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Preface

Plants continually gather information about their environment. Environmental
changes elicit various biological responses. The cells, tissues, and organs of
plants possess the ability to become excited under the influence of environ-
mental factors. Plants synchronize their normal biological functions with their
responses to the environment. The synchronization of internal functions,
based on external events, is linked with the phenomenon of excitability in plant
cells. The conduction of bioelectrochemical excitation is a fundamental prop-
erty of living organisms.

The conduction of bioelectrochemical excitation is a rapid method of long
distance signal transmission between plant tissues and organs. Plants
promptly respond to changes in luminous intensity, osmotic pressure, tem-
perature, cutting, mechanical stimulation, water availability, wounding, and
chemical compounds such as herbicides, plant growth stimulants, salts, and
water potential. Once initiated, electrical impulses can propagate to adjacent
excitable cells. The bioelectrochemical system in plants not only regulates
stress responses, but photosynthetic processes as well. The generation of elec-
trical gradients is a fundamental aspect of signal transduction.

This book consists of a historical introduction to plant electrophysiology,
and two parts. The first one deals with the methods in plant electrophysiol-
ogy. Seven chapters present methods of measuring the membrane potentials,
ion fluxes, transmembrane ion gradients, ion-selective microelectrode meas-
urements, patch-clamp technique, magnetic measurements, new solid state
microsensors and electrochemical sensors. The second part deals with exper-
imental results and theoretical interpretation. All chapters are comprehen-
sively referenced throughout.

Green plants are a unique canvas for studying signal transduction. Plant
electrophysiology is the foundation for discovering and improving biosensors
for monitoring the environment; detecting effects of pollutants, pesticides, and
defoliants; monitoring climate changes; plant-insect interactions; agriculture;
and directing and fast controlling of conditions influencing the harvest.

I am grateful to my colleagues for their valuable contribution to this book.
We thank the authors for the time they spent on this project and for teaching
us about their work. I would like to thank our Acquisition Editor, Dr. Christina
Eckey, and our Production Editor, Ursula Gramm, for their friendly and cour-
teous assistance.

Alexander George Volkov
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PART I METHODS OF PLANT
ELECTROPHYSIOLOGY



1 Historical Introduction to Plant Electrophysiology

RAINER STAHLBERG

It is hardly conceivable that reflex responses, memory and brain activity were
once explained without consideration of the electrical activity in nerves and
muscles. One must remember that electricity was only known then either as
lightning or as the repelling/attracting charges that certain substances (such
as amber, the Greek word for which is electron) accumulate when rubbed
against wool or other textiles. Among the first people who thought about elec-
trical phenomena and their possible biological consequences were de Sauvages
(1706-1767), S. Hales (1677-1761), J.A. Nollet (1700-1770) and most impor-
tantly the prior Pierre Bertholon de St Lazare (1742-1791), who proposed to
improve agriculture with a novel electroculture of crops (Bertholon 1783). This
idea was repeatedly revived, e.g. by Lemstrom (1902), who attempted to
demonstrate stimulating effects of natural electrostatic fields by growing plants
outside and under Faraday cages. Effects of electrical fields on plants and ani-
mals continue to be a flourishing field of serious study and some controversy
(see Chapter 11).

The birth of the larger field of experimental electrophysiology, however,
is inseparably intertwined with the discovery of useable forms of electricity
itself. The well-known common starting point was Luigi Galvani’s discovery
of “animal electricity” or his observing the contraction of isolated frog legs
suspended between copper hooks and the iron grit of his balcony (Galvani
1791). Aside from stimulating dubious medical treatments such as “gal-
vanism” and “mesmerism”, this momentous event established electrophysi-
ology as a major discipline of biology (Galvani’s work was continued by the
studies of A. Matteucci, E. Du Bois-Reymond and many others, see below) and
stimulated A. Volta to develop the first practical batteries (the existence of bat-
teries in ancient Egypt has been suggested, but cannot be reliably confirmed).
These portable sources of electricity were called galvanic elements. Based on
the different redox potentials of metals and non-metals, they provided reliable
sources of various fixed voltages. This invention not only laid the foundations
of electricity as a novel discipline of the physical sciences but also turned elec-
tricity into useable reality that would later serve as the basis for at least
two industrial revolutions. Electrical currents, voltages, resistances and fields
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could now be experimentally studied and applied to wires and wire networks
as well as to animals and plants. The physical understanding of batteries itself
also served well as a model to explain some fundamental phenomena of elec-
trophysiology such as the stunning of prey by electrically hunting fishes from
the new world (Du Bois-Reymond 1848). As reflected in this book, electro-
physiology became to encompass not only the development of methods and
instruments for the actual measurement of electrical signals but also the study
of physiological effects deriving from electric and electromagnetic currents
and fields.

It soon became clear that the role of the electric current in the contraction
of frog legs was not to provide the energy for the movement, but to simulate
a stimulus that existed naturally in the form of directionally transmitted elec-
trical potentials. Frog legs had just been first and serendipitous current-
recording devices to indicate the flow of electrical current in the moment they
touched the iron grit of the balcony and their violent jerks were supposedly
visible enough to scare Mrs. Galvani, the observant wife of the great scientist.
In follow-up studies both Matteucci and Du Bois-Reymond then recognized
that wounding of nerve strands generated the appearance of a large voltage
difference (called wound potential) between the wounded (internal) and
intact (external) site of nerves. This wound potential was the first, crude
measurement of what later became known and understood as membrane or
resting potential of nerve and other cells. Importantly, this potential could be
measured and it was soon found that electrical or mechanical stimulation of
the nerve reduced its size (in today’s terms: these stimuli caused a depolar-
ization). To describe the phenomenon, novel terms such as action potential
(AP) and action current were created (Du Bois-Reymond 1848). After plas-
molysis experiments in plant cells suggested that all living cells are sur-
rounded by semi-permeable membranes (Pfeffer 1873, 1906, 1921), it did not
take long until W. Nernst (1889) and J. Bernstein (1912) proposed an updated
understanding of existing potentials and AP-mediated excitations on the
basis of the existence and collapse of K* ion gradients across the plasma
membrane. It was also recognized that nerves propagate such excitations
instantly or with very high speed. In 1850, H. von Helmholtz succeeded in
actually measuring this speed in the Nervus ischiadicus of frogs and Hermann
(1868) developed the “Stromchen” theory to explain the speed and efficiency
of AP propagation in nerves in analogy with a leaky wire cable. Until about
1930, this seemed to be all that was to know about nervous signals. However,
clever experiments showed surprisingly that signaling between nerve cells
through their dendritic connections does not occur by way of a continuation
of the electrical action current but by the release of chemical signals diffusing
through an intercellular cleft. Following the anatomical work of S. Ramon y
Cajal, the biochemical studies of O. Loewi and the terminology of Sir Charles
Sherrington, the phenomenon of synaptic transmission was recognized and
this meant a gigantic step towards the understanding of nervous integration
(Eccles 1964). With these events, the full range of modern electrophysiology
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was established and the following examples are added to remind us that this
progress was not confined to the academic field but inspired many practical
improvements in medical and psychological diagnosis. In 1895, electrocar-
diography (EEC) was tested and introduced by W. Einthoven and in 1934
H. Berger developed a related method for brain responses in the form of elec-
tro-encephalography (EEG; Grey Walter 1954; Brazier 1962). The discovery of
piezo-electricity in bones led the way to novel electro-therapeutic treatments
for accelerated healing of fractures (Basset 1965). The realization that
diaphoretic and alternative changes in skin resistance closely relate the emo-
tional state of individuals turned into another important tool of diagnosis for
psychological tests and criminal investigations; the lie detector.

1.1 Intracellular recording of membrane potentials and
other improvements

For many years, the application of external electrodes to the surface of plant
and animal organs was the only available technique for measuring potentials.
The only way to deduce the internal potential of cells was through measuring
“wound potentials” in the manner described above (Beutner 1920). Rather
than relying on such indirect methods, the membrane theory (Bernstein 1912)
made it desirable to measure directly the value of cell membrane potentials.
This was facilitated by the introduction of microelectrodes (KCl-filled glass
micropipettes with a tip diameter small enough to be inserted into living cells;
Montenegro et al. 1991) to record intracellular, i.e. real, membrane potentials
(V_). This technique was first adopted for giant cells from axons of
cephalopods such as Loligo and Sepia (see Keynes 1958) and charophytic algae
such as Chara and Nitella. Early attempts to insert microelectrodes into charo-
phytic cells resulted in long-term damage and were reflected in very low V
values around —30 mV (Brooks and Gelfan 1928). Improved talent, glass nee-
dles, incubation procedures and micromanipulators led to a rapid (i.e. within
1-4 min) return of the initially depolarized V_ of Nitella cells to values
between —100 and —170 mV (Umrath 1930, 1932; Osterhout 1936). Aside from
making the first reliable measurements of V__ values in plant cells, the work of
Umrath and Osterhout shows the first intracellular recordings of plant APs as
well. When this new technique was complemented with precise electronic
amplifiers and voltage clamp circuits in the 1940 s, it permitted measurement
of ion currents instead of voltages, and with it monitoring of the activity of ion
channels. The smart application of these techniques led to a new, highly
detailed understanding of the ionic species and mechanisms involved in V
changes, especially APs (Hodgkin et al. 1949). Now it could be seen that the
depolarization during an AP went beyond zero and well into the range of pos-
itive voltages, indicating that other ions in addition to K* must participate in
the AP. Voltage clamp was introduced to demonstrate the contribution of
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various ion currents involved in the AP in nerve cells (Hodgkin et al. 1949;
Hille 1992) as well as Chara cells (Lunevsky et al. 1983; Wayne 1994). Whereas
the depolarizing spike in animal nerve cells is driven by an increased influx of
Na* ions, plant APs were found to involve influx of Ca?" and/or efflux of CI-
ions (Sibaoka 1969, 1991). To this day, charophytic algae have served as
important models and stepping-stones on the way to the investigation of
higher plant cells (see Chapter 16).

Parallel voltage (V) and current (I) measurements allowed I-V-curves to be
plotted and so permitted to differentiate between the action of an ion channel
(ohmic or parallel changes in I and V) or ion pump (non-ohmic relation
between V and I changes; Higinbotham 1973). These new recording tech-
niques led to the recognition of another important difference between plant
and animal cells. Whereas most animal cells in their resting stage are very
close to the Nernst potential for K* ions (as first suggested by Nernst 1889),
plant cells can obtain much higher values due to the operation of an electro-
genic H*-ATPase-driven pumps (up to a record V__ value of —296 mV reported
by R. Spanswick in Elodea canadensis; Higinbotham 1973; see also Chapter
10). As a next step to improve recording possibilities, the patch clamp tech-
nique was invented. By going from single cells to isolated membrane patches,
one can record the current of as small a unit as a single channel (Neher and
Sakmann 1976). Developed for animal cells, this technique was rapidly
adopted for plant cells as well (e.g. Hedrich and Schroeder 1989).

1.2 Plant action potentials

The first known recording of a plant AP was done on leaves of the Venus fly-
trap (Dionea muscipula Ellis) in 1873 by the medical physiologist Sir John
Burdon-Sanderson in England. This event was organized by C. Darwin, who
had found Dionea a “most animal-like plant” that showed analogy to the ani-
mal nerve reflex (Darwin 1875,1896). Burdon-Sanderson measured the voltage
difference between adaxial and abaxial surfaces of a Dionea leaf half while he
stimulated the other half mechanically by touching the hairs (Burdon-
Sanderson 1873, 1899). Ever since then, the trap closure in Dionea has been
considered as a model case that shows comparable roles of APs in plants and
nerve-muscle preparations of animals (e.g. Simons 1992). However, this was
and is not a generally accepted view. Reminding his readers that Burdon-
Sanderson measured the APs in leaves that were prevented from closure by a
plaster harness, Stern (1924), in a first consolidating monograph on plant elec-
trophysiology, concluded that APs had no proven direct connection with the
closure movement and that APs produced before and after trap closure do not
seem to differ (see similar results by Hodick and Sievers 1988). However, Stern
noted that while in resting Dionea leaves the upper site is positive relative to
the lower one, this relation gets inverted with stimulation.
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Other objects of investigation were sensitive plants in the genus Mimosa,
where the folding movement of the leaflets actually makes the propagating
wave of excitation visible. After the wounding of a leaflet action spikes were
found to arise in parallel with the visible leaflet movements (Kunkel 1878;
Haberlandt 1890; Biedermann 1895; Bose 1906, 1926). However, it was
Dutrochet and Pfeffer (1873, 1906) who found that an experimental interrup-
tion of the vascular bundles by incision prevented the excitation from prop-
agating beyond the cut. While they concluded that the stimulus moved
through the woody or hadrome part of the bundles (in modern terms the
xylem), Haberlandt cut or steam-Kkilled the external, non-woody part of the
vascular bundles (the leptom, i.e. in modern terms the phloem) and empha-
sized that not the xylem but the phloem strands were the pathways to conduct
the excitation signals in plants. “The effects of incision show that stimuli are
actually propagated in this system of highly turgescent tubes and that the
mode of transmission is a hydrodynamic one” (Haberlandt 1914). However,
this hypothesis was difficult to prove (Tinz-Fruchtmeyer and Gradmann
1990) and up to this day we do not know much about pressure propagation
in the phloem except that pressure gradients are considered vital and the
driving force of mass flow and net solute transport (Lee 1981; van Bel 2003).

It was namely for that reason that Ricca (1916) and Snow (1924) suggested
an alternative mechanism in which an excitation substance is released into
the xylem and moved by the transpiration flow is the ultimate cause for the
propagating excitation. The most convincing experiment in favor of a chem-
ical substance was to cut through a Mimosa stem and then reconnect the two
pieces with a water-filled tube. Flame-stimulation of leaves connected to the
lower part of the stem frequently caused an excitation response in the upper
shoot. It is often forgotten, however, that other researcher could not confirm
these results (e.g. Koketsu 1923; Bose 1925, 1926). Observing both leaflet
movement and electrical signals, Bose (1926) finally proposed that vascular
bundles act analogous to nerves by enabling the propagation of an excitation
that moved from cell to cell.

Ignoring Haberlandt’s and Bose’s results, Houwinck (1935) proposed that
wound excitation in Mimosa can be propagated by a chemical wound signal
(called Ricca’s factor) in the xylem which then could be translated into an AP
via the mediation of a new type of electric signal, which he called variation
potential. One cannot help noticing that the conversion of a chemical into an
electrical signal is a process with striking parallels to post-synaptic events in
animals. Houwinck’s idea circumvented the existing controversy by including
both chemical and electrical signals in the transmission mechanism for the
excitation signal in Mimosa. In spite of Houwinck’s diplomatic proposal, the
conflict between chemical and electrical propagation persists to this day
Cheeseman and Pickard 1977; Schildknecht 1984). A recent modification in
the controversy is the recognition that massive wounding causes a large and
propagating pressure increase at the wound site. These wound-induced
increases in xylem pressure cannot only temporarily reverse the direction of
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the transpiration-driven xylem flow (Malone 1996) but are also sufficient
cause for a large depolarization in the form of a slow wave potential (Stahlberg
and Cosgrove 1996, 1997). Accordingly, the hydrodynamic propagation of
electrical signals proposed by Kunkel (1878) and Haberlandt (1914) has been
found to occur less in the phloem (Tinz-Fruchtmeyer and Gradmann 1990)
than in the xylem, where it provides the major mechanism for the propagation
of a propagating signal called slow wave potentials (Stahlberg et al. 2006).

The majority of recent studies in Mimosa and other plant species con-
firmed Haberlandt’s suggestion of the phloem being the pathway of excita-
tion. APs have their largest amplitude near and in the phloem and there again
in the sieve cells (Sibaoka 1969; Opritov 1978; Fromm and Eschrich 1988;
Fromm and Bauer 1994; Rhodes et el. 1996; Dziubinska et al. 2001). Other
studies found that AP-like signals propagate with equal rate and amplitude
through all cells of the vascular bundle (Herde et al. 1998). Bose (1907, 1913,
1926) went one huge step ahead when he started studies with isolated vascu-
lar bundles (e.g. in the fern Adiantum). Comparing the amplitudes, he found
the response to heat in the isolated vascular bundles to be much stronger than
in the intact stem. Bose found a series of interesting results; among them an
increase in amplitude of heat-induced spikes by repeated stimulation (tetani-
sation) and by incubation of the strands in 0.5% solution of sodium carbon-
ate and other salts. This daring advance has yet to be repeated and confirmed
by other labs. Since the recorded behavior of the isolated vascular strands was
comparable to that of isolated frog nerves, Bose felt justified in referring to
them as plant nerves.

1.3 “Plants have no nerves!?”

Although Burdon-Sanderson described APs in in Dionea plants as early as
1873 and Bose described APs in Mimosa as early as 1906, the scientific com-
munity was slow to respond with experimental and theoretical follow-up.
This lack of enthusiasm was at least in part conditioned by the reiterated
belief that plants have no nerves and muscles, that the APs were not involved
in activities of primary relevance for plant life such as, e.g. photosynthesis.
And yet for some, the existence of APs in Dionea and Mimosa plus the dis-
covery of plant mechanoreceptors not only in Dionea, but also at tendrils and
surfaces of common plants (Haberlandt 1890, 1906) was sufficient stimula-
tion to look for structures that could facilitate the rapid propagation of sig-
nals. Around 1900, several researchers started took a closer look at plasma
strands that run across the lumen of many plant cells, continue over several
cells and might possibly serve as excitation-conducting structures similar as
nerves. Strands were shown to occur and likely to be involved in the trauma-
totropic responses of several plant roots (Nemec 1901), but were also seen in
the leaves of insectivorous butterworts of the genus Pinguicula where they
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connect the mucous glue-containing hair tips with the more basal peptidase-
producing glands (France 1909, pictured in France 1911). Haberlandt rein-
vestigated these views and suggested later that the only potential nerve-like
structures of plants were the vascular bundles, and in particular the phloem
(Haberlandt 1914; but see also recent re-evaluation by Baluska and Hlavacka
2005).

From then on and often to this day papers and textbooks reiterate the state-
ment that “plants have no nerves”. This unproductive expression ignores the
work of Darwin, Pfeffer, Haberlandt and Bose, together with the result that
nerves and vascular bundles share the analog function of conducting electri-
cal signals. Similar anatomical and functional differences were never seen as
an obstacle to stating that both plants and animals consist of cells. The mech-
anistic similarity of excitations in plant and nerve cells were elegantly demon-
strated by direct comparison of action potentials in Nitella and the giant axon
of squids (Cole and Curtis 1938, 1939). Today, the consideration of nerve-like
structures in plants involves an increasing number of further f aspects of com-
parison. We know that many plants can efficiently propagate action potentials
and hydraulo-electric signals in the form of slow wave potentials (variation
potentials) and that the long-distance propagation of these signals proceeds in
the vascular bundles. We also know that plants like Dionea can propagate APs
with high efficiency and speed without the use of vascular bundles because
their cells are electrically coupled through plasmodesmata. Other analogies
with neurobiology include vesicle-operated intercellular clefts in axial root tis-
sues (the so-called plant synapses; Baluska et al. 2005) as well as the existence
and operation of substances like neurotransmitters and synaptotagmins in
plant cells (e.g. Wipf et al. 2002). Such similarities were recently the focus of
studies presented at the First Symposium on Neurobiology of Plants in 2005
(Baluska et al 2006).

For a long time, plants were thought to be living organisms whose limited
ability to move and respond was appropriately matched by limited abilities of
sensing (Trewawas 2003). Exceptions to this rule were made only for plants
with rapid and/or purposeful movements such as Mimosa pudica (also called
the sensitive plant), Drosera (sundews), Dionea muscipula (flytraps) and ten-
drils of climbing plants. These sensitive plants attracted the attention of out-
standing pioneer researchers such as Burdon-Sanderson (1873, 1899), Pfeffer
(1873), Haberlandt (1890, 1906, 1914), Darwin (1896) and Bose (1926). They
found them not only to be equipped with various mechanoreceptors that
exceeded the sensitivity of a human fingerbut also to trigger action potentials
(APs) that implemented these movements.

Although at the time a hardly noticed event, the discovery that normal
plants such as pumpkins had propagating APs just as the esoteric “sensitive”
plants (Gunar and Sinykhin 1962, 1963; Karmanov et al. 1972) was a scientific
breakthrough with important consequences. First, it corrected the long-held
belief that normal plants are less sensitive and responsive than so-called
“sensitive plants.” Second, it led to a new, eagerly pursued belief that such
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widely distributed electric signals were not random fluctuations but indeed
carried important messages with a broader relevance than the established
induction of organ movements in “sensitive plants.” In different laboratories
around the world, this anticipation became the driving force for a renewed
quest for the meaning of the electrical signals (Pickard 1973; Pyatygin 2003).

The ensuing studies made considerable progress in linking electrical sig-
nals with respiration and photosynthesis (Gunar and Sinykhin 1963; Koziolek
et al. 2003), pollination (Sinykhin and Britikov 1967; Spanjers 1981), phloem
transport (Opritov 1978; Fromm and Eschrich 1988; Fromm and Bauer 1994)
and the rapid, plant-wide deployment of plant defenses (Wildon et al. 1992;
Malone et al. 1994; Herde et al. 1995, 1996; Volkov and Haak 1995; Stankovic
and Davies 1996, 1998; Volkov 2000).

1.4 The photoelectric response of green leaves

From the view of many botanists, it was probably equally or more important
to decipher the mechanism of action potentials as it was to find the particu-
larities in electric behavior that derive from photosynthetic activity in green
plant cells. The first to address this question was Haake (1892). Using leaves
of various species, he established that relative to the midvein, the mesophyll
had a positive voltage in the dark that turned negative under illumination (in
modern understanding and assuming that the midvein potential did not
change, this result can be interpreted as a light-induced hyperpolarization of
the mesophyll). The further steps in deciphering of the photoelectric
response have been described by Higinbotham (1973), Rybin (1977) and also
by Liittge and Higinbotham (1979). Jeschke (1970) and Spanswick (1974)
found that illumination of Elodea and Nitella cells caused them to hyperpo-
larize by 50-130 mV (in Elodea canadensis up to a record V _ value of —296
mV) due to the increased activity of the P-type H* ATPase.

For the photoelectric response of higher land plants, it was most revealing
to compare green and chlorophyll-free cells within the same variegated leaf.
Such a comparison identified a rapid light-induced depolarization as the
major photosynthetic contribution to the photoelectric response of mesophyll
cells from leaves of higher plants (Stahlberg et al. 2000). The depolarization is
associated with and can be simulated by the reduction of inter- and intracel-
lular levels of carbon dioxide (Stahlberg et al. 2001). It is inhibited by the elec-
tron-transport blocker DCMU (3-3"-4’-dichloropphenyl-1,1-dimethylurea)
and may involve K*, Ca** and/or Cl~ currents (Spalding et al. 1992; Elzenga
et al. 1995; see also Chapter 10). This transient depolarization response differs
from the light-induced hyperpolarizations reported as the major photosyn-
thetic light responses in Elodea and Nitella cells. A delayed hyperpolarization
associated with the P-type H" ATPase is also present in leaf cells of higher land
plants. It occurs in response to photosynthetic and other factors in a way that
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remains unresolved to this day (Stahlberg and Van Volkenburgh 1999). Plants
also generate other, non-photosynthetic types of intracellular and intercellu-
lar electrical events in response to light. Recently, it was found that the irradi-
ation of soybean plants at 450+£50 nm induced APs and that their suppression
by ion channels blockers inhibited the phototropic response of these plants
(see Chapter 19).

By studying the particularities of photosynthesis, plant transporters, plant
membrane potentials, action potentials, slow wave potentials and their cou-
pled responses, electrophysiological studies contributed much to the under-
standing of the living world and one of its central questions: the defining
similarities and differences between animals and plants. Details of these and
other contributions can be found in the following chapters.
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