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VALÉRIE PERRIER
LMC, IMAG, Grenoble
valerie.perrier@imag.fr

DOMINIQUE PICARD
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Instructions aux auteurs:
Les textes ou projets peuvent être soumis directement à lun des membres du comité de lecture avec

copie à G. ALLAIRE OU M. BENAÏM. Les manuscrits devront être remis à l’Éditeur
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Preface

This book is devoted to analyze the vibrations of simplified 1 − d models
of multi-body structures consisting of a finite number of flexible strings dis-
tributed along planar graphs.

We first discuss issues on existence and uniqueness of solutions that can be
solved by standard methods (energy arguments, semigroup theory, separation
of variables, transposition,...). Then we analyze how solutions propagate along
the graph as the time evolves, addressing the problem of the observation of
waves. Roughly, the question of observability can be formulated as follows:
Can we obtain complete information on the vibrations by making measure-
ments in one single extreme of the network? This formulation is relevant both
in the context of control and inverse problems.

Using the Fourier development of solutions and techniques of Nonharmonic
Fourier Analysis, we give spectral conditions that guarantee the observability
property to hold in any time larger than twice the total length of the network
in a suitable Hilbert space that can be characterized in terms of Fourier series
by means of properly chosen weights. When the network graph is a tree, we
characterize these weights in terms of the eigenvalues of the corresponding
elliptic problem. The resulting weighted observability inequality allows iden-
tifying the observable energy in Sobolev terms in some particular cases. That
is the case, for instance, when the network is star-shaped and the ratios of the
lengths of its strings are algebraic irrational numbers.

The observation time we obtain, twice the total length of the network,
is optimal. We justify the optimality in the case of a star-shaped network
consisting of three strings. We construct a solution, which is the composition
of waves with small support, that vanishes at the observation point in a time-
interval of length smaller than twice the total length of the network.

These observability results allow us also to solve the problem of control-
lability, namely, that of driving solutions to rest by means of a control acting
on one of the external nodes of the network, using the classical equivalence
property between observability and controllability. We describe systematically
the control theoretical consequences of the observability properties we have
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obtained, in terms of the approximate, spectral and exact controllability of
networks. More precisely, we deduce sufficient conditions on the network so
that a certain subspace (a dense one in the energy space) of initial data may
be driven to zero in a time equal to twice the total length of the network. This
subspace may be identified to be a Sobolev space under appropriate restric-
tions on the shape of the network and the lengths of the strings entering in
it. More generally, this space may be identified by means of the Fourier series
development of solutions on the basis of the eigenfunctions of the Dirichlet
laplacian on the network.

The techniques developed to handle this problem and the results we obtain,
allow us solving also other similar questions. In particular, the simultaneous
observability problem for strings or membranes from an interior region and
the control of a network from all its nodes using a small number of different
control functions are studied.

Besides, we consider other models on planar networks like Schrödinger,
heat or beam-type equations. Existence and uniqueness of solutions is proved
in a standard way. We then address the problem of observation and control
from an extreme of the network. In order to solve these problems we use
various techniques based on the Fourier representation of solutions allowing
to derive properties of solutions of those equations as a consequence of those
on the wave equation on the same network.

Designed as an introductory course on control and observation of networks,
the book contains also some advanced topics which may be of interest for
researchers in this area. The last chapter of the book also includes a list of
open problems and topics for future research.

Madrid, René Dáger
March 2005 Enrique Zuazua
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BFM2002-03345 of the Spanish MCyT, and the EU TMR Project “Smart
Systems”.
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1

Introduction

In last years a considerable effort has been devoted to the mathematical study
of mechanical systems constituted by coupled flexible or elastic elements as
strings, beams, membranes or plates. These systems are known as multi-link or
multi-body structures. Their practical relevance is huge. However, the math-
ematical models describing their evolution are generally quite complex. They
can be viewed as systems of Partial Differential Equations (PDE) on networks
or graphs.

There is an extensive literature on this topic but a lot remains to be done
in order to have a complete theory. Indeed, the interaction between the dif-
ferent components of a multi-link structure may generate new, unexpected
pehenomena. Consequently, one can not develop a full theory by simply su-
perposing the existintg results for PDE on domains of the euclidean space.
This is particularly true for what concerns control problems. The interested
reader is refered to the books [91] and [5] for an introduction the theory of
Partial Differential Equations on networks which is an active subject since the
early 80’s ([82], [83], [97]). In [63] and [68] wide information may be found on
modelling and control issues. We also refer to [66] for a systematic analysis of
the application of domain decomposition techniques for networks.

But, in view of the intrinsic difficulty of these models it is hard to guess
what a general theory should be. It is therefore convenient to first study
simplified versions of those models to later address more complex and realistic
situations.

This monograph is mainly devoted to analyze the vibrations of a simpli-
fied 1 − d model of a multi-body structure consisting of a finite number of
flexible strings distributed along a planar graph. Deformations are assumed
to be perpendicular to the reference plane. Though this is an extremely sim-
ple and particular model, as we shall see, the whole mathematical picture
is quite complex and requires the combination and development of different
techniques. We expect the analysis we perform will contribute to clarify what
the relevant aspects of the problem are, and to provide some tools for the
study of more complex models.
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The main goal of this book is to present in a self-contained way the state
of the art of the problem of propagation, observation and control of waves on
these planar 1− d networks. As we shall see, this requires important develop-
ments related with non-harmonic Fourier series, Diophantine approximation,
graph theory and wave propagation techniques.

Though the model under consideration is, to some extent, the simplest
one in the context of multi-body or multi-link continuous structures, a fine
analysis of the nature of the possible vibrations of these planar networks of
flexible strings is far from trivial.

The main tool for analyzing the propagation of waves along the graph
will be the classical d’Alembert formula, which allows solving the 1 − d wave
equation both in the space and time directions. In the model under consider-
ation the wave equation holds along each of the strings of the network. The
d’Alembert formula allows then representing the solutions on each string ex-
plicitly. However, the overall dynamics turns out to be rather complex. This
is due to the interaction of the various strings at the junction points. How the
energy of waves is transferred from one string to another turns out to be a
global problem in which several ingredients arise:

– the lengths of the various strings constituting the graph;
– the topology of the graph;
– the boundary conditions imposed at the extremes of the graph.
The problem of observation or observability concerns, roughly speaking,

the issue of determining whether one can determine the total energy of vibra-
tions by partial measurements made for instance, in one or several interior or
external nodes of the network. In other words, the property of observability
is related with the distribution or propagation of vibrations along the various
components of the multi-structure. This problem is relevant, not only because
it is a way of analyzing deeply the nature of vibrations, but because it is also
of immediate application in the context of inverse and control problems. Part
of the book is also devoted to present systematically the consequences of our
analysis in what concerns control problems. In particular, we shall analyze
the properties of approximate, spectral and exact controllability of networks.

As we mentioned above, graph theory and Diophantine approximation
issues enter in a crucial way on the analysis of the property of observability
and the topology of the graph plays a fundamental role. For instance, when the
graph contains closed circuits there may exist vibrations of the network that
remain concentrated and trapped in that circuit, without being propagated
to the rest of the network. In those cases, obviously, it is impossible to achieve
the observation and/or control property if the observer or controller is not
located on the circuit where the solution is trapped. But whether a circuit may
support a localized vibration depends also strongly on the mutual lengths of
the strings composing the circuit. When all the ratios of the lengths of these
strings are rational numbers, such a localized vibration exists. However, if
some of these ratios are irrational, then, necessarily, part of the energy of
the vibration will be transferred to some other components of the network.
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But, in order to determine the amount of energy that is actually transferred
one needs to know further properties of that irrational ratio (whether it is
algebraic or not, a Liouville number....) and then to apply the existing results
on Diophantine approximation.

As we shall see, the overall picture is quite complex, but we hope that
this monograph will succeed on describing the main phenomena one may
encounter. We shall mainly focus on three cases with different degrees of
complexity and such that the corresponding results are also of quite different
nature:

The star. It concerns the case where a finite number of strings are connected
on a single point by one of their extremes. In this case, using d’Alembert
formula, one can give sharp results characterizing the space of observation
and/or control in Fourier series by means of suitable weights depending on the
lengths of the strings entering in the star-shaped network. We mainly discuss
the most difficult case in which observation and/or control are localized in a
single extreme of the network. The weights in the corresponding norms depend
on the ratios of the lengths of the strings and, in particular, on its irrationality
properties. The time needed for observation turns out to be simply twice the
sum of all lengths of the strings of the networks.

The tree. It is well known that when all but one external node of the network
are observed in a tree-like configuration, the whole energy of solutions may be
observed (see [68]). This can be easily seen by an energy argument. Indeed,
using sidewise energy estimates for the solutions of the wave equation, one
can show that the observation inequality holds in the sharp energy space in
a time which is twice the length of the longest path joining the points of the
network with some of the observed ends. In this case, the observation time is
much smaller than twice the total length of the network, which is needed for
the observation from a single end in the case of stars.

Here we analyze the opposite case in which the observation is made at
one single extreme of the tree-like network. The observation time turns out
to be again, as in the case of one star, twice the sum of the lengths of the
strings forming the network. At this point, it is important to note that the
case of a tree is a generalization of the previous case of a star. Thus, for the
observability property to hold one has also to generalize the condition on the
irrationality of the ratios of the lengths of the strings arising in the case of the
stars. To do that it is important to observe that the fact of two strings having
mutually irrational lengths can also be interpreted in spectral terms. Indeed, it
means that the spectra of the two strings have empty intersection. The latter
condition turns out to be the appropriate one to be extended to general trees.
In this way, the tree turns out to be observable from one end if and only if
the spectra of all pairs of subtrees of the tree that match on a nodal point are
disjoint. Obviously, this property is also related to the values of the lengths
of the strings composing the tree, but does not have an easy interpretation as
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in the case of the star. Nevertheless, as we shall see, generically, trees satisfy
this property.

General networks. The propagation techniques we have employed in the
analysis of stars and trees are hard to apply in the case of a network sup-
ported by a general graph. Indeed, in the general case we lack of a natural
ordering on the graph to analyze the propagation of waves. Actually, as we
mentioned above, the presence of closed circuits may trap the waves. Thus,
we proceed in a different way by applying a consequence of the celebrated
Beurling-Malliavin’s Theorem on the completeness of families of real expo-
nentials obtained by Haraux and Jaffard in [50] when analyzing the control of
plates. Using the min-max principle, one can show that the spectral density of
a general graph is the same as that of a single string whose length is the sum
of the lengths of all the strings entering in the network. Then, when the time
is greater than twice the total length, as a consequence of Beurling-Malliavin’s
Theorem, we deduce that there exist some Fourier weights so that the obser-
vation property holds in the corresponding weighted norm if and only if all
the eigenfunctions of the network are observable. So far we do not know of any
necessary and sufficient condition guaranteeing that all the eigenfunctions are
observable in the general case. However, this condition, in the particular case
of stars and trees discussed above turns out to be sharp: the lengths of the
strings are mutually irrational in the case of stars or the spectra of all pairs of
subtrees with a common end-point are mutually disjoint in the more general
case of trees.

In view of this last result on general networks, the material in this mono-
graph could have been presented in a completely different order. Indeed, we
could have started from the most general results on the case of general net-
works using Beurling-Malliavin’s Theorem to later discuss the particular cases
of stars and trees using d’Alembert formula and Diophantine approximation,
in which general results can be more easily interpreted. However, we have
preferred to do all the way around. This corresponds actually to the order
and chronology in which the progress was done in the field, starting from the
work [75] on the case of a star composed of three strings and continuing with
the series of Notes [34, 35, 36, 37].

We became interested on this subject along several discussions with Günter
Leugering on this subject and his book in collaboration with Lagnese and
Schmidt [68], together with the previously quoted references on PDE on net-
works, were a great help to start. As we said before, the model we consider in
this monograph is the simplest one in the context of vibrations of networks.
The interested reader is referred to [68] where many other models can be found
with a description of the state of the art in what concerns the well-posedness
of the initial boundary problems and the observation and/or control problems
for networks of strings, beams, membranes and plates.

Before getting into the analysis of the star we discuss a simpler issue that,
nevertheless, allows presenting some of the main difficulties of the theory. It
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concerns the simultaneous control of two strings connected at one end-point
(which is in fact completely equivalent to the problem of controlling one single
string from one interior point). In this case we already see the necessity that
both strings have mutually irrational lengths. Moreover, we also see that the
time needed to control the strings is twice the sum of the lengths of both
strings for the observability property to hold. This seems to contradict a first
intuition that would suggest that the time needed to control both strings
simultaneously should be twice the maximum of the lengths of the strings,
i.e., 2max(�1, �2), instead of 2(�1 + �2). But, in fact, the time 2(�1 + �2) turns
out to be sharp under the assumption that the ratio �1/�2 is irrational. In other
words, even when �1/�2 is irrational, the time needed to control simultaneously
the two strings together by means of the same control is 2(�1 + �2), which is
strictly greater than the time needed to control each string independently
with two different controls that would be 2max(�1, �2).

It is interesting to analyze the relation of this result with the so-called Ge-
ometric Control Condition (GCC) introduced by Bardos, Lebeau and Rauch
[18] in the context of the boundary observation and/or control of the wave
equation in bounded domains of Rn. The GCC requires that all the rays
of Geometric Optics enter the observation region in a finite, uniform time,
which turns out to be the minimal one for observation/control. In the case
of two strings observed from one common end or the equivalent problem of
the string controlled at an interior point, in view of GCC, one could expect
the sharp time needed for observation/control to be 2max(�1, �2). But this
is not the case, the fact that the rays pass once by the point of observation
does not guarantee that the energy concentrated on that ray will be conve-
niently observed1. In fact, we need the ray to pass once more through the
point of observation to be able to make a full measurement of the solution.
This yields the control/observation time 2(�1 + �2). But, in fact, passing twice
by the observation point is not sufficient either. The irrationality of the ra-
tio �1/�2 is needed to guarantee that, when passing through the observation
point the second time, the solution is not exactly at the configuration as in
the first crossing, which, of course, would make the second observation to be
insufficient too. Finally, even when �1/�2 is irrational, we cannot get a uni-
form bound of the energy of the solution but rather a weaker measurement
in a weaker norm. The nature of this norm, which is represented in Fourier
series by means of some weights depending on �1/�2, depends very strongly
on the irrationality class to which the number �1/�2 belongs. In fact, in the
most favourable case, i.e., when �1/�2 is an algebraic number of degree two,
one looses one derivative of the solution which, in Sobolev terms means that,
for instance, an H1 observation in time yields only control of the L2-norm of
1 The wave equation is a second order problem and therefore, even in 1 − d, for a

pointwise observation mechanism to be efficient we need to measure not only the
position, but also the space derivative. This implies that a necessary condition for
observation/control is that all waves pass twice through the observation point.
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the solution. In other more pathological cases, like when �1/�2 is a Liouville
number, one may loose an infinite number of derivatives in the sense that the
weights entering in the Fourier representation of the observed norm may have
an exponential decay at high frequencies.

We have so far described the content of the main body of the monograph:
the propagation, observation and control of waves on stars, trees and gen-
eral planar networks. But these are only a few of the problems arising in
this context. We have complemented this material with the discussion of two
important closely related problems:

– The simultaneous observation/control of two strings from a common
subinterval. In this case one obtains better results than in the case when
the observer/controller is located at a single point 2. Indeed, this time the
results do hold in the sharp energy space without any loss of derivatives. This
fact confirms that controlling on an open subinterval is a much more robust
mechanism than controlling at a single point.

– The observation/control of general networks through all the nodal points.
This is a problem of relevance in applications. From a technological point of
view, putting observers/controllers at all the nodal points is feasible. However,
one would like to know, for instance, if the number of applied control forces
may be reduced by identifying a priori the nodes on which the same force
may be applied. This is necessary in order to diminish the complexity of the
applied control mechanism. Thus, we would like to know how many different
control forces are needed to control the whole structure and to identify the
nodes on which each control should be applied. We shall see that the total
number of controls needed is four and this is a consequence of our previous
analysis and the celebrated Four Colors Theorem.

So far, we have only discussed the wave equation on planar networks of
strings. But of course, the same issues arise for all other models like beams,
Schrödinger or heat equations. The theory of observation and control of Partial
Differential Equations in open domains of Rn is by now quite well developed
(we refer to the survey articles [121] and [123] for an updated account of the
developments in this field). However, very little is known in the context of
PDE’s on networks.

The last part of this monograph is devoted to discuss those three models.
Roughly speaking, we show that the results proved in the previous sections
on the wave equation yield similar results for those three models. To do that
we employ two different results. In the case of the heat equation on the net-
work, we use a classical result by Russell [105] guaranteeing that, whenever
the wave equation is controllable in some time, then the heat equation is con-
trollable in an arbitrarily small time. The results of this monograph on the
observation and/or control of the wave equation on the network then immedi-
ately imply similar results on the corresponding heat model. In what concerns
2 According to the analysis in [42] the problem of pointwise control may be viewed

as a singular limit of that of controlling in a subinterval shrinking to that point.
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the Schödinger and beams models we use the fact that the time frequencies
of the complex exponentials involved in the Fourier representation of solu-
tions of these two models are the squares of those entering in the solutions
of the wave equation. Thus, the gap between consecutive eigenfrequencies in-
creases. This allows obtaining observability inequalities for Schrödinger and
beam equations from the Fourier representation of those previously obtained
for the wave equation. But, this time, as expected, due to the infinite speed of
propagation, the observability inequalities hold in an arbitrarily small time.

As we have already mentioned this monograph collects the existing results
on simple 1−d models on networks. Much remains to be done in this field. At
the end of this book we include a list of open problems and possible subjects of
future research. We hope this book to attract the attention to this challenging
field of research.

For those who will address these topics for the first time, we refer to [84]
for an introduction to some of the most elementary tools on the controllability
of PDE’s and to the survey articles [121] and [123], for a description of the
state of the art in this field.

Finally, some comments on the notations used along this book are in or-
der. The numbering of objects is made locally in each chapter. The sections,
subsections, theorems, lemmas, formulas, etc., have a first number to indicate
the chapter in which they appear. Thus, Proposition 3.4, is the fourth propo-
sition of Chapter 3. Concerning the constants, they all have been denoted by
C. Thus, C may stand for numbers that are different from line to line of the
text, but that remain uniform with respect to the relevant parameters. Only
when we intend to explicitly indicate the dependence of C on some parameter,
or to avoid ambiguities, we use some more complete notations.

We would like to emphasize that the book is mainly self-contained and
that it has been designed as an introductory course to the controllability and
observability of networks for graduate students. The text may be covered in
the order presented or, if a simplified approach is desired, it is possible to
restrict oneself to Chapters 2, 3, 4 and 8, as the remaining chapters are more
technical. However, many other variants are also possible.
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Preliminaries

2.1 The Elastic String

Let us start with a simple example. Consider an elastic string of length one
which is fixed at its ends. The deformation of the string is given by the function
φ(t, x) : R × (0, 1) → R which is the unique solution of the wave equation

φtt − φxx = 0 in R × (0, 1),

φ(t, 0) = φ(t, 1) = 0 in R,

φ(0, x) = φ0(x), φx(0, x) = φ1(x) in (0, 1),
(2.1)

where φ0 and φ1 are the initial deformation and velocity of the string, respec-
tively.

The solution of system (2.1) may be expressed by the Fourier formula

φ(t, x) =
∞∑

n=1

(an cos nπt +
bn

nπ
sin nπt) sin nπx, (2.2)

where (an) and (bn) are the sequences of Fourier coefficients in the orthogonal
basis of L2(0, 1):

θn(x) = sinnπx, n = 1, 2, ....

The energy of the solution φ is defined as

Eφ(φ0, φ1, t) =
1
2

∫ 1

0

(|φx(t, x)|2 + |φt(t, x)|2) .

It is easy to prove that the energy of a solution is constant1, that is Eφ(t) =
Eφ(0). The energy is a norm in the space H1

0 (0, 1) × L2(0, 1) of initial states
1 This can be done computing directly on the Fourier representation of the solution

or, by the energy method, i.e. multiplying the wave equation by φt and integrating
with repesct to x. After integration by parts this yields dE(t)/dt = 0.
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of (2.1) and may be expressed in terms of the Fourier coefficients (an) and
(bn) as

Eφ(φ0, φ1) =
1
4

∞∑
n=1

(n2π2a2
n + b2

n). (2.3)

Assume now that we observe the motion of the string at one of its points.
To fix ideas, suppose we know the values of the velocity φt and the tension
φx at some point x = ξ in a time interval (0, T ). Let us define the observation
function

Φ(φ0, φ1, ξ, T ) =
1
4

∫ T

0

|φt(t, ξ)|2dt +
1
4

∫ T

0

|φx(t, ξ)|2dt.

Let us note that for T = 2M with M ∈ N it holds

Φ(φ0, φ1, ξ, T ) = MEφ(φ0, φ1). (2.4)

Indeed, from the formula (2.2) we have

φt(t, ξ) =
∞∑

n=1

(−nπan sin nπt + bn cos nπt) sin nπξ,

φx(t, ξ) =
∞∑

n=1

(nπan cos nπt + bn sin nπt) cos nπξ

and then, in view of the 2-periodicity of the functions sinnπt and cos nπt and
their orthogonality properties,∫ 2M

0

|φt(t, ξ)|2dt = M

∫ 2

0

|φt(t, ξ)|2dt = M

∞∑
n=1

(n2π2a2
n + b2

n) sin2 nπξ, (2.5)

∫ 2M

0

|φx(t, ξ)|2dt = M

∫ 2

0

|φx(t, ξ)|2dt = M

∞∑
n=1

(n2π2a2
n + b2

n) cos2 nπξ.

(2.6)
Therefore, in view of (2.3), (2.5) and (2.6) we obtain (2.4).
Clearly, the function Φ(φ0, φ1, ξ, T ) is increasing in T , so, if 2 ≤ T ≤ 2M

with M ∈ N we obtain

Φ(φ0, φ1, ξ, 2) ≤ Φ(φ0, φ1, ξ, T ) ≤ Φ(φ0, φ1, ξ, 2M),

or equivalently,

Eφ(φ0, φ1) ≤ Φ(φ0, φ1, ξ, T ) ≤ MEφ(φ0, φ1).

That means that, for all ξ ∈ [0, 1] and T ≥ 2, the norms defined by Eφ and
Φ(·, ξ, T ) are equivalent. That is, it is possible to estimate the energy of the
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solution φ from the measurements of φt, φx made at point ξ during a time
interval of length at least two. In particular, when T = 2 those two norms
coincide:

Eφ(φ0, φ1) = Φ(φ0, φ1, ξ, 2).

When ξ = 0 or ξ = 1, the observation function Φ is simpler. For instance,
for x = 0 it becomes

Φ(φ0, φ1, 0, T ) =
1
4

∫ T

0

|φx(t, 0)|2dt,

since φt(t, 0) ≡ 0.
Accordingly, at the boundary points, the observation of the tension φx

of the string during a time-interval of length twice the length of the string,
suffices to fully recover the total energy of the vibration.

It is natural to raise the question of whether the same happens at the inter-
nal observation points ξ. Accordingly, consider a weaker observation function:

Ψ(φ0, φ1, ξ, T ) =
1
4

∫ T

0

|φx(t, ξ)|2dt.

We already know that, when ξ = 0 or ξ = 1 this function defines a norm
in the space of initial data, equivalent to the energy-norm. The following
questions arise naturally: does the function Ψ define a norm in H1

0 (0, 1) ×
L2(0, 1)? If so, is that norm equivalent to the energy?

Assume T = 2, then in view of (2.6) it holds

Ψ(φ0, φ1, ξ, 2) =
1
4

∞∑
n=1

(n2π2a2
n + b2

n) cos2 nπξ. (2.7)

Formula (2.7) is very similar to (2.3) and, clearly,

∞∑
n=1

(n2π2a2
n + b2

n) cos2 nπξ ≤
∞∑

n=1

(n2π2a2
n + b2

n),

and then
Ψ(φ0, φ1, ξ, 2) ≤ Eφ(φ0, φ1).

However, the converse inequality is not true whatever ξ ∈ (0, 1) is. Indeed,
the converse inequality would require a lower bound of the form

| cos nπξ| ≥ C, (2.8)

for every n ∈ N. But this inequality is false for all ξ ∈ (0, 1). Indeed, if ξ is a
rational number that can be expressed as

ξ =
2p + 1

2q
, p, q ∈ Z, (2.9)
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then, when n = qk with k odd

cos nπξ = cos
(2p + 1) k

2
π = 0.

Thus, in this case, cos nπξ = 0 for an infinite number of values of n and
consequently, inequality (2.8) cannot be true. That means that the function
Ψ(·, ξ, 2) is not even a norm in H1

0 (0, 1) × L2(0, 1).
On the other hand, when the number ξ cannot be expressed in the form

(2.9) all the numbers cosnπξ are different from zero. This implies that the
function Ψ(·, ξ, 2) does define a norm in H1

0 (0, 1) × L2(0, 1). But this norm is
necessarily weaker than the energy.

In fact, inequality (2.8) is equivalent to the existence of a positive number
α such that, for all k, n ∈ Z,∣∣∣∣nπξ − 2k + 1

2
π

∣∣∣∣ ≥ α.

That is
|(2ξ) n − (2k + 1)| ≥ α0 :=

2α

π
.

This rational approximation property of the number 2ξ is false for all ξ ∈
(0, 1). We will discuss this issue in detail in Chapter 3.

But, for certain values of ξ weaker inequalities may be obtained. Indeed,
for instance, if 2ξ may be expanded in continuous fraction [0, c1, c2, ....] with
bounded sequence (cn) then there exists a constant Cξ such that

|(2ξ) n − (2k + 1)| ≥ Cξ/n,

and this is the best lower bound one may expect. This implies that

| cos nπξ| ≥ Cξ/n

and therefore

Ψ(φ0, φ1, ξ, 2) ≥ Cξ

∞∑
n=1

(a2
n +

b2
n

n2π2
) = Cξ||φ0||2L2(0,1) + ||φ1||2H−1(0,1).

Summarizing, for the values of ξ indicated above, it holds

Cξ

(
||φ0||2L2(0,1) + ||φ1||2H−1(0,1)

)
≤ Ψ(φ0, φ1, ξ, 2) ≤ ||φ0||2H1

0 (0,1)+||φ1||2L2(0,1).

This is the best result we may obtain. Accordingly, for interior points ξ ∈
(0, 1), the information contained in Ψ(φ0, φ1, ξ, 2) does not suffice to recover
the whole energy of the string and only weaker norms may be recovered (the
[L2(0, 1) × H−1(0, 1)]-nom in the particular case above with a loss of one
derivative in L2(0, 1), both for φ and φt). This is also the case when considering
other kind of observation functions, e.g.,
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0

|φ(t, ξ)|2dt.

As we shall see in the following chapters, this is the typical situation when
addressing the problem of observability for the vibrations of a network of
strings. Typicallly, one can recover only weaker energies from measurements
made at some points of the strings, even if at those points both the velocity
and the tension are measured2.

When the observation is made on a larger set, say on some interval ω ⊂
(0, 1), then the total energy can be recovered. Indeed, consider the observation
function ∫ T

0

∫
ω

|φx(t, x)|2dxdt.

Assume that T = 2. Then∫ 2

0

∫
ω

|φx(t, x)|2dxdt =
∫

ω

∫ 2

0

|φx(t, x)|2dtdx

≥
∞∑

n=1

(n2π2a2
n + b2

n)
∫

ω

sin2 nπx dx. (2.10)

But, for any ω ⊂ (0, 1) there exists a constant Cω > 0 such that∫
ω

sin2 nπx dx ≥ Cω

for every n ∈ N. Therefore,

Cω

∞∑
n=1

(n2π2a2
n + b2

n) ≤
∫ 2

0

∫
ω

|φx(t, x)|2dxdt ≤ |ω|
∞∑

n=1

(n2π2a2
n + b2

n),

that is

4CωEφ ≤
∫ 2

0

∫
ω

|φx(t, x)|2dxdt ≤ 4|ω|Eφ.

Using the d’Alembert formula for the representation of the solutions of the
wave equation, one may improve the estimate above on the time needed for
this estimate to be true. Namely, the property

C1Eφ ≤
∫ T

0

∫
ω

|φx(t, x)|2dxdt ≤ C2Eφ,

holds for any T > 2dist{ω, {0, 1}}, for some positive constants C1 and C2. The
time 2dist{ω, {0, 1}} is actually the characteristic one and it is in agreement

2 As we shall see, there is a case in which this does not happen and the whole
energy may be recovered: For tree-like networks when the tension is measured in
all the external nodes except at most one.



14 2 Preliminaries

with the Geometric Control Condition (GCC) mentioned in the introduction
that indicates that, for the observability inequality to hold, all rays should
enter the observation region in the given observation time.

But for networks of strings, observing on a subinterval of one of the strings
will not help. This allows recovering the information on the string where the
observation is being made but will only yield weaker measurements on the
other ones.

2.2 Networks of Strings

2.2.1 Elements on Graphs

A graph G is a pair (V,E), where V is a set, whose elements are called vertices
of G, and E is a family of non-ordered pairs v,w of vertices, which we will
denote by v̂w. The elements of E are called edges of G with vertices v,w.
When the graph G does not contain edges of the form v̂v it is said that the
graph is simple3.

A path between the vertices v and w of a graph G is a set of edges of the
form

v̂v1, v̂1v2, ..., ̂vm−1vm, v̂mw.

If all the edges forming a path are different, it is said that the path is simple;
if all the vertices v1, ...,vm are different, the path is called elementary.

A closed path is a path between a vertex and itself. An elementary closed
path is called a cycle. When the graph G does not contain cycles it is said
that G is a tree.

Graphs with a finite number of vertices are called finite. In this book we
shall be concerned only with finite graphs.

Let us suppose that G is a finite graph with N vertices and M edges:

V = {v1, ...,vN} , E = {e1, ..., eM} .

The multiplicity m(v) of the vertex v is the number of edges that meet at v:

m(v) := card {e ∈ E: v ∈ e} .

We also define the sets

VS := {v ∈ V : m(v) = 1} , VM := V \ VS,

where VS is the set of those vertices that belong to a single edge, the exterior
ones, while VM contains the remaining vertices, the interior ones, i.e., those
that belong to more than one edge.
3 Sometimes the term graph is used only for simple graphs, that is, for those that

do not have edges with equal vertices. Non-simple graphs are then called pseudo-
graphs.
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For a vertex v we denote by

Iv := {i : v ∈ ei},
the set of indices of all those edges of G which are incident to v. If the vertex
vj is exterior, Ivj

contains a single index; it will be denoted by i(j) and, if
this does not lead to misunderstanding, simply by i.

In this book we consider only simple finite graphs whose vertices are points
of a plane. The edges of the graph are viewed as rectilinear segments joining
some of those points. The length of the segment corresponding to the edge ei

is called length of ei and is denoted by �i.
We will also assume that the edges of the graphs may meet only at the

vertices of G. Such graphs are known as planar graphs.
On every edge of G we choose an orientation (that is, one of the vertices

has been chosen as the initial one). Then ei may be parametrized as a function
of its arc length by means of the functions xi : [0, �i] → ei.

We define the incidence matrix of G

εij =
{

-1 if xi(0) = vj ,
+1 if xi(�i) = vj .

Let us denote by L the sum of the lengths of all the edges of the graphs,
the length of the graph. To indicate to which graph it corresponds, we shall
write, if necessary, LG.

Given functions ui : [0, �i] → R, i = 1, ..., M , we will denote by ū : G → R
the function defined for x ∈ ei by

ū(x) = ui(x−1
i (x)).

In this case, we will say that ū is a function defined on the graph G with
components ui. Frequently, we will indicate this fact just by writing ū =
(u1, ..., uM ). In particular, the vector with null components will be denoted
by 0̄.

2.2.2 Equations of Motion for Networks

Now we consider a planar network of elastic strings that undergo small per-
pendicular vibrations. At rest, the network coincides with a planar graph G
contained in that plane.

Let us suppose that the function ui = ui(t, x) : R × [0, �i] → R, describes
the transversal displacement in time t of the string that coincides at rest with
the edge ei. Then, for every t ∈ R, the functions ui, i = 1, ..., M , define a
function ū(t) on G with components ui : R × [0, �i] → R given by ui(t, x) =
ui(t, xi(x)). This function allows to identify the network with its rest graph;
in this sense, the vertices of G will be called nodes and the vertices, strings.

As a model of the motion of the network we assume that the displacements
ui satisfy the following non-homogeneous system


