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Preface

X-Ray fluorescence analysis (XRF) has developed into a well-established
multi-elemental analysis technique with a very wide field of practical appli-
cations, especially those requiring nondestructive analytical methods. Over a
long period of time, steady progress of XRF was made, both methodological
and instrumental. Within the last decade, however, advancements in tech-
nology, software development, and methodologies for quantification have pro-
vided an impetus to XRF research and application, leading to striking new
improvements. The recent technological advances, including table-top instru-
ments that take advantage of novel low-power micro-focus tubes, novel X-ray
optics and detectors, as well as simplified access to synchrotron radiation,
have made it possible to extend XRF to low Z elements and to obtain two-
and three-dimensional information from a sample on a micrometer-scale. The
development of portable and hand-held devices has enabled a more flexible
use of XRF in a variety of new situations, such as archaeometry and process
control. Furthermore, synchrotron radiation provides high excitation flux and
even speciation capabilities due to energetically tunable radiation.

Because of these recent advancements, the editors decided to compile a
practical handbook of XRF as a resource for scientists and industrial users that
provides enough information to conceive and set up modern XRF experiments
for use in a wide range of practical applications. Additionally, selected sections
consist of a concise summary of background information for readers who wish
to gain a more in-depth understanding of the topics without conducting a
lengthy search of the literature. The present handbook is not intended to
be a textbook with interdependent chapters, rather a reference in which the
information in each section is largely self-contained. In this way, the reader is
not required to read the handbook from cover to cover, but can refer to any
section without a lot of additional background.

The handbook is organized as follows. The first chapter provides a histor-
ical account of XRF and an introduction reflecting the extension of XRF to
modern fields of methodology and applications. Chapters 2, 3, and 4 follow
the path of a photon in an XRF instrument, originating at a source (2), being
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modified by an optic (3), and registered by a detector (4). Chapter 5 deals with
the various aspects of quantifying the spectra obtained from a sample by this
instrument. Expert information on how to prepare the sample is the theme
of Chapter 6. Chapter 7 is devoted to a variety of applications: micro-, trace,
and layer analysis; environmental, geological, archaeometric, forensic, and bio-
medical applications; and process control. The handbook concludes with a
discussion on safety regulations and useful links to physical data (Chapter 8).

We would like to take this opportunity to express our gratitude to all of
the authors, especially those who completed their contributions at an early
stage in the preparation of this book and patiently awaited its completion.
Our thanks also go to Katherine Roegner of the Technical University, Berlin
for her support in matters of language.

We hope you enjoy this practical handbook and that it contributes to the
continued development of XRF. We also hope that it encourages and inspires
newcomers to the field in exploring the multifaceted aspects of XRF.

Burkhard Beckhoff,

Birgit Kanngiefer,

Norbert Langhoff,

Berlin, Reiner Wedell
November 2005 and Helmut Wolff
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ADC analog to digital converter

AD Alzheimer’s disease

ALS amyothrophic lateral sclerosis

APDC ammonium pyrrolidine-dithiocarbamate
APP analog pulse processing

APS active pixel sensor

APS Argonne Photon Source

BFL Bragg-Fresnel lens

BLR baseline restorer

BM bending magnet (synchrotron ID)
CAMEX pn-CCD camera on XMM and ABRIXAS space missions
CL cathodoluminescence

CMC carboxymethyl cellulose

CNS central nervous sytem

CRL compound refractive lens

CRM certified reference material

CVD chemical vapour deposition

DAC digital to analog converter

DAC diamond anvil cell

DefMA definition of measurement and application conditions
DL detection limit

DPP digital pulse processing

DSP digital signal processing

DDTC sodium diethyldithio-carbamate

DU depleted uranium

EDS energy dispersive system (spectroscopy)
EDXRS energy-dispersive X-ray spectroscopy
EDXRF energy-dispersive X-ray fluorescence
EDXRD energy-dispersive X-ray diffraction
EFEM equipment front end module

EIC empirical influence coefficient

EMMA (see energy dispersive miniprobe multielement analyzer

micro-XRF)
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ENC
EPMA
EMPA
EXAFS
FAAS
FEL
FET
FOUP

F-PC
FP
FWHM
GEXRF
GPS
GPSC
HCA
HDAC
HPGe
HOPG
ICP-AES

ICP-MS
IEF
ID

IDX
LA-ICP-MS

LOD
LLD
MDL
MIBK
micro-PIXE
micro-XRF (u-XRF)
micro-SRXRF (also
SXRF)
ML grating
NDXRF
NaDDTC
NDXRF
NEXAFS
PHA
poly-CCC
PCA
PCs
PD
PIN-diode
PIXE
pn-CCD
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equivalent noise charge

electron probe micro analysis

electron microprobe analyser

extended X-ray absorption fine structure

flameless atomic absorption spectrometry

free electron laser

field effect transistor

front opening unified pods (plastic box used
for wafers)

flow proportional counter

fundamental parameter

full width at half maximum

grazing emission X-ray fluorescence

global positioning system

gas proportional scintillation counter

hierarchical cluster analysis

hydrothermal diamond anvil cell

high purity germanium

highly oriented pyrolytic graphite

inductively coupled plasma - Auger electron
spectroscopy

inductively coupled plasma - mass spectroscopy

isoelectric focusing

insertion device (synchrotron, e.g. wiggler, bending
magnet)

4’-iodo-4’-deoxydoxorubicin (anticancer drug)

Laser Ablation — Inductively Coupled Plasma —
Mass Spectrometry

limit of detection

lower level of detection

minimum detection limit

methylisobutylketone

see PIXE

micro-X-ray fluorescence (analysis)

micro-synchrotron X-ray fluorescence

multilayer grating

non-dispersive X-ray fluorescence
sodium diethyldithiocarbamate
nondispersive X-ray fluorescence
near edge extended X-ray absorption fine structure
pulse height analyzer

polycapillary conical collimator
principle component analysis
principal components

Parkinson’s disease

positive /intrinsic/negative detector
proton induced X-ray emission
pn-charge coupled device



PSD

PSPC

PTFE

P-Z

QXAS

RDA

REE

RI

RM

ROI

ROSITA, XEUS,
XMM, ABRIXAS

RTM

SAXS

SDD

SDS-PAGE

SEM
SEM/WDX

SEM/EDX

SIMS
SHA
SMIF

SML

S-PC

SPC

SPE

SR

SRXRF (SR-XRF)

SRXRFA

SR-TXRF,
(SRTXRF)

SRW

STJ

TIC

TXRF

TXRFA
TZM-anode
VLS grating
VPD
VPD-SR-TXRF

WDXRF
WDS
WDX
XAFS
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position sensitive detector

position sensitive proportional counter
polytetrafluorethylene

pole-zero compensator

quantitative X-ray analysis system (spectroscopy)
regularized discriminant analysis

rare earth element

refraction (refractive) index

reference material

region of interest

space missions of ESA

rhenium-tungsten-molybdenum composite material

small angle X-ray scattering

silicon drift detector

sodium dodecyl sulphate polyacrylamide gel
electrophoresis

scanning electron microscopy

scanning electron microscopy/wavelength-dispersive
X-ray analysis

scanning electron microscopy/energy-dispersive X-ray
analysis

secondary ion mass spectrometry

shaping amplifier

standard mechanical interface (plastic box used for
wafers)

synthetic multilayer

sealed proportional counter

statistical process control

solid phase extraction

synchrotron radiation

synchrotron radiation X-ray fluorescence

synchrotron radiation X-ray fluorescence analysis

synchrotron radiation total reflection X-ray fluorescence

software package for synchrotrons ‘SRW’ developed by
ESRF

superconducting tunnel junction

theoretical influence coefficient

total reflection X-ray fluorescence

total reflection X-ray fluorescence analysis

Mo + W anode with admixtures of Ti and Zr

variable line spacing grating

vapour phase decomposition

vapour phase decomposition - synchrotron radiation -

total reflection X-ray fluorescence

wavelength dispersive X-ray fluorescence

wavelength dispersive system

wavelength dispersive X-ray analysis

X-ray absorption edge fine structure
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XANES

XAS

XPS

XRD

XRF

XRFA

XRGS

XSI

ADP, EDDT, KAP,
PET, RAP, TIAP

X-ray absorption near-edge structure

X-ray analysis system (spectroscopy)

X-ray photo electron spectroscopy

X-ray diffraction

X-ray fluorescence

X-ray fluorescence analysis

X-ray geo scanner (geoscanner)

X-ray scanning instrument

Special crystals used in X-ray diffraction and WDS: (see
Eugene P. Bertin, Principles and Practice of X-Ray
Spectrometric Analysis, Plenum Press New York 1975
(ISBN: 0-306-30809-6))
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Introduction

T. Arai

1.1 The Discovery of X-Rays and Origin
of X-Ray Fluorescence Analysis

The development of the modern theory of atomic structures was initiated
based on the discovery of X-rays (1895). It was further triggered by the aware-
ness of the existence of electrons in the atom, which was clarified by the line
splitting observed when applying an external magnetic field (1896) and by
the scattering of alpha particles at the atomic nucleus (1910). During the
past few decades, X-ray physics has not only inspired and supported various
research and development in the natural sciences, but has also had a ben-
eficial impact on medical applications [1]. In today’s civilized world, X-ray
technology continues to play an important role in the advancement of mate-
rial science, inspections in production processes, and diagnostics for medical
treatment.

Cited below are two evolutional events in the history of X-ray science.

Watson and Crick proposed the DNA structure based on biological and
structural chemistry including X-ray crystal structure analysis. Wilkins
precisely studied the crystal structure using a rotating crystal method. The
consolidation of their works led to the determination of the double helical
structure of DNA, which has a three-dimensional structure of a screwed ladder
and a regular arrangement of the four bases: adenine, thymine, guanine, and
cytosine in the space between the two ladder poles [2].

The combination of the high X-ray transparency of the human body and its
use for medical treatment brought about a notable advance in the use of X-rays
for medical applications. Oldendorf planned to develop a relevant instrument
in 1960. Then, Cormack presented his idea that included a mathematical
treatment for three-dimensional imaging in 1963 and 1964. As Hounsfield used
a radioactive source, a long time was required for taking a picture. Finally, he
developed a computer-assisted tomogram using the consolidated technology
of X-ray tube radiation, X-ray detectors, and computer calculations for the
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preparation of three-dimensional pictures of X-ray intensity and indications
for easy and precise diagnosis. Clinical data were presented in 1972 and 1973.
Many instrumental improvements led to high-grade medical treatment that
was founded on the present X-ray machine [3].

On November 8, 1895, Wilhelm Conrad Rontgen discovered X-rays in
his laboratory at the physics institute of Julius-Maximilians University of
Wiirzburg in Bavaria. He had studied cathode rays using an air-filled Hittorf-
Crooks tube, which was shaded with a black paper. The tube wall was hit by
electrons and emitted light. In his darkened room, he noticed a weak lumi-
nescence which radiated from a fluorescent screen located near the tube. He
recognized “eine neue Art von Strahlen” (a new type of rays), which originated
from the tube. After changing the experimental and surrounding conditions,
he was able to observe the emission of weak rays of light on the fluorescent
screen. He announced the new experimental results. It was immediately recog-
nized that this discovery might be used to look into the structure of a living
human body and the interior of constructed materials [4, 5].

After the announcement by Rontgen, two further important discoveries
were made: radioactivity from uranium by Becquerel (1896) as well as radium
and polonium by Marie and Pierre Curie (1898).

Using an aluminum filter method for the separation of X-rays and an ion-
ization chamber for X-rays detection, Barkla studied the nature of X-rays
relative to the atomic structure. Observing the secondary X-rays which were
radiated from a target sample, he discovered the polarization of X-rays (1906),
the gaps in atomic absorption (1909), and the distinction between contin-
uous and characteristic X-rays, which consisted of several series of X-rays,
named the K, L, M ... series (1911). The intensity and distribution of con-
tinuous X-rays were dependent on the number of electrons in an atom, and
the characteristic X-rays were related to the electron energy configuration in
the atom [6]. In succession to Barkla’s works, the wave properties of X-rays
were investigated by von Laue, who exhibited X-rays diffraction from a single
crystal, which was composed of a three-dimensional structure with a regularly
repeating pattern (1912). The experimental results showed the comparability
of the wavelength of X-rays with the atomic distances and confirmed the wave
properties of X-rays.

W. H. Bragg, who derived the famous Bragg’s formula, was interested
in von Laue’s experiments. Using a Bragg spectrometer, the X-ray reflection
patterns from single crystals of NaCl and KCI were observed to be the regular
patterns of an isometric system showing differences in the X-ray intensity
when comparing sodium and potassium. This was the starting point of crystal
structure analysis with X-rays [7].

For the expansion of radiographic technology, the need for a heavy-duty
X-ray tube emerged. After the tungsten filament (1908) and the tungsten
incandescent lamp (1911) were invented, Coolidge developed a new type of
tube setting, successfully solving the problem of low power and instabilities of
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a gas-filled discharge tube. In this new tube, thermal electrons emitted from a
hot filament hit the target, which was an emission source of X-rays (1913) [8].

Following the investigation of the properties of X-rays by Barkla, Mose-
ley studied characteristic X-rays in an exchange of communications with
W.L. and W.H. Bragg. He put target samples into a gas-filled discharge
tube, which were then irradiated with electrons for the generation of char-
acteristic x-rays. The narrow collimated characteristic X-rays hit the cleaved
surface of a K4Fe(CN)g-H20 crystal and the third-order lines of Bragg re-
flection X-rays were obtained, which were shown in the famous photograph
taken in 1913 [9]. Moseley elucidated the relationship between the character-
istic X-rays and the measured elements, and communicated his experimental
results to Bohr [10].

Siegbahn produced an X-ray spectrometer for a wider range of characteris-
tic X-rays. He measured the wavelengths of characteristic X-rays precisely and
classified them into «;, 3, 7y ... according to the X-ray intensities in the respec-
tive series. X-ray spectroscopy was established with these works (1913-1923).

In the next advances, Hadding tried to analyze rare earth elements using
the X-ray method. His work was supported by Siegbahn.

Due to the establishment of the structure of atoms, it became possible
to predict the existence of elements that had yet to be discovered. This was
based on the assumption that undiscovered elements belonging to the same
family of elements in the periodic table have the same chemical features. In
this respect, hafnium was isolated by von Hevesy and Coster (1923) [11] and
rhenium by Noddack and Tacke with the support of Berg (1925).

During the initial stage of the use of X-ray spectroscopy for chemical
analysis, the samples being analyzed were modified (or even destroyed) when
electron excitation was applied, leading to changes in the X-ray intensities.
Hadding, Glocker, and Frohnmayer pointed out the analytical problems of
inter-element effects in quantitative analysis. When electron excitation was
used, Coster and Nishina noticed sample evaporation because of the induced
heat in the sample (1925), and Glocker and Schreiber found concentration
changes in the constituent elements (1928). For the emission of character-
istic X-rays in X-ray spectrochemical analysis, the X-ray excitation method
was adopted as a non-destructive analysis method. Although the relative dis-
tance between the X-ray source and sample was reduced to increase the pri-
mary X-ray intensity, the resultant X-ray intensity was still insufficient to be
measured [12]. On the positive side background X-rays became lower and,
as a result for quantitative analysis, low intensity peaks could be measured
easily.

For the measurement of X-ray intensities an ionization chamber or a pho-
tographic plate had been used. Perrin invented the ionization chamber in
1896, which was used in Barkla’s works and adopted in Bragg spectrometers.
In 1928, Geiger and Miiller produced a new useful counter for the detection
of v-rays and X-rays, called the Geiger-Miiller counter. Although analytical



4 T. Arai

principles and procedures had been studied in the academic field, the devel-
opment of X-ray analytical instruments for general use had to wait until the
end of the Second World War.

During the Second World War, the precise measurement of the cutting
angle of quartz was required in mass production of oscillation plates. For this
purpose, an X-ray apparatus was built by Parrish and Gordon based on a mod-
ified Bragg ionization chamber spectrometer (1945) [13]. Based on production
experiences of the X-ray apparatus, Friedman introduced detectors for v-rays
and X-rays, as well as sensing head systems for various X-ray applications
(1947) [14]. Then he started to develop a prototype X-ray spectrometer for
the measurement of diffracted X-ray intensities and Bragg angles. Adopting
a new Geiger-Miiller counter and an electronic pulse counting unit (1947), a
quartz plate which was located at the rotation center of a goniometer was
replaced with a solidified powder sample (1945) [15].

When the iron-containing samples were measured using a Cu target X-ray
tube, an abnormal increase in X-ray intensity was found, because the iron
fluorescent X-rays radiating from a diffraction sample had strayed into the
detector. As a result of the realization that fluorescent X-rays could be de-
tected easily by this measuring system, a new X-ray fluorescence spectrometer
was built. Analytical problems of measuring weak fluorescent X-ray intensities
were encountered in the 1920s and the 1930s, which changed the requirements
for the improvement of instrumentation. Friedman and Birks adopted a high
power X-ray tube with a large window which gave rise to an increase in the
effective solid angle, contributing to a short distance between the x-ray source
in the x-ray tube and the sample to be analyzed. On the goniometer that is
used in X-ray diffraction measurements, a bundle of narrow nickel pipes was
used for collimation. Based on the need for a large reflecting surface, high re-
flecting power and relatively small lattice spacing, NaCl and fluorite crystals
were chosen (1948) [16]. Figure 1.1 shows the X-ray fluorescence spectrometer
developed by Friedman and Birks.

Expanding upon Friedman and Birks’ work, Abbott was successful in
building the first commercial X-ray fluorescence spectrometer in 1948 [17].
These works can be regarded as the beginning of modern X-ray spectrometry.

1.2 Historical Progress of Laboratory X-ray
Fluorescence Spectrometers

In this section, the historical progress and important developments of the
wavelength dispersive method in laboratory X-ray instruments are briefly
reviewed.

In 1964, Birks, one of the pioneers of the X-ray fluorescence spectrometer,
visited Japan and delivered a lecture “X-ray fluorescence: Present limitations
and future trends.” In his lecture, the analytical limits achievable in those days
were reviewed covering elements from sodium to uranium, the detectability of
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Fig. 1.1. The X-ray fluorescence spectrometer by Friedman and Birks [16].

1, X-ray tube; 2, specimen holder; 3, Soller collimator; 4, crystal; 5, Geiger counter;
6, base plate; 7, vernier for setting and reading the angular position of the crystal;
8, pre-amplifier

ppm order, the analytical precision of about 1%, and the possible analytical
error caused by the matrix effects [18]. Concerning the anticipated further
progress of the analytical method, he directed attention to the measurement of
light and ultralight elements, sample preparation, improvement of excitation
and detection of X-rays, utilization of computers for spectrometer control and
analytical calculation as well as to the energy dispersive method appearing
just then.

In 1976, Birks reviewed again the principles of X-ray fluorescence analysis
and the progress of analyzing techniques including the instrumentation and
the evaluation of the new methods. In this review, he emphasized the progress
in the matrix correction method and the fundamental parameter method,
which were led by the evaluation of the X-ray tube spectrum. In addition,
some applications and future expectations were discussed [19].

In 1990, Gilfrich made a survey of X-ray fluorescence analysis. He directed
attention to the new X-ray source, namely, the synchrotron radiation and to
the introduction of synthetic mutilayers as analyzing crystals, to advanced
X-ray technologies such as TXRF and EXAFS, semiconductor detectors for
energy dispersive techniques, and to the significant progress of data handling
with small computers [20].
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Furthermore, in 1997, Gilfrich [21] gave a retrospect on the historical de-
velopment of X-ray analysis during the past 100 years in commemoration of
the discovery of X-ray by W.C. Roentgen.

Against the backdrop of such constructive remarks and the popularization
of the X-ray fluorescence spectrometer, there have been many kinds of X-ray
instruments developed for various measuring purposes, so that the instruments
available today have gone ahead of the prediction by Birks in terms of type
and number.

An X-ray analysis system configured with a X-ray diffractometer and an
X-ray fluorescence spectrometer was introduced by Parrish [22]. As both
equipments were provided with a high voltage power supply for an X-ray
tube and shared a pulse counting system , it was widely utilized in labora-
tory applications. In addition, this spectrometer was equipped with a helium
attachment for measuring soft X-rays.

Spielberg, Parrish, and Lowitzsch described the functional elements of non-
focusing optics and the geometrical condition for their harmonizing combina-
tions [23]. They used a closer coupling of an X-ray tube for the sample and
a large solid angle of primary X-rays for higher fluorescent intensity. Conse-
quently, the inhomogeneity of fluorescent intensity distribution arising from
the change of irradiating density of primary X-rays on the sample was brought
forth. Their equipment was based on the Bragg spectrometer and had a par-
allel beam optics composed of a flat analyzing crystal and a double Soller
collimator. Furthermore, the X-ray tube, the composed X-ray optics, and a
sample container for primary X-ray irradiation were assembled in such a way
as to embody convenience of use.

Arai pointed out that the total reflection from a metal sheet of a Soller
collimator broadened a peak profile in its tails [24]. In addition, he studied
the aberration of peak profiles caused by the vertical (the direction parallel
to the goniometer rotation axis) divergence, reflection profiles from imperfect
single crystals, and spectral overlapping [25].

Campbell and Spielberg, and Parrish and Lowitzsch studied a double Soller
collimator on the basis of a flat crystal X-ray optics [23, 26].

Arai proposed as a practical solution that the horizontal divergence of a
sub-Soller collimator should be two or three times larger than that of the main
collimator, which was dependent on the grade of mosaic structure of analyzing
single crystals.

For the analysis of the light elements, a helium and vacuum path spectrom-
eter was offered by Miller and Zingaro for laboratory-use instruments [27].

An X-ray spectrometer for industrial applications, equipped with paral-
lel beam optics and named Autrometer, was developed by Miller and Kiley
in 1958. It was equipped with a step scanning goniometer, a tandem detec-
tor connecting a scintillation counter and a gas flow proportional counter,
and adapted with a helium path for light element analysis. The spectrome-
ter further incorporated the intensity ratio method designed to maintain the
X-ray intensity stability upon referring to the standard sample intensity for
quantitative determination [28, 29].
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Equipments other than the scanning (and parallel-beam-optics) spectrom-
eters, pursuing the basic features of rapid and high precision analysis for in-
dustrial applications, are the spectrometers equipped with multi-channel fixed
goniometers.

Kemp developed the first combination model of scanning and fixed channel
multi-element X-ray spectrometer based on the development and production
of an optical emission spectrometer [30].

Furthermore, Jones, Paschen, Swain, and Andermann proceeded with the
development of this advanced X-ray equipment, which adopted the focusing
circle optical system with curved crystals, the detectors with the gas discrim-
ination, and the direct capacitor accumulation of electric signals of the detec-
tor [31]. In order to obtain a higher intensity of measuring X-rays, focusing
optics were adopted using Johann or Johansson curved crystals. In the case of
the scanning goniometer, a curved single crystal moved in a straight line away
from the entrance slit on the focusing circle, and then the detector slit on the
focusing circle crawled along the four-leaf rose locus. The distance between
the entrance slit and the curved crystal center was proportional to the wave-
length of the measuring X-rays. The gas discrimination in the detector had
a favorable effect on the intensity reduction of backgrounds and overlapping
X-rays. The capacitor accumulation method was effective to measure a high
counting rate of analyzing X-rays.

For light element analysis of cement samples, a helium path was adopted
by Andermann, Jones, and Davidson [32], and then Andermann and Allen
intensified the X-ray analysis of various materials related to cement industry.
Additionally, a vacuum spectrometer was developed for light element analysis
of cement and steel production applications by Dryer, Davidson, and An-
dermann [33]. In order to procure high intensity stability of the measuring
X-rays and compensate the matrix effect, an X-ray monitoring method to
detect scattered X-rays from the sample was introduced into the intensity
measuring system by Andermann and Kemp [34]. However, the aforemen-
tioned capacitor accumulation and the monitoring method were changed to
the absolute intensity measurement using pulse-counting circuits with a clock
timer and the pulse selection method later.

Anzelmo and Buman presented a combined instrument which contained
a scanning goniometer and several fixed goniometers in one spectrometer, in
1983 at the Pittsburgh Conference. This was a new concept of adaptable use
in an analytical laboratory [35].

In 1995, Kansai, Toda, Kohno, Arai, and Wilson developed a fixed channel-
multi-element spectrometer provided with 40 fixed goniometers by adopting
logarithmic-spiral curved crystal monochromators. For high speed analysis,
high counting rate X-ray intensity measurement of 10 to 50 million counts
per second was carried out with a pure material by means of a combination of
an X-ray beam attenuator and high speed electronic circuits with fast counting
rate response. In the meanwhile, for the impurity analysis of various ores or
high purity materials, two receiving slits located beside each other, one for
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a fluorescent peak and the other for the background, were equipped in a
goniometer for background correction calculation [36].

The core technology of an X-ray spectrometer consists of the excitation
of fluorescent X-rays, the X-ray optics, and matrix correction calculations
based on the fundamental parameter method. Described in this section are
the remarkable progress and development in X-ray optics. Other features will
be touched upon in the following section.

1.3 Measurement of Soft and Ultrasoft X-Rays

The purpose of conducting soft and ultrasoft X-ray measurements is to study
the emission spectra influenced by chemical bonding or to make a quantita-
tive determination of low atomic number elements. For the study of emission
spectra, a high resolution spectrometer, and for quantitative determination,
a high intensity one are required, respectively. The analytical problems in a
quantitative determination of low atomic number elements originate from the
inherent performance caused by the low excitation efficiency of soft X-rays
and low reflectivity of spectroscopic device.

1.3.1 X-Ray Tubes for Soft and Ultrasoft X-Rays

In earlier days, most of the X-ray tube manufacturers supplied a side window
tube with a thick beryllium window (about 1 mm thick) for spectrometer use.
Inasmuch as these X-ray tubes are almost inefficient for X-ray measurement
of light elements owing to the low excitation efficiency, new X-ray tubes with
chromium and scandium target were developed on the basis of the side window
structure by Kikkert and Hendry [37]. Characteristic K-radiation from this
new tube passing through a relatively thin beryllium window can effectively
excite the fluorescent X-rays of light elements.

Caldwell used a General Electric XRD 700 spectrometer equipped with a
dual target (W, Cr) tube [38]. For heavy element measurement, the tungsten
target, and for light element measurement like titanium and silicon in high
alloy steel, the chromium target, were used, respectively. The analytical errors
for titanium and silicon could be reduced. It demonstrated an improvement in
the analytical accuracy of light elements by increasing the soft X-ray excitation
efficiency.

Mahn of Machlett Laboratories Inc. developed an end window X-ray tube
with a thin beryllium window and a rhodium target [39]. In order to minimize
the secondary electron bombardment effect on the thin beryllium window, the
target surface was charged with positive potential and the cathode filament
was earth-grounded. The L series X-rays from the rhodium target are effective
for excitation in soft and ultrasoft X-ray regions while the K series X-rays from
the target are effective for heavy element analysis.

Gurvich compared various X-ray tubes and emphasized the advantage of
the end window X-ray tube for light element analysis [40].



