outcrossing). Nonetheless, Ibarra-Pérez et al. (1997) reported outcrossing rates ranging from 0.0 to 78% for individual families with a mean rate for six dry bean genotypes ranging from 4.4 to 10.2% in California. Anthesis occurs in early morning hours, and crosses are made with or without emasculation of anthers prior to anthesis. Mature pods are straight to slightly curved with five to eight seeds. There is considerable variation in size, shape, and color of pods and seeds. Germination is epigeal with cotyledons dropping off a couple of weeks after emergence.

Common bean is a short-day crop (White and Laing 1989). Cultivars adapted to higher latitudes either have evolved during dissemination from the primary centers of domestication or have been developed by breeding. Mildly cool environments favor growth and development. Thus, under nonstressed environments with 18 to 22 °C mean growing temperatures and about 12-h day-length, most cultivars complete their growing cycle from germination to seed maturity in 70 to 120 d. In the highlands (above 2000 m elevation) of Bolivia, Colombia, Ecuador, and Peru, climbing cultivars often require more than 250 d to mature. In the humid highlands of Guatemala and Mexico and in Principado de Asturias, Spain, climbing cultivars require ca. 150 d to mature.

At higher latitudes in temperate climates, dry bean cultivars of growth habit Types I, II, and III predominate. These are harvested within 90 to 120 d of planting. Cultivars of growth habit Types I, II, and III are grown in monoculture as well as under different relay, strip, and intercropping systems throughout the world (Singh 1992). Type IV cultivars always require support. Thus, these are grown in either association with maize (*Zea mays* L.) and other crops or on trellises or stakes. Although dry bean is grown in a wide range of soil types, light loamy soils with pH 7.0 and rich in organic matter are more suitable for production. A 90- to 120-d crop with a yield of 2500 kg ha⁻¹ will usually remove 60 to 80 kg of soil nitrogen and 40 kg of phosphorus.

P. vulgaris and a great majority of other cultivated and wild *Phaseolus* species have 2n = 2x = 22 chromosomes. The *P. vulgaris* chromosomes are extremely small, and all 11 chromosomes have been identified (Mok and Mok 1977; Cheng and Bassett 1981). They were also recently assigned to the re-

Table 1. Integration of common bean (*Phaseolus vulgaris* L.)

 linkage and chromosome maps

Chromosome	Linkage group			
	Florida	Davis (BJ)		
1	G	B6		
2	Н	B1		
3	F	B8		
4	А	B7		
5	С	B3		
6	J	B11		
7	Е	B5		
8	Ι	B10		
9	D	B2		
10	В	B4		
11	K	B9		

spective linkage groups (LGs) (Table 1) using the fluorescence in situ hybridization (FISH) (Pedrosa et al. 2003). However, they have been of little or no use in breeding. The common bean has one of the smallest genomes in the legume family with 0.65 pg/haploid genome or 635 mbp (Arumuganathan and Earle 1991).

1.1.3 Economic Importance

The common bean is the most important of over 30 *Phaseolus* species native to the Americas, occupying more than 85% of areas sown to these species worldwide. There are two principal types of common bean: snap and dry. Fully developed green pods of snap bean harvested for fresh-market or processing purposes have reduced fiber in the pod walls and sutures. The USA, Europe, and China are the largest producers of snap bean. Although exact area planted to snap bean is not known, it is estimated to be <3 million ha. For further details on snap bean, the reader should refer to Myers and Baggett (1999) and Myers (2000).

Dry bean is grown in more than 14 million ha in the world. The Americas are the largest dry bean producing regions (6.7 million MT), and Brazil (2.5 million MT) is the largest producer and consumer (Singh 1999b). Asia (2.2 million MT), Africa (2.1 million MT), and Europe (~1 million MT) follow the lead of the Americas in dry bean production in the world. The USA (1.3 million MT) and Mexico (0.98 million MT) follow Brazil as leading dry bean producers. Production has increased substantially in the last 50 years in Argentina, Bolivia, Brazil, Canada, and the USA. Consumer preferences for dry bean size, color, shape, and brilliance vary a great deal (Singh 1992; Voysest 2000). In Latin America, the highest per-capita consumption of dry bean is in Brazil and Mexico (>10 kg per year). In Rwanda and Burundi, per-capita consumption is over 40 kg per year. Dry, green-shelled, and snap bean have high nutritional value, especially in conjunction with cereals and other carbohydrate-rich foods, and can reduce cholesterol and cancer risks (Andersen et al. 1999; Myers 2000). Dry bean (average of 22% protein) dishes range from simply beans boiled in water to more sophisticated preparations of baked beans, cakes, chips, creams, pastes, salads, soups, and stews (Hosfield et al. 2000).

1.1.4 Objectives and Achievements of Classical Breeding

Nearly a century of organized genetics and breeding of common bean has been carried out in the USA and elsewhere in the world. Early efforts emphasized breeding for disease resistance, early maturity, and upright determinate bush growth habit Type I to facilitate mechanical harvest, especially in snap bean. Initially, selection within and between landraces followed by pedigree, mass-pedigree, and recurrent backcrossing were used. Common bean breeding accelerated in the second half of the 20th century in the Americas and Europe. Improved germplasm and cultivars were developed using recurrent backcross (Pompeu 1982), pedigree (Kelly et al. 1994a), and mass-pedigree (Singh et al. 1989) methods and their modifications. Congruity backcrossing (Mejía-Jiménez et al. 1994; Urrea and Singh 1995), single-seed descent (SSD) (Kelly et al. 1989; Urrea and Singh 1994), recurrent (Kelly and Adams 1987; Beaver and Kelly 1994; Singh et al. 1999), and gamete (Singh 1994; Singh et al. 1998) selection methods have been used more recently.

Favorable alleles and QTLs have been introgressed from the tepary bean (P. acutifolius A. Gray) for common bacterial blight [caused by Xanthomonas campestris pv. phaseoli (Smith) Dye] resistance (Scott and Michaels 1992; Singh and Muñoz 1999), from runner bean (P. coccineus L.) for common bacterial blight (Miklas et al. 1994) and white mold [caused by Sclerotinia sclerotiorum (Lib.) de Bary] resistance (Miklas et al. 1998a), and from wild common bean for the bean weevil (Zabrotes subfasciatus Boheman) resistance (Cardona et al. 1990). Singh and Muñoz (1999), while introgressing common bacterial blight resistance from the tepary bean (VAX 1 and VAX 2), also pyramided the highest level of common bacterial blight resistance to develop breeding lines VAX 3 to VAX 6. Nonetheless, most breeding has largely utilized favorable alleles and QTLs available between and within cultivated common bean market classes, races, and gene pools. The major breeding achievements in the Americas include introgression of upright growth habit Type II from race Mesoamerica into traditional Type III cultivars of race Durango using phenotypic recurrent selection (Kelly and Adams 1987) and other breeding methods (Coyne et al. 2000; Kelly et al. 2000). Recently developed cultivars also carry resistance to Bean common mosaic virus (BCMV, a potyvirus), Bean common mosaic necrosis virus (BCMNV, a potyvirus), and rust [caused by Uromyces appendiculatus (Pers.) Ung.]. Adams (1982) and Grafton et al. (1993) used Type II cultivars to change Type I growth habit of navy and small white cultivars into more stable highyielding Type II. Similarly, cream-striped carioca beans (traditionally a Type III) with growth habit Type II and resistance to leafhopper (Empoasca kraemeri Ross & Moore) and five diseases were developed using gamete selection (Singh et al. 1998). Seed yield was improved using mass-pedigree (Singh et al. 1993) and recurrent (Singh et al. 1999) selection methods from interracial populations within the Middle American gene pool and from Andean×Middle American intergene pool crosses using recurrent selection (Beaver and Kelly 1994; Singh et al. 1999). Pereira et al. (1993) increased nodule number and weight after three cycles of recurrent selection. Bliss et al. (1989) developed five high N₂-fixing genotypes.

Schneider et al. (1997 a, b) and Rosales-Serna et al. (2000) developed drought-resistant breeding lines from biparental populations using seed yield and/or random amplification of polymorphic DNA (RAPD) markers as selection criteria. Singh (1995) and Terán and Singh (2002) developed drought-resistant breeding lines from double-cross interracial and intergene pool populations using a bulk-pedigree method. Similarly, breeding lines such as A 321, A 445, and A 744 resistant to low soil fertility were developed from interracial populations within Middle American gene pool (Singh et al. 2003 b).

Kelly et al. (1994b) developed anthracnose [caused by Colletotrichum lindemuthianum (Sacc. and Magn.) Bri. & Cav.], BCMV, BCMNV, and rustresistant black-seeded cultivar Raven, which was then used to develop Phantom with similar resistance (Kelly et al. 2000). Kelly et al. (1999 c) also combined good canning quality, BCMV resistance, and the Andean Co-1 and Middle American Co-2 alleles for anthracnose resistance in a large-seeded light red kidney bean Chinook 2000. Both anthracnose resistance alleles were also combined with BCMV and rust resistance in small black cultivar Jaguar (Kelly et al. 2001). Good canning quality and resistance to anthracnose, BCMV, Beet curly top virus (BCTV, a leafhopper vectored geminivirus), and rust, either singly or in various combinations, have also been bred into dark and light

5

red kidney, red mottled, white kidney, and cranberry beans for North America (Miklas and Kelly 2002; Miklas et al. 2002 a) and for the tropics and subtropics (Beaver et al. 2003). Singh et al. (2003 a) developed angular leaf spot [caused by *Phaeoisariopsis griseola* (Sacc.) Ferr.], anthracnose, BCMV, rust, and halo blight [caused by *Pseudomonas syringae* pv. *phaseolicola* (Burkh.) Young] resistant breeding lines A 339, MAR1, MAR2, and MAR3 from interracial populations between the three Middle American races.

Acosta-Gallegos et al. (1995), Ibarra-Pérez et al. (2004), and Sanchez-Valdez et al. (2004) combined resistance to angular leaf spot, anthracnose, BCMV, and rust into high-yielding "bayo," black, "flor de mayo," ojo de cabra, pinto, and shiny black bean cultivars for Mexican highlands. Kelly et al. (1999a,b), Coyne et al. (2000), and Brick et al. (2001), among others (see Brick and Grafton 1999; Singh 2001 a; Beaver et al. 2003), combined BCMV and rust resistance into great northern and pinto beans. Resistance to BCMV and BCMNV and rust resistance were combined into pinto Kodiak (Kelly et al. 1999 a) and great northern UI98-209G (Stewart-Williams et al. 2003). Pinto germplasm 92US-1006 (Silbernagel 1994) and cultivar Quincy (synonymous with USPT-73) (Hang et al. 2005) carry I and $bc-2^2$ resistance alleles for BCMV and BCMNV. The I and bc-3 alleles imparting resistance to all known strains of BCMV and BCMNV were combined with four to six rust resistance alleles into great northern BelMiNeb-RMR-6 to 13 and pinto BelDakMi-RMR-14 to 23 beans (Pastor-Corrales 2003; Pastor-Corrales et al. 2001).

The recessive resistance allele bgm-1 for leaf chlorosis induced by Bean golden mosaic virus (BGMV, a geminivirus) and Bean golden yellow mosaic virus (BGYMV, a geminivirus) from the landrace Garrapato (synonymous with G2402) was inadvertently transferred into breeding line A429 (Morales and Singh 1993). A 429 was subsequently used to develop highly resistant small red, black, and carioca bean cultivars for Central America and Brazil, using pedigree, mass-pedigree, or gameteselection methods. Beaver et al. (1999) were the first to develop BGYMV (bgm-1 allele), BCMV, common bacterial blight, and rust-resistant largeseeded light red kidney bean breeding line PR9443-4 for the Caribbean. Singh et al. (2000) pyramided a high level of BGYMV resistance in different dry beans using direct disease screening that was subsequently verified by the presence of molecular markers. In the tropics and subtropics of Latin America, resistance to bean pod weevil (*Apion godmani* Wagner), angular leaf spot, anthracnose, BCMV, BGYMV, bruchid, common bacterial blight, and leafhopper, and upright plant type in beige, black, cream, cream-striped, and red beans were incorporated (Singh et al. 1998; Beaver et al. 2003). Silva et al. (2003) in Brazil in 1984 released the first cultivar, EMGOPA-Ouro-201 (synonymous with A 295), that combined angular leaf spot, anthracnose, BCMV, common bacterial blight, halo blight, powdery mildew (caused by *Erysiphe polygoni* DC), and rust resistance.

1.2 Genetic Linkage Maps

1.2.1 Linkage Mapping Prior to 1990

Lamprecht (1961) published the first genetic linkage map for common bean, which summarized previous linkage reports. This map comprised 26 naturally occurring traits. Most of the genes controlled the color of the flower or seed or affected pod traits. The Lamprecht map was extended with additional isozymes, seed proteins, and induced mutations (Bassett 1988; Gepts 1988b; Arndt and Gepts 1989; Koenig and Gepts 1989; Vallejos and Chase 1991b). These early maps were extensively reviewed by Bassett (1988, 1991) and culminated in a revised linkage map for common bean consisting of 13 LGs and 47 marker genes that included his own mapping of four recessive marker genes and three recessive induced mutants. For example, Nagata and Bassett (1984) mapped dark green savoy leaf (dgs), dwarf seed (ds), stipelless lanceolate leaf (sl), and round leaf (rnd) on LG VII, and spindly branch (sb), diamond leaf (dia), and progressive chlorosis (prc) on LG IX. He also discussed some of the less defined associations that had not yet been mapped. For example, Kyle and Dickson (1988) reported a tight linkage or pleiotropy of the dominant I allele imparting resistance to all known strains of the BCMV, and resistance to four related potyviruses. The I allele was also linked with seed coat (Temple and Morales 1986; Kyle and Dickson 1988) and hilum-region-darkening allele B (Park and Tu 1986). Deakin and Dukes (1975) and Dickson and Petzoldt (1986) observed linkage of colored seed coat with resistance to Pythium and/or Rhizoctonia root rots. Covne et al. (1973) found association between resistance to common bacterial blight and late flowering. Valladares-Sanchez et al. (1979) reported linkage between late maturity and indeterminate growth habit, Stavely (1984) among genes for rust resistance, and Osborn et al. (1986) between arcelin and lectin genes. Association of isozyme EST-2 with white flower (Weeden and Liang 1985) and white seed coat color (Weeden 1984) was also reported. These early "classical" maps were rudimentary, providing very little genomic coverage and utility for marker-assisted selections (MAS), but they did provide a point of reference for subsequently developed DNA-based linkage maps.

Bassett (1991) noted in revising the classical map that many previously described mutants lacked a seed source and therefore could not be tested. The renewed *Phaseolus* Genetics Committee in 1987 (Gepts 1988c) advocated for a repository for genetic stocks that Bassett established and is currently maintained by the USDA-ARS, NPGS (National Plant Germplasm System) at the Western Regional Plant Introduction (PI) Station in Pullman, WA, USA (http://www.ars-grin.gov/cgi-bin/ npgs/html/desc.pl?83034).

Another problem encountered in establishing the classical maps was the use of different gene symbols by different researchers for the same gene (Bassett 1991). A subcommittee of the *Phaseolus* Genetics Committee addressed this lack of coordination among geneticists for naming genes and formulated guidelines for gene designation and nomenclature (Myers and Weeden 1988; Bassett and Myers 1999). Bassett (2004) updated the list of genes for *P. vulgaris*.

1.2.2 Linkage Mapping After 1990

Availability of DNA-based markers in the mid-1980s aroused great interest and facilitated development of common bean linkage maps within the last 15 years. Vallejos et al. (1992) and Nodari et al. (1993 a) were among the first to develop molecular linkage maps of common bean, which subsequently evolved into the two major bean-mapping populations. For both maps, widely divergent parents were chosen to maximize (i) polymorphism at the nucleotide level, (ii) phenotypic diversity, and (iii) variability for disease resistance and other traits. Vallejos et al. (1992) developed a backcross (BC1) population (Florida map) from diverse parents XR-235-1-1 (recurrent parent) and DIACOL Calima, representatives of the Middle American and Andean gene pools, respectively (Table 2). The Florida BC1 map consisted of the pigmentation gene P, 224 restriction fragment length polymorphisms (RFLPs) (from PstI genomic clones), 9 seed proteins, and 9 isozyme marker loci, which sorted into 11 LGs labeled in descending order of length from A to K. This map covered 963 cM of the estimated 1200 cM of the bean genome. Gepts et al. (1993), using the same prediction model of Hulbert et al. (1988), estimated the genome length to be 1250 cM. Seven additional markers added 17 cM of coverage (980 cM) (Vallejos 1994). To date the Florida map consists of 294 markers, including the addition of RFLP probes from synteny studies (Boutin et al. 1995), and covers 900 cM (Vallejos et al. 2001), which is less than previous reports because of an increased stringency (LOD > 2.0) for placement of markers on the map.

Earlier, the Florida BC_1 population and an F_2 population from the same cross were used to map isozymes, seed proteins, and the P locus controlling pigmentation (Vallejos and Chase 1991b), which resulted in the combination and extension of LGs X and XIII of the classical map (Bassett 1991). In a companion study (Vallejos and Chase 1991a), a linked pair of isozyme markers Adh-1 and Got2 was significantly associated with seed size, which in effect identified a QTL. Sax (1923) was the first to note a linkage association between a morphological marker (seed pigmentation) and quantitative trait (seed size) in bean. Johnson et al. (1996) speculated that the phaseolin locus, Phs, was the candidate gene underlying the QTL for seed size, and its linkage with P was the morphological locus for seed color that Sax (1923) had identified. This mapping population was later used directly to identify QTL for common bacterial blight resistance (Yu et al. 1998).

The Davis map (Table 2), based on an F_2 population, was obtained from the wide cross between BAT 93 of the Middle American and Jalo EEP558 of Andean gene pool (Nodari et al. 1993 a). The map, with 143 markers, consisted of three genes (*I* for resistance to BCMV, *Cor* for seed color pattern, and an unknown gene for flower color), 108 RFLP (primarily *PstI* clones), 7 isozyme, 7 RAPD, and 18

7

Table 2. Common bean (*Phaseolus vulgaris* L.) populations used for tagging and mapping genes and quantitative trait loci between 1992 and 2004.

Parents	Source	Abbre- viation	Map size	Predominant marker	Traits mapped	References
BAT 93/Jalo EEP558 (F_2 and RI)	Davis	BJ, core	1226 cM	RFLP, mix	ALS, anthracnose, CBB, Rhizobium	Nodari et al. 1993a,b; Freyre et al. 1998; Gepts 1999
XR235-1-1/DIACOL Calima (BC)	Florida	XD	900 cM	RFLP, mix	Seed size, CBB	Vallejos et al. 1992; Yu et al. 1998
Corel/Ms8EO2 (BC)	Paris	CE	567 cM	RAPD, mix	Anthracnose	Adam-Blondon et al. 1994 a
DOR 364/G 19833	CIAT	DG	Full	RFLP, SSR	BGYMV, low P, root traits, ALS, Anthracnose	Beebe et al. 1998; Blair et al. 2003; López et al. 2003
Midas/G 12873	Davis	MG		RFLP	Domestication traits	Koinange et al. 1996
BAC 6/HT 7719	NE	BH	545 cM	RAPD	CBB, web blight, rust	Jung et al. 1996
Olathe/Sierra	ID, ND	OS	Partial	RAPD	BCMV, rust	Strausbaugh et al. 1999; Kalavacharla et al. 2000
DOR 364/XAN 176	PR, ARS	DX	930 cM	RAPD	ASB, BGYMV, CBB, rust	Miklas et al. 1996 b, 1998 b, 2000 a
PC-50/XAN 159	NE	PX	404 cM	RAPD	CBB, rust, white mold	Jung et al. 1997; Park et al. 2001
CDRK/Yolano	Davis	CY	1487 cM	AFLP	Seed yield	Johnson and Gepts 1999
A 55/G 122	Harris Moran, Davis	AG	1631 cM	AFLP	Seed yield, white mold, heat tolerance	Johnson and Gepts 1999; Miklas et al. 2001; Porch 2001
Eagle/Puebla 152	WI	EP	825 cM	RAPD	Root rot	Vallejos et al. 2001;
	El a ul da	IC	050 -M	M:	DCA	Navarro et al. 2003
Calima	Florida	JC	950 CM	MIX	KGA	Vallejos et al. 2001
Benton/NY6020-4	ARS	BN	Partial	RAPD	White mold	Miklas et al. 2003 b
OAC Seaforth/OAC 95-4	Guelph	S95	1717 cM	Mix	CBB, agronomic traits	Tar'an et al. 2001, 2002
BelNeb-RR-1/A 55	NE	BA	755 cM	RAPD	BBS, HBB, BCMV,	Ariyarathne et al. 1999;
					Fusarium wilt	Fall et al. 2001; Jung et al. 2003; Fourie et al. 2004
Sierra/Lef-2RB	MI		Partial	RAPD	Drought, Fusarium wilt	Schneider et al. 1997 a, b; Brick et al. 2004
Sierra/AC1028	MI		Partial	RAPD	Drought	Schneider et al. 1997 a, b
Isles/FR266	MI		Partial	RAPD	Fusarium root rot	Schneider et al. 2001
Montcalm/FR266	MI	MF	Partial	RAPD	Fusarium root rot	Schneider et al. 2001
Bunsi/Huron	MI	BH	Partial	AFLP	White mold	Kolkman and Kelly 2003
Bunsi/Newport	MI	BN	Partial	AFLP	White mold	Kolkman and Kelly 2003
Montcalm/CDRK-82	ARS, MI, ND		Partial	RAPD	Canning quality	Posa-Macalincag et al. 2002
Montcalm/CELRK	ARS, MI, ND		Partial	RAPD	Canning quality	Posa-Macalincag et al. 2002
Berna/EMP 419	Guelph		Partial	Mix	Leafhopper, seed size	Murray et al. 2004
Bayo Baranda/G 22837 (F_2)	Mexico		497 cM	AFLP	Seed Ca, Fe, Zn, tannin, mass	Guzmán-Maldonado et al. 2003
Moncayo/Primo	ARS	MP	Partial	RAPD	BCTV	Larsen and Miklas 2004
Minnuette/OSU 5630	OR		Full	Mix	Snap bean traits	Myers et al. 2004
Aztec/ND88-106-04	ND, ARS	AN	Partial	Mix	White mold, rust, zinc	Miklas et al. 2005 a
Bunsi/Raven	MI	BR	Partial	Mix	White mold, BCMV	Ender and Kelly 2005
HR67/OAC 95	Harrow	H95	Partial	Mix	CBB	Yu et al. 2004
Red Hawk/Negro San Luis	MI	RN	Parital	Mix	Root rot	Román-Avilés and Kelly 2005

Abbreviations: ALS: angular leaf spot, ASB: ashy stem blight, BBS: bacterial brown spot, BCMV: bean common mosaic virus, BCTV: beet curly top virus, BGYMV: bean golden yellow mosaic virus, CBB: common bacterial blight, HBB: halo bacterial blight, RGA: resistance gene analog