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Introduction

Eric Charpentier!, Annick Lesne?, and Nikolai Nikolski®
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Translated from the French by Elizabeth Strouse

Andrei Nikolaevich Kolmogorov (Tambov 1903, Moscow 1987) was one of
the most brilliant mathematicians that the world has ever known. Incredibly
deep and creative, he was able to approach each subject with a completely
new point of view: in a few magnificent pages, which are models of shrewdness
and imagination, and which astounded his contemporaries, he changed dras-
tically the landscape of the subject. Most mathematicians prove what they
can, Kolmogorov was of those who prove what they want.

In this book we have asked several world experts to present (one part of*)
the mathematical heritage left to us by Kolmogorov®. Each chapter treats
one of Kolmogorov’s research themes, or a subject that was invented as a
consequence of his discoveries. We present here his contributions, his methods,
the perspectives he opened to us, the way in which this research has evolved
up to now, along with examples of recent applications and a presentation of
the modern prospects.

We hope that this book can be read by anyone with a master’s (or even
a bachelor’s) degree in mathematics, computer science or physics, or more

* In the book Kolmogorov in perspective (History of Mathematics, Vol. 20, Ameri-
can Mathematical Society, 2000) one can find a (more or less) complete bibliog-
raphy of Kolmogorov’s work, which consists of about 500 publications. A lot of
these are at the heart of very active research going on today

5 A book entitled The Kolmogorov Legacy in Physics has already appeared
(Springer, 2004). It contains contributions to dynamical systems, complexity, tur-
bulence and probability. We strongly recommend it to mathematicians
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generally by anyone who likes mathematical ideas. Rather than presenting
detailed proofs, we give the main ideas, and a bibliography for those who
wish to understand the technical details. One can see that sometimes very
simple reasoning (with the right interpretation and tools) can lead in a few
lines to very substantial results.

Here is a quick summary of the themes that are treated here, with, for each,
some significant examples of the “master’s touch”.

Fourier Series (Chap. 1). In 1922, at the age of 19, Kolmogorov managed
to construct a Lebesgue integrable function on [0, 27] whose Fourier series
diverges almost everywhere, that is, except on a set of Lebesgue measure 0.
(Up to this point the Fourier series of all the functions that had been consid-
ered converged almost everywhere.) Three years later, he found an example
of a function whose Fourier series diverged everywhere! In the same time,
Kolmogorov obtained important results on lacunary Fourier series, harmonic
conjugates. ..

Logic (Chap. 2). In 1925, Kolmogorov became interested in intuitionis-
tic logic. For Brouwer (the father of Intuitionism), Intuitionism and Formal-
ism were antinomic approaches. Moreover, intuitionistic logic was generally
considered as a weakening of classical logic. But, baffling all expectations,
Kolmogorov managed to formalize intuitionistic logic and to present it as an
extension of classical logic. He then deduced that any “finitary” proposition
with a classical proof could be proved using intuitionistic logic. All this in
only two pages!

If intuitionistic logic is perceived as an extension of classical logic, ob-
tained by adding connectors with no analogues in classical logic, one needs
to find an interpretation of these connectors. This is what Kolmogorov did in
1932 when he interpreted intuitionistic logic as a “calculus of problems”. This
interpretation later turned out to be relevant to computer science.

Probabilities (Chaps. 3 and 4). It was also around 1925 that Kolmogorov
began working on probability theory. He began with a clever generalization of
the Bienaymé-Chebyshev inequality: this “Kolmogorov’s inequality” quickly
revealed its usefulness. He used it, with Khinchin, to obtain a famous conver-
gence rule for series of random variables.

In 1930 he used the inequality to deduce a version of the strong law of
large numbers (“almost sure” convergence — i.e. convergence with probability
equal to one — of the empirical mean towards the mathematical expectation)
which contained all prior versions of this law (Borel, Cantelli, Khinchin) like
a set of Russian dolls: this is the “L? version” given in Chap. 3. A little
later he obtained the “L' version” which is in a certain sense optimal since
it holds whenever the variables (independant and with the same law) have a
finite expectation. Kolmogorov announced this result in his book Foundations
of probability theory, in 1933, without giving a proof; he explained the proof
to Maurice Fréchet and let him have the honor of being the first to publish
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it in the first book of his Recherches théoriques modernes sur le calcul des
probabilités (Gauthier-Villars, 1937).

In 1931, Kolmogorov began thinking about continuous time Markov
processes. Instead of studying the trajectories of a process, he studied the
transition probability densities and determined the differential equations they
satisfied. These are, of course, the fundamental equations from which the mod-
ern theory of diffusion has been constructed. Because of the applications to
modern physics, they have even been generalized to Hilbert spaces of infinite
dimension: Chapter 4 describes this active area of research which has had
several recent applications.

Lomnicki, Steinhaus, Cantelli had sketched out axiomatizations of proba-
bility theory, based on Borel’s idea to formulate it in the langage of measure
theory; but it is Kolmogorov, in 1933, who solved the problem: his axiomati-
zation, both natural and powerful, is the one that is still used today.

Statistics (Chaps. 5 and 6). In 1933, Glivenko et Cantelli proved what
is sometimes called the fundamental theorem of statistics: almost surely, the
empirical distribution function of a real random variable converges uniformly
towards the true distribution function when the size of the sample tends to-
wards infinity. Soon afterwards, Kolmogorov gave the precise law for the con-
vergence, in terms of a universal function (independant of the — sought after
— law of the random variable) which leads to a very efficient goodness-of-fit
test (a test for the unknown law).

The Chap. 5 retraces this discovery of Kolmogorov and presents certain
improvements with a surprising application to number theory: it gives the
asymptotic behavior (when n tends to infinity) of the probability that an
integer chosen at random has at least one divisor between n and 2n, and of
the probability that it has exactly r such divisors.

Epsilon-entropy, a quasi-universal tool introduced by Kolmogorov in the
1950’s (see Chap. 8) has become a fundamental tool in statistics for measuring
the quality of estimators: the Chap. 6 gives a survey of the current state of
knowledge, intended for master’s degree students as well as for researchers.

Topology (Chap. 7). During the years 1934-1937, Kolmogorov was very
excited about topology. From 1934 to 1935, at the same time as Alexander,
he constructed the cohomology of topological spaces and discovered its ring
structure. In 1935, Samuel Eilenberg asked if an open mapping (one that takes
open sets to open sets) can increase the dimension of its domain; Kolmogorov
answered this question with a three page article, which appeared in 1937, in
which he gave a very clever construction of an open mapping which transforms
a topological space of dimension 1 into a topological space of dimension 2. This
result was later used to analyze groups’ actions on topological spaces.

Geometry (Chap. 8). One of Kolmogorov’s great gifts was his extraor-
dinary geometrical intuition. This played an essential role in almost all
his work, as shown in the fascinating Chap. 8. This chapter describes the
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contributions of Kolmogorov to geometry, approximation theory, the invention
of e-entropy, etc.

Mathematical Ecology (Chap. 9). In 1936, Kolmogorov published a short
note on the predator-prey model of Lotka and Volterra: they had (indepen-
dently) expressed the rates of growth of populations by explicit functions,
depending on a small number of parameters, and they solved the equations
explicitely. Clearly such a method can only apply to highly simplified models.
Kolmogorov, on the other hand, did not choose specific functions, but instead
concentrated on monotonicity properties (which give robust conditions); then
he applied the qualitative methods of Poincaré to study the long-time behavior
of populations (equilibria, limit cycles). Of course, this qualitative approach
is the only one that can be used in realistic models.

Dynamical Systems. KAM Theorem (Chaps. 10, 11) and entropy
(Chap. 12). Around 1953, Kolmogorov became interested in dynamical sys-
tems. He proved a fundamental theorem which explains why, when a system
stays close enough to a system in which numerous laws of conservation hold,
most movements of the former remain close to the regular movements of the
latter, instead of capitalizing on the lack of laws to wander. Kolmogorov pre-
sented his proof in talks, but did not publish it. Arnold and Moser later
published the first proofs of Kolmogorov’s theorem (with different hypothe-
ses) and this is where the name of the KAM (Kolmogorov, Arnold, Moser)
theorem comes from. For more than 30 years, all known proofs of this theo-
rem were extremely complicated, but in 1984 a wonderfully simple proof was
published. This proof was improved upon in 2002. When one of the authors of
this improved proof explained it in Moscow in 2002, members of the audience
who had heard Kolmogorov in 1957 said that the new proof was actually the
same as Kolmogorov’s original one! (Chap. 11, p. 215.) Chapter 10 gives a his-
torical survey of the problem of stability of movements in Celestial mechanics,
explains the role of resonance and small divisors and presents an analogue of
KAM theorem in a toy model where mathematical difficulties are weakened.
Chapter 11 illustrates the KAM theorem in the cases of the solar system and
of the forced pendulum; then, it gives a rigorous statement of the theorem
and sketches the main ideas of the new proof.

In 1958, Kolmogorov introduced the idea of entropy of dynamical systems,
a quantity which is invariant by metric isomorphisms. This turned out to be a
very powerful tool which permits one to show that two dynamical systems are
not metrically isomorphic. At first, Kolmogorov thought that deterministic
systems determined by differential equations would necessarily have zero en-
tropy (roughly: “no disorder”) unlike probabilistic systems. But Kolmogorov
and Sinai noticed that there exist deterministic systems with nonzero entropy.
This discovery is one of the starting points of the modern theory of determin-
istic chaos.

The modern (and fundamental) notion of hyperbolicity of a dynamical
system was developed as a result of the investigation of these deterministic
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systems with nonzero entropy. Chapter 12 describes this discovery and the
latest results on the subject.

The superposition theorem (chaps. 8 and 13). The 13th Hilbert problem
(Paris, 1900) was to determine if any continuous function of three variables
could be constructed in a finite number of steps, each one an application of
a continuous function of one or two variables. (This was an idealization of a
method of graphical resolution of equations.) Hilbert expected a negative an-
swer. In 1956 Kolmogorov showed that any continuous function of n variables
on [0,1]™ is constructible if one permits the use of continuous functions of
three variables as auxiliaries, and in 1957 his student Arnold proved that any
continuous function of three variables is constructible using functions of two
variables, thus resolving Hilbert’s 13th problem (with a different result than
that expected by Hilbert). Soon after, Kolmogorov showed that any contin-
uous function of n variables on [0,1]™ is constructible using only continuous
functions of one variable and additions: this is the Kolmogorov’s Superposition
Theorem.

In 1987, Hecht-Nielsen deduced that any continuous function could be
implemented by a certain type of neural network with continuous activation
functions and real weights. Constructive versions of the superposition theo-
rem have recently made possible the transposition of this result to computable
functions, activation functions and weights, and may give a way to construct
networks corresponding to given functions. This application of the superpo-
sition theorem to neural networks would surely have pleased Kolmogorov: in
fact, according to Arnold, one of Kolmogorov’s last mathematical works was
motivated by his curiosity about the structure of the brain (cf. chapitre 9,
p. 177).

More recently other applications of the superposition theorem have ap-
peared: Kolmogorov would surely have been happy to know that it applies to
subjects such as the Radon transform and topological groups.

Complexity of description (Chaps. 14 and 15). In 1965, Kolmogorov
defined the complexity of description of an object; this is, more or less, the
length of the shortest algorithm which can describe this object (the exact
definition is given in Chap. 14). This is a wonderful tool. One of its applica-
tions was a surprisingly simple and short proof by Gregory Chaitin of Godel’s
incompleteness theorem (Chap. 14), which can be understood by everybody!
Chaitin was very pleased to find this proof which, he explained, gives one the
impression that the incompleteness phenomenon discovered by Gdédel is nat-
ural — unlike the traditional proof, based on the “liar paradox” which makes
the phenomenon seem rather pathological and uncommon.

Kolmogorov’s complexity theory also makes sense of propositions such as
“the sequence is random”: for Kolmogorov this means more or less that the
sequence has no regularity with which one can “summarize” it, it is “incom-
pressible”.
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The existence of such incompressible objects gives a simple way to prove
things in all branches of mathematics: this is the “incompressibility method”.
Two examples of this method are given in Chap. 15, one in number theory
(how to show in a few lines, and almost without calculation, that the nth
prime number has an order of magnitude less than nlog?n, for instance),
and the other in graph theory (finding the maximum size of complete graphs
contained in a random graph).

But the principal object of Chap. 15 is to propose a new approach
to deterministic chaos: instead of studying the unpredictibility in terms
of the probabilities of ensembles of trajectories, one uses the complexity
theory of Kolmogorov to express the fact that an individual trajectory is
“unpredictable”.
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The youth of Andrei Nikolaevich
and Fourier series

Jean-Pierre Kahane

Département de Mathématiques d’Orsay, University Paris-sud, Orsay, France
http://wuw.academie-sciences.fr/Membres/K/Kahane JP.htm
Jean-Pierre.Kahane@math.u-psud.fr

Translated from the French by Elizabeth Strouse

Andrei Nikolaevich Kolmogorov was 14 years old in October 1917. In Moscow
this was neither a time for peace nor for reflection. According to his biography
in [Kol91], it seems that he was a railroad worker during the difficult years of
1919 and 1920. In 1920-21 he began his studies at the University of Moscow
where he would become a student of N.N. Lusin. At the same time he was
conducting a study, using land registers, of the evolution of land ownership
during the 15th and 16th centuries in the region of Novgorod. During the
spring of 1922, at the age of 19, he constructed a Lebesgue integrable function
whose Fourier series diverged almost everywhere. In spite of his continuing love
for history, this Fourier series would become an irresistible force bringing him
into mathematics.

1.1 Convergence and divergence of Fourier series

In truth, the battle between convergence and divergence of Fourier series is
also a part of history. For Daniel Bernoulli, in the 18th century, it was clear
that a sound was a superposition of harmonics, and thus that a periodic
function could be represented as the sum of a trigonometric series:

1 s 2 2
fl@) = a0 +nz::1 (an cos 7717}3: + by, sin 7;7}36) . (1.1)

Fourier at the beginning of the nineteenth century [DR98], believed that, using
his formulas

2 (7 2 2 [T 2
an:T/O f(x)cos Wjimdx, bn:TA f(z)sin W;Lxdx, (1.2)
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he had totally justified Bernoulli’s belief. He had verified the convergence of
the series in certain cases — in particular for the characteristic function of
an interval — and declared that this convergence would hold for an arbitrary
function as long as the Fourier coefficients were calculated using his formu-
las. It was Dirichlet, in 1829, who produced the first general convergence
theorem, concerning functions which were piecewise continuous and piecewise
monotone'; thinking that he could come back and eliminate the assumption of
monotonicity. It turns out that this assumption can be weakened, as was done
by Jordan ([Jor81], 1881) when he introduced functions of bounded variation,
but continuity alone does not guarantee convergence as shown by the amazing
(at the time) example furnished by Paul du Bois-Reymond of a continuous
function whose Fourier series diverges at a point ([DuB73], 1873). For the
next quarter century Fourier series had a bad reputation and were thought to
be useful only for producing monsters like the continuous functions without
derivatives which made Hermite turn away in “dread and horror”.

The scene changed in 1900 when the very young Fejér Lip6t? [Fej00)
showed that the arithmetic means of the partial sums converged to the
(bounded) function’s value at any point where the function was continuous.
The extensions and applications of this result revived interest in Fourier series.
Then Lebesgue gave a new framework with his integral. After the publication
of his Lecons sur les séries trigonométriques in 1906, when one spoke of a
“Fourier series” one meant a Fourier-Lebesgue series, that is, a Fourier series
whose coefficients are obtained using the Lebesgue integral. This framework

! Let us mention an exception. Camille Deflers, in 1819, in a Note sur quelques
intégrales définies, et application a la transformation des fonctions en séries de
quantités périodiques (Bulletin de la Société Philomatique de Paris, november
1819, pp. 161-166), proved what we call today the “Riemann-Lebesgue Lemma”
using integration by parts (his proof works for C* functions) and introduced the
“Dirichlet kernel” ten years before Dirichlet; then he deduced that a sufficiently
regular function was the sum of its Fourier series (his argument works in particular
for C? functions, but Deflers was not precise about the conditions under which
his results were true). By using a version of “Riemann-Lebesgue Lemma” for
continuous functions (which follows from the C* case by uniform approximation:
a tool which is now elementary, but was discovered after Deflers), the argument
of Deflers proves that a periodic differentiable function is the sum of its Fourier
series: it is this result which is taught today and wrongly attributed to Dirichlet.
In fact the Dirichlet theorem works for functions f which are piecewise monotone
(and continuous, if one wants the sum to be equal to the function). There is
certainly a tie between the two theorems: a periodic C* function is continuous and
of bounded variation, and so, on any interval, it can be expressed as the difference
of two continuous increasing functions (Jordan, 1881), to which the Dirichlet
theorem can be applied: the Deflers theorem, in the case where f’ is continuous,
can thus be deduced from that of Dirichlet; but Deflers’ proof (essentially the one
which is taught today) is much more simple. (Editor’s note.)

2 Or Léopold Fejér: it is, in fact, with this gallicized form of his name that he signed
his note in Comptes rendus. (Editor’s note.)
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would soon obtain a name, it would be the space L'. The Riesz-Fischer
theorem in 1907 established the isomorphism of the spaces L? and [? by using
Fourier’s formulas. Once again it seemed worthwhile to study Fourier series.

Divergence phenomena interested and inspired Fejér and Lebesgue in very
different ways. They both worked with continuous functions and with Fourier
series which diverged at a point. Kolmogoroff (as he signed his articles at the
time) published an example in 1923 which made quite a sensation. It was
complemented by a note in Comptes rendus in 1926, with an even more elab-
orate example: that of a (Lebesgue-)integrable function whose Fourier series
diverged everywhere.

The example of Kolmogorov is even more interesting today. Indeed, at
the time one could wonder if a stronger result could not be obtained, that
is, if there existed a continuous function whose Fourier series diverged ev-
erywhere. But we know since Carleson ([Car66], 1966) and Hunt ([Hun67],
1967), that this is not possible: all functions belonging to a space LP with
p > 1 are limits almost everywhere of the partial sums of their Fourier se-
ries. The best result in this direction is that of Antonov ([Ant96], 1996): if
|f|log™ | f|log™T log™ log™ | f| is integrable on the circle (where log™ is equal
to the positive part of log: log™ 2 = max{logx,0}), the Fourier series of f
converges to f almost everywhere.

If one assumes only that f is integrable on the circle the best that one
can hope to obtain for the partial sums is thus an estimation of type S, (f) =
o(l(n)) almost everywhere. Hardy, in 1913, established such a formula with
l(n) = logn, and conjectured that it was the best possible result of this type.
His conjecture is still open.

What is left to do today is thus, either to improve Hardy’s formula (and to
contradict Hardy’s conjecture), or to improve the construction of Kolmogorov
by giving a result with 2 (the opposite of 0) for the S,, almost everywhere, if
not everywhere. We have known for a long time that a result with {2 almost
everywhere holds for any sequence I(n) growing more slowly than log log n, and
the result has also been established everywhere (Chen 1962). A big step was
completed in 1999 by Konyagin when he constructed an integrable function
whose partial Fourier sums are everywhere §2(I(n)) where the squares of the
I(n) are o(logn/loglogn). One can try to improve Konyagin’s estimation, as
did Bochkarev in the case where the circle was replaced by the Cantor group
(2003). But it would be difficult to attain I(n) = o((logn)P) with p > 1/2.

1.2 Harmonic conjugates and Fourier series

In February of 1923 (when he had not yet turned twenty), Andrei Nikolaevich
made his second major contribution to the theory of Fourier series, the paper
“Sur les fonctions harmoniques conjuguées et les séries de Fourier” published
in 1925 in the review Fundamenta Mathematica. The operation which takes a
harmonic function to its conjugate can be interpreted in many ways: changing
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the real part of an analytic function into its imaginary part, or applying the
Hilbert transform; or, in terms of Fourier series, changing the sign of the
coeflicients which correspond to negative frequencies and setting the constant
term to zero. Today Kolmogorov’s theorem can be stated in the following
fashion: the operation of harmonic conjugation takes the space L! into weak
L'. (The functions discussed here are always real-valued functions on the
circle.)

What is weak L' ? It is the set of functions f verifying the following
condition: the inverse image of the ray |y, +oo[ has a measure m(y) bounded
by C/y where C is a constant which depends only on the function f. In the
case of L', m(y) is integrable, and, since it is also decreasing, it verifies the
given condition.

What was known about harmonic conjugation in 19237 First of all, by the
Riesz-Fisher theorem (1907) it was known that it maps L? into L?. Then, as
noted in Lusin’s work® which appeared in 1915, that it does not map L' into
L' (this is rather clear to us today when we think of the conjugate of the
Dirac measure). It was later, in 1927, that Marcel Riesz, the young brother
of Frederic Riesz, showed that, for all p > 1, conjugation maps LP into LP.

In 1925, when it was published, the theorem of Kolmogorov seemed to be
only an interesting curiosity. The weak L' space was not yet defined (in fact,
it was first defined because of this theorem). Kolmogorov gives an application
to the partial sums of Fourier series as a consequence of his result: they con-
verge to the function in LP for p < 1, and so they converge in measure. It was,
according to Zygmund, the first appearance of the idea that the partial sums
could be expressed in terms of harmonic conjugates ([Zyg59], Vol. 1, p. 381,
§6). This curiosity, and especially its consequences for the partial sums, imme-
diately attracted attention, as witnessed by Littlewood’s article in 1926 “On
a theorem of Kolmogoroff ” [Lit26], which brings complex variable methods
to bear on the problem.

Today this theorem is an important one because the Hilbert transform
is the prototype of a whole class of singular integrals which have the same
property. And this property of mapping L' into weak L' together with that
of mapping L? into L2, leads to the proof of Marcel Riesz’s theorem by using
a powerful tool, the interpolation theorem of Marcinkiewicz ([Mar39], 1939).
In the second edition of Zygmund’s book Trigonometric series [Zygb9] (1959)
Kolmogorov’s theorem is treated as a major result and two proofs of it are
given, one using real analysis and the other using complex analytic functions.

1.3 Fourier series, integration and probability

Kolmogorov’s first publications, which I will discuss a bit later, are about
Fourier series. From 1925 on, he worked on a host of other subjects, in
particular integration and probability. These two subjects are related to
Fourier series.

3 “The integral and the trigonometric functions” (in Russian), Moscow, 1915
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1.3.1 The integral of the harmonic conjugate
of an integrable function

Historically, every definition of the integral generates a new class of Fourier
series; those whose Fourier coefficients are obtained with the Fourier formula
when the integral is evaluated using the given definition. In fact, Fourier series
have often served as a testing ground for different definitions of the integral.
We thus can define Fourier-Riemann series, Fourier-Lebesgue series, Fourier-
Stieltjes series, Fourier-Denjoy series, Fourier-Schwartz series, and on and on.
Kolmogorov himself was essentially interested in Fourier-Lebesgue series. At
the same time, he asked the question: while the harmonic conjugate of a
Lebesgue-integrable function is not necessarily Lebesgue-integrable, could it
be integrable in a more general sense? This question is answered by an article
which appeared in 1928. This article is in French and entitled “Sur un procédé
d’intégration de M. Denjoy”. This title is translated in the Selected Works by
“On the Denjoy integration process”, which is a mistake (it should be “On
a Denjoy integration process”). The English title makes one think that the
article concerns Denjoy’s totalization, either the first [Denl2], which showed
how to integrate any differentiable function, or the second [Den33, Den4l],
which gave a method for calculating the coefficients of an everywhere conver-
gent trigonometric series given its sum. But Kolmogorov’s article had nothing
to do with all this. In 1919, Denjoy had published in Comptes rendus a note,
“Sur lintégration riemannienne” [Denl9], in which he gave three general-
izations of the Riemann integral, all three of them containing the Lebesgue
integral (which he called in this note “besguienne”; this would not have pleased
Lebesgue, who, they say, had threated Denjoy that he would call the total-
ization “lintégrale joyeuse”, that is “joyous integral”; in any case the name
“besguien” did not survive). These three generalization were called A), B) and
C). Kolmogorov is quite clear: he is talking about the integral B). It has no
relationship, as far as I know, with either the first or the second totalization.
As far as I know, this is the first and the only interesting usage of the integral
B). There is an explanation of all this and Kolmogorov’s result on pp. 262-263
of the first volume of [Zyg59].

1.3.2 Series of independent random variables
and lacunary Fourier series

The knowledge and the ideas of Kolmogorov concerning measure and inte-
gration were formed at this time, and later had a major impact on his inter-
pretation of probabilities. But we must say that his first work in probability
theory came essentially from Rademacher series, considered as series of inde-
pendent random variables. In 1922, Rademacher [Rad22] published his theo-
rem about the Rademacher orthogonal systems: L? convergence implies con-
vergence almost everywhere. The article [KK25] of Khinchin (or Khintchine)
and Kolmogorov in 1925 refines and extends this result: L? convergence and
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almost everywhere convergence are equivalent for a series of independent ran-
dom variables, as are L? divergence and almost everywhere divergence. This
article is mentioned in the List of Works of the Selected Works where it says
that it appears in Vol. 1 along with all of the articles about integration and
orthogonal series; in fact, it appears in Vol. 2, along with the other articles
which are dedicated to probability. This article motivated many later studies
of lacunary Fourier series, while, on the other hand, the study of lacunary
Fourier series and of random Fourier series furnished new tools to be used
in probability. The classical reference for this subject, as for the others, is
Zygmund’s book.

It is wonderful that Kolmogorov himself had established the theorem about
almost everywhere convergence of lacunary Fourier series in 1922, before any
mention had been made of independent random variables and at the same
time as Rademacher’s article appeared. This work appeared in 1924, before
the article with Khinchin. He deals with more than the L? case; he shows in
a few lines that almost everywhere convergence holds for any Fourier series
which is lacunary in the sense of Hadamard, that is, in the sense that the
ratio of a frequency to the preceding frequency is always greater than some
number g > 1.

1.4 The descendants of the articles of young Kolmogorov

In 1923 and 1924 young Andrei Nikolaevich had only published articles about
Fourier series. We have already discussed two aspects of these articles: diver-
gence and lacunary Fourier series. It seems appropriate to complete this visit
before finishing our promenade.

All of these articles are written in French and announce both the date when
they were written and the date when they were published. The first, written
on June 2nd, 1922, and published in 1923 in Fundamenta Mathematica, is the
one concerning almost everywhere divergence which I said above made a great
sensation at the time. Although the article was short, five pages, the technique
seemed so elaborate that Zygmund decided not to put it into his treatise. A
fortiori the proof of the existence of an everywhere divergent Fourier-Lebesgue
series, of which a short indication had been given in a note to Comptes rendus
in 1926, seemed to him to be unpublishable in his book. Today these proofs
have been simplified, and, in particular, the reduction of the second result
to the first has become part of a rather general framework. In Katznelson’s
book, a new edition of which has appeared recently, he gives the scope of this
result with all the details and the description of the divergence sets for other
classes of functions, such as the continuous functions, in a few pages at the
end of his chapter about the convergence of Fourier series.

The second article, in the order in which they were written, is that of
October 7, 1922, published in Fundamenta Mathematica in 1924. This is a
very short article, two pages, which contains two theorems. The second is
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the one about lacunary Fourier series which I have already discussed. It has
generated a remarkable number of articles, because the subject of lacunary
Fourier series is related to all of functional analysis and, in particular, with
the geometry of Banach spaces simultaneously with probability. One gets an
idea of the work in this area (in particular that of Banach, Sidon, Zygmund,
Kaczmarz and Steinhaus, Rudin, Marcus and Pisier, Bourgain) by looking
at the chapter “Lacunes et randon” of my book with Pierre-Gilles Lemarié-
Rieusset.

Today, that is, after the work of Carleson in 1966, the first theorem is
totally outdated. But it seems in any case worth discussing as the beginning
of a beautiful story. Kolmogorov shows that, if f is an L? function and if m(n)
is a lacunary sequence in the Hadamard sense, then the partial sums of order
m(n) converge almost everywhere to f. This date by which this result should
be applied has passed, but we describe the simple and interesting method of
its proof anyway; first to decompose the series into blocs B(n) corresponding
to frequencies situated between m(n) and m(n+ 1), then to regroup the B(n)
into two series according to whether n is even or odd. For each of these series
the convergence of the Fejér sums implies the convergence of the partial sums
with large gaps at the end, thus, the convergence of either the partial sums
of order m(2n) or those of order m(2n + 1) (depending on the series). Thus,
because of the gaps, this gives for each of the two series convergence almost
everywhere of the partial sums of order m(n). Until 1966 this was the best
known result on convergence for the L? class, and many specialists thought
that it could not be improved (as far as I remember Zygmund was one of
them). It could then have been tempting to extend it to LP, p > 1, by using
an analogous decomposition of the Fourier series. This was the monumental
work of Littlewood and Paley in the 1930’s; this decomposition is now called
the Littlewood-Paley decomposition, and we just saw that it is exactly that of
Kolmogorov. But it was necessary to develop an arsenal of weapons to do it,
which is justifiably called the Littlewood-Paley theory. This theory was not
yet finished when the first edition of Zygmund’s book appeared in 1935, but
there is an excellent explanation of it in the second edition which appeared in
1959.

The justification at the time was the extension to L? of Kolmogorov’s L?
theorem. In 1966 and 1967, the theorems of Carleson and Hunt changed things
completely: a much better result was obtained without using the decompo-
sition and the theory of Littlewood-Paley. If Zygmund had wished to keep
everything up to date, he should have included these new results in a new
edition and renounced the old methods. Instead, he renounced the prepara-
tion of a 3rd edition and settled for several “reprints” of the second edition,
with only slight additions. A “third edition” was produced recently by Cam-
bridge University Press. Luckily it is nothing more than the second edition
with the addition of an introduction by Robert Fefferman. The Bulletin of
the American Mathematical Society asked me to review this book for them, a
review I was quite pleased to write, as the book is a masterpiece, and because
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the Littlewood-Paley theory, although it no longer serves its initial purpose,
has become an essential tool in other areas of analysis particularly in the
study of partial differential equations. The exposition given by Zygmund is
one of the best that exist. It is sometimes good, in mathematics, to think
twice before throwing old things away.

The third article, concerning the order of magnitude of Fourier coefficients,
was written on December 3, 1922, and published in 1923 in the Bulletin of
the Polish Academy of Sciences. It establishes that, if the coefficients of a
cosine series form a convex sequence converging to zero, then the series is a
Fourier-Lebesgue series and, therefore, there exists Lebesgue-integrable func-
tions whose Fourier coefficients converge to zero as slowly as anyone could
want them to. This fact was discovered over and over, independently, by dif-
ferent mathematicians. The priority for the discovery should surely be given
to W. H. Young, in his article “On the Fourier series of bounded functions”
from 1912. For Fourier integrals, the corresponding result, that a continuous
even function which converges to zero at infinity and is convex to the right of
zero is equal to the Fourier transform of a positive integrable function, is at-
tributed to Pdlya 1949 (the functions in question are called “Pdélya functions”,
and it would be easy to justify calling the corresponding sequences “Young
sequences”). But Kolmogorov adds a necessary and sufficient condition for the
cosine series that he treats to converge towards the function in the L' metric,
that is, the condition that the coefficients be o(1/logn): this is totally new.

The fourth article, written in common with Seliverstov (or Seliverstoft), is
a note to Comptes rendus from January 14th, 1924; it was a time when the
Comptes rendus attracted some very good works because they were published
so quickly. It concerns almost everywhere convergence and an improvement
of the conditions given by Hardy for trigonometric series and by Mensov
(or Menchoff) for orthogonal series. It is the first of a series of articles of
Kolmogorov and Seliverstov (1926), Plessner (1926), Hardy and Littlewood
(1944), whose content is found in Zygmund’s book from 1959 and which are
only interesting from a historical point of view because of Carleson’s theorem.
The methods are in any case very clever and might be useful some day for
other purposes.

I now stop the promenade in 1924, when Andrei Nikolaevich was not yet
twenty one years old. He had been a precocious genius, in tune with the latest
developments of a theory which had been copiously “plowed”, and he left a
very deep mark on it. It is true that in the beginning of the twentieth century
some very young men made huge contributions to the rise of mathematics.
The beauty of mathematics can attract young people, even in difficult and
troubled times, and it seems to me that other Kolmogorovs are in the process
of appearing, men or women, individuals or groups of individuals, on one
continent or on another. Perhaps in Europe, perhaps in France, and there is
no better way to leave Andrei Nikolaevich than to wish them welcome.
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Appendix:
Two other aspects of Kolmogorov’s results
concerning harmonic conjugates

by Nikolai Nikolski

I The A-integral of Kolmogorov

The A-integral was introduced by Kolmogorov in his classic book [Kol33]
(p. 65 of the American edition) under the name of generalized expected
value of a random variable (the name “A-integral” was proposed later by
Kolmogorov himself). A function f is A-integrable if

1. f belongs to weak L! (that is, if lim;— t|{|f| > t}| = 0), and:

2. the limit lim;— f(z)dz exists (we call this limit (A)/ fdzx).
{Ifl<t}

Here dzx is an arbitrary finite measure. One can view this notion as a lebesguian
analogue of the “principal value” of Cauchy lim; fi . f(z)dx on the real
axis. In the case of the interval [0, 2] the definition had been proposed before
Kolmogorov, by E. Titchmarch [Tit29], at first without the condition (1).
But, as was proved in [Tit29], in this case the “integral” is not additive. On
the other hand, the combination of conditions (1)-(2) has become useful in
probability, in harmonic analysis and in complex analysis. Dozens of articles
have been published on the subject. In particular:

1. E. Titchmarch [Tit29] showed (1929) that if f € L'([0,2x]), then its
harmonic conjugate f is A-integrable and the conjugate Fourier series is
the Fourier series of f in the sense of the A-integral.

2. P. Ulyanov [Uly57] showed that a Cauchy transform f(z) = L. , ht(t_)jt
of a function h € L'(y) on a smooth contour v is a Cauchy A-integral of
its boundary values (this result is not true if, e.g. v has angular points).

3. A. B. Aleksandrov [Ale81] showed that Ulyanov’s result extends to func-
tions f of the Smirnov class Nev™ whose boundary values satisfy condition
(1) of the definition. He also proved analogues of this result for harmonic
functions on R”, and he used the A-integral to implement the duality
CI(D)* = H®(D) between the space of Cauchy integrals CI(D) = L'/H*
and the algebra H>* (D).

4. Other important publications on this subject are [ABGHV95], [Luk82],
[Sal88], [Mad84]; in particular, [ABGHV95] contains an application of the
A-integral to the description of those subsets of the unit circle for which
one can arbitrarily choose the Cauchy data for the Laplace equation.
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IT On the weak (1,1) type of the harmonic conjugate

S. A. Vinogradov [Vin81] strengthened Kolmogorov’s theorem in the following
way: the map u + fi is continuous as a map U* — weak L' where U* is the
dual of the space of uniformly convergent Fourier series (replacing C(T)* —
weak L' in Kolmogorov). This theorem has many applications, see [Kis87] for
the general panorama.
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Kolmogorov published only two papers related to mathematical logic. They
are concerned with aspects of intuitionism and contain simple and funda-
mental contributions. Although they were written at the beginning of his
mathematical career, it seems that Kolmogorov’s interest for mathematical
logic was long-lasting, as shown for instance by his work on the closely re-
lated topic of complexity!. We will start by explaining the content of these
works, presenting their historical context, and discussing their current rele-
vance. We conclude with a presentation of a recent development which involves
the results from both papers. To write this survey, I have been helped by the
references [Hei67] and [Koll], to which I direct the reader for further infor-
mation?. T wish to thank Hugo Herbelin and Per Martin-Lof for their many
comments on a preliminary version of this text.

2.1 The first paper (1925). Formalization
of intuitionistic logic

2.1.1 Historical context

In this section, we will present Kolmogorov’s first paper [Kol25] concerning
mathematical logic, which was published in Russian in 1925 and only trans-
lated in English in 1967 [Hei67]. The context in which it appears needs to
be explained in order to fully understand the subject of this paper. At that

! See the Chaps. 14 (by B. Durand and A. Zvonkin) and 15 (by P. Vitanyi) in this
volume. (Editor’s note.)

2 The references [Hes03] and [Man98], that I discovered after writing this survey,
are also directly relevant
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time, the debate between Brouwer and Hilbert concerning the foundations of
mathematics was raging. Weyl, who was Hilbert’s most brilliant disciple, had
just written a paper [Wey21] where, in dramatic language®, he allied himself
to Brouwer’s cause, and strongly criticized Hilbert’s Axiomatic approach. The
paper of Hilbert [Hil23] quoted by Kolmogorov, although less virulent than
the previous one [Hil22], was partly an answer to this article of Weyl and
to Brouwer’s criticisms. Many eminent mathematicians, such as Borel and
Lebesgue, insisted on the doubtful status of transfinite reasonings [Bor50].
It may be guessed that such questions were subjects of animated discussions
among Lusin’s students?, among whom were Khintchine, P. S. Novikov and
Kolmogorov. Echoes of such discussions can be found in the examples quoted
by Kolmogorov at the end of his paper®.

Hilbert’s article [Hil23] raises the problem of justifying the rules of quan-
tification (both existential and universal) over an infinite domain, in particular
the following principle

(=Vz.A) — Jz.-A,

which follows from the Principle of Excluded Middle, and may be used to
deduce the existence of an element dx.—A from a proof of the impossibility
of its non-existence —Vx.A®. This is a typical instance of what Hilbert calls a
transfinite argument, a terminology which is also used in Kolmogorov’s paper
(these terms may be somewhat surprising, since the adjective “transfinite” is
associated nowadays with the use of the class of countable ordinals, or more
generally of uncountable classes). Hilbert remarks that this rule is justified
in the case of quantification applied to a finite domain. But, accepting the
critique of Brouwer and Weyl, he admits that the intuitive meaning of Vx.A
and Jx.A is far from clear in general. As, in analysis, it is not legitimate to
“extrapolate to infinite sums and products the theorems which are valid for
finite sums and products”, it is not possible here to treat quantifiers applied to
an infinite domain with the same semantics used in the finite case. Hence, the
general idea will be to treat formally such quantifications as Vz.A and Jz.A4,
stating precise rules of inference that apply to them, and show that those

3 As shown by this sample quote: “In this coming dissolution of the empire of
analysis, even if few are forewarned, I was looking for a firm ground... Because
this state is not tenable, as I convinced myself, and Brouwer, here is the revo-
lution!”. This polemic culminated in 1928 when Hilbert fired Brouwer, and the
editors opposing this measure, from the editorial board of the prestigious journal
Mathematische Annalen [vanD90]

Lusin, following Borel and Lebesgue, was also rather critical of purely formal uses
of transfinite reasonings [Lus30]

5 Indeed, Khintchine [Khi26] and Kolmogorov [Kol29] both published general arti-
cles presenting the debate on intuitionism

In this text, we use the following notation: = A for the negation of A, A — B for
A implies B, and we denote A1 — (A2 — B) by A1 — Az — B. The notation
A(x) simply means that  may be a free variable in A and we denote by A(t/z),
or simply A(t), the result of substituting ¢ for = in A
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rules can only lead to correct results. (This is quite similar to the treatment
of possibly divergent series in analysis.) As Hilbert stated: “By staying within
finitary territory, the goal is to succeed in handling freely the transfinite and
in dominating it entirely!”. The method that Hilbert suggests is extremely
original. It consists first in defining the quantifiers from a symbol 7 subject
to a unique axiom, namely

A(r, A) — A(x),

which expresses a strong form of the Axiom of Choice; then, one must show
that this symbol may be eliminated from any proof of a finitary result”.

But Hilbert’s paper is only a programme, and contains no definitive re-
sult®. In this context, the main result of Kolmogorov’s first paper is very
remarkable, since it purports to prove conclusively that transfinite methods
can only yield correct finitary results. Moreover, this proof is different from
the one suggested by Hilbert, and is very natural. It confronts directly the
problem of interpretation of quantifiers, and avoids considering the 7 symbol
(in fact, we will see below that Kolmogorov’s method does not apply directly
to an interpretation of the strong form of the Axiom of Choice that is derived
from this symbol).

2.1.2 Kolmogorov’s formalization of intuitionistic logic

Kolmogorov’s first contribution in this paper is a complete formalization of
minimal propositional calculus (a strict subset of intuitionistic logic which
is usually attributed to Johansson [Joh36]) and minimal predicate calculus.
As indicated by Wang, Kolmogorov’s formalization is no less remarkable than
Heyting’s [Hey30]. The very possibility of such a formalization is already quite
surprising, if we reflect that the motivations behind intuitionism were opposed
to the process of formalization®. Kolmogorov’s work is final concerning propo-
sitional calculus, but less precise with respect to predicate calculus.

7 Using Hilbert’s example, if A is the predicate “to be corruptible”, then 7, A would
be a man “of such absolute integrity that if he turned out to be corruptible, then
all men would be corruptible” [Hil23]. It is then possible to define Vz.A as equiv-
alent to A(7,A). Afterwards, the symbol 7 will be replaced by a dual symbol e,
designating a choice function. Bourbaki uses the symbol 7 in its formulation of
set theory, but with the dual meaning of the choice symbol e. Hilbert’s method
is explained very suggestively in the reference [Wey44]

A general result of elimination of the symbol 7 in analysis was published by
Ackermann [Ack24]; von Neumann [vonN27] found a problem in this proof and
showed that its range of applicability is much more restricted than stated, in fact
similar to Kolmogorov’s result. It seems that the problem of elimination of the 7
symbol in analysis remains open [Kre65]

According to Wang [Wan87], Brouwer considered this result to be more remark-
able and surprising than Godel’s celebrated incompleteness theorem [God31]



22 Thierry Coquand

The formalization is directly inspired from Hilbert [Hil23], who had sug-
gested the following axioms for implication and negation:

1. A-B—A
.(A-A—-B)—A—B
.(A-B—-C)—-B—-A—-C
.(B—=-C)—-(A—-B)—A—-C
.A—--A—-B
.(A-B)—»(~A—B)—B

SO W N

The only inference rule is the modus ponens: one may deduce B from A — B
and A. For example, taking B = A in the first two axioms (i.e. by instantiation
of B by A), we obtain the following two special cases (two instances):

A—A— A

(A—-A—-A)—>A— A

and by means of modus ponens, it follows that we also have A — A.

The notions of semantic were not yet widely developed and it is inter-
esting to notice how Kolmogorov states the property of completeness of this
axiomatic system: it is not possible to add a new axiomatic schema without
contradiction. More precisely, a new axiom, such as

is either provable from the axioms above, or leads to a contradiction, i.e. one
may then deduce an arbitrary proposition!?.

The first four axioms deal only with implication, and Kolmogorov raises
the pertinent question of their completeness for implication. As explained by
Wang (p. 416 of [Hei67]), this system is not complete, but it becomes so if
Peirce’s law

(A—B)—A)— A

is added to it.
The last two axioms concerning negation are both rejected by Kolmogorov,
and replaced by a unique axiom called principle of contradiction

(A-B)— (A—-B)— -4

The last of Hilbert’s axioms must be rejected because it may be seen as
a formulation of the principle of excluded middle A V —A, as explained by
Kolmogorov in his Note 9'!. As noticed by Kolmogorov in his Note 3, the
principle

(-Vz.A) — Jx.-A

10 In this example, one may deduce this new axiom from the ones given previously
' The numbering of notes refers to that used in the English translation in [Hei67]



