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Preface

1 Industrial Sectors Interested in Pressure Vessels

Pressure vessels are probably the most widespread “machines” within the
different industrial sectors. In fact, there is no factory without pressure vessels,
steam boilers, tanks, autoclaves, collectors, heat exchangers, pipes, etc. More
specifically, pressure vessels represent fundamental components in sectors of
enormous industrial importance, such as the nuclear, oil, petrochemical, and
chemical sectors. There are periodic international symposia on the problems
related to the verification of pressure vessels.

For many years an ISO committee was dedicated to pressure vessels design.
There is also a technical committee of the EU specifically assigned to this
field. All the industrialized countries have a code relative to pressure vessels
design. However, even when the code includes specific regulations to determine
the thickness of the different components, typically not all issues facing the
designer are discussed. Finally, it is worth noting that a few regulations cause
some perplexity.

In Italy, a specific area of ISPESL regulations (VSR collection) is devoted
to pressure vessels.

2 Current Know-How with Regard to Resistance
Verification

A pressure vessel is not an easy machinery in terms of resistance verification.
A layman can easily make the mistake of considering somewhat simple struc-
tural forms that are in fact quite difficult to analyze, especially if one would like
to apply the most modern criteria of verification (elastoplasticity, self-limiting
stresses, etc.).

Regardless of the enormous interest in the topic and numerous efforts,
many problems have not been studied in-depth, and there is still no agree-
ment among scholars and the institutions of the various countries that define
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regulations. In addition, economical reasons and technical progress constantly
present new challenges in connection with new forms and solutions, the
necessity to reduce thickness to a minimum, etc.

Finally, the growth of the nuclear sector has highlighted the necessity of
an investigation beyond the simplistic analysis of stresses, and this also led
to a systematic analysis of the impact of fatigue phenomena. These accom-
plishments notwithstanding, much still needs to be done if, from a practical
standpoint, one wishes to move from general principles to operational guide-
lines of calculation criteria that are as simple as possible.

3 Current State of Technical Literature

With regard to Italy, when pressure vessels are treated, they are included in
general textbooks about mechanical engineering. This leads to a somewhat
generic and often outdated treatment of the subject with regard to modern
verification criteria, and hence the outcome is of little practical interest.
Outside of Italy, there are textbooks and various publications specifically on
pressure vessels.

However, these publications have a number of shortcomings:

(a) Simply a guide to apply the code’s rules correctly.
(b) Sound scholarly framework that often does not extend itself to the point

of analyzing the practical cases, thus becoming of little use to the designer.
(c) Lack of interest in problems that may seem marginal but are in reality

those causing many obstacles to the designer, specifically those that are
not analyzed in detail and also happen not to be included in regulations
and codes.

(d) Experimental emphasis that for the cases under study is of obvious help.
However, because the number of cases is considerable, and a theoretical
background is lacking, the designer is unable to use the available data by
applying “similarity approaches.”

(e) Lack of interest in verification methodology which is essential for sizing;
the designer is faced with values for stresses that he or she does not
know how to evaluate; the situation becomes even more complex when
the verification methodology exists but does not correspond to the modern
verification criteria.

4 General Characteristics of the Book

The book focuses on general problems as well as fundamental ones derived
from the previous ones, and on problems that may be incorrectly considered
of secondary importance but are in fact crucial in the design phase.

The basic approach is rigorously scientific with a complete theoretical
development of the topics treated, but the analysis is always pushed so far as to



Preface VII

offer concrete and precise calculation criteria that can be immediately applied
to actual designs. This is accomplished through appropriate algorithms that
lead to final equations or to characteristic parameters defined through math-
ematical equations. Given the complexity of many of these, representative
graphs are shown.

In other cases experimental graphs are shown. Their limit of applicability
is discussed, also by including a basic theoretical treatment to justify their
specific behavior. The result of this is a textbook with a large number of
equations and graphs, both fundamental for the actual design of pressure
vessels.

The topics treated are grouped in ten chapters.
The first chapter describes how to achieve verification criteria, the second

analyzes a few general problems, such as stresses of the membrane in revo-
lution solids and edge effects. The third chapter deals with cylinders under
pressure from the inside, while the fourth focuses on cylinders under pressure
from the outside. The fifth chapter covers spheres, and the sixth is about all
types of heads. Chapter seven discusses different components of particular
shape as well as pipes, with special attention to flanges. The eighth chapter
discusses the influence of holes, while the ninth is devoted to the influence of
supports. Finally, chapter ten illustrates the fundamental criteria regarding
fatigue analysis.

5 Original Contributions of the Author to the Solution
of Various Problems

Besides the rather unique approach to the entire work, see Sect. 4 above, original
contributions can be found in most chapters, thanks to the author’s numerous
publications on the topic and to studies performed ad hoc for this book.

Specifically, we would like to draw your attention to the following topics:

3.4 Allowable out of Roundness
3.5 Stiffened Cylinders
3.6 Partially Plastic Deformed Cylinders
3.7 Stresses due to Thickness Variation
4.2 and 4.3 Cylinders Under External Pressure (special emphasis on

ovalization)
5.4 Partially Plastic Deformed Spheres
6.4 Flat Heads
7.4 Flanges
7.6 Expansion Compensators
8.3 Isolated Holes on Cylinders, Spheres, and Cones: Y and T Branches
8.4 Flat Head with Central Hole
8.5 Drilled Plates
9.2 Spherical Vessels Resting on a Parallel
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Notation

A Cross-sectional area
C Form factor (heads)
D, d Diameter
De, de Outside diameter
Di, di Inside diameter
Dm, dm Average diameter
E Young’s modulus; modulus of elasticity
F Force, load
f Basic allowable stress
fc Allowable stress for piping
fa Allowable stress for fatigue
H Height
I Moment of inertia
k1 . . . . . . . . . k10 Dimensionless factors
L, l Length, width
M Bending moment
N Normal force
n Number of waves (buckling); number of cycles
p Pressure
pc, pce, pcp Critical pressures
R, r Radius
Re, re Outside radius
Ri, ri Inside radius
Rm, rm Average radius
s Thickness
T Shear force
t Temperature
u Ovalization
W Section modulus
z Weld joint efficiency; efficiency of ligaments
α Thermal expansion coefficient
δ Deviation from roundness
ε Deformation (strain)



XII Notation

εid Ideal deformation
λ Thermal conductivity coefficient
µ Poisson’s ratio
ν Safety factor
σ Normal stress
σI , σII , σIII Principal stresses
σa Longitudinal stress, axial stress
σm Meridian stress
σr Radial stress
σt Hoop stress, circumferential stress
σid Ideal stress
σs Yield strength
σR Rupture stress
τ Shear stress
α, ϑ, ϕ, ω Angles
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Preliminary Considerations

1.1 Mechanical Characteristics of Steel

If we exert a tensile load on a specimen made of mild carbon steel, and we
transfer on the x-axis the values of the elongation per unit of length between
the references (ε) (called strain) and on the y-axis the values of the stress
(σ) that equals the load applied to the specimen divided by its original cross-
sectional area, we obtain a diagram qualitatively similar to the one shown in
Fig. 1.1.

We notice that there is proportionality between stress and strain in the
first portion of the curve, i.e., the steel follows Hooke’s law that constitutes
the basis of classic calculation in the elastic field. In fact, the steel behaves in
an elastic fashion, i.e., the deformations completely disappear after removal
of the load, and the specimen returns to its original shape.

The angular coefficient E of the straight portion given by the relationship
σ/ε is called modulus of elasticity, or Young’s modulus. The point on the
curve at the end of the linear section identifies a value of σ which is called
proportional limit.

Steel behaves in an elastic fashion even beyond the proportional limit,
as long as another characteristic point corresponding to stress called elastic
limit is not exceeded. Note that the two points mentioned above are near, and
the second one is not easy to determine. In practice, we typically equate the
proportional limit to the elastic limit.

By increasing the load applied to the specimen, we reach a point on the
curve corresponding to a stress σ, called upper yield strength, that represents
the maximum value of σ taking place at the onset of the yielding phenomenon.
In fact, after reaching the upper yield strength the load decreases, and we
reach a relative minimum of the curve that identifies the stress called lower
yield strength.

The yielding phenomenon is characterized by large deformations (when
compared to those typical of the elasticity field) under practically constant
load.
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This portion of the curve is then followed by a portion characterized by
progressive increase in stress with large deformations. This is the well-known
phenomenon of steel hardening, which persists until the stress reaches a maxi-
mum value called ultimate strength. After that σ decreases (again with regard
to the original cross-sectional area of the specimen), and we reach rupture.

Conversely, if we consider the actual cross-sectional area of the specimen in
the different stages, the highest value of σ is reached in correspondence with
the rupture point. In fact, substantial elongations in correspondence with
yielding and hardening areas happen together with a significant reduction of
the cross-sectional area.

The lower value of the yield strength (simply known as “yield strength,”
σs) and the maximum value of σ that precedes the rupture are the most
significant parameters of the steel’s mechanical properties, and are therefore
indicated in test certificates and represent the basis of resistance calculus.

The yield strength basically shows the condition under which the material
starts yielding. At this point, the yielded fiber is not able to absorb growing
stresses, and thus to contribute to the equilibrium of forces applied to the
vessel. This is because we rule out the possibility that under safety conditions
the deformations become so large that one is forced to consider the hardening
phenomenon.

The fiber can be plastic deformed and, as we shall see, this has an
important impact on the behavior of neighboring fibers, if we start from the
assumption that they have not yet reached the yield strength. This leads to
a different kind of calculation, somewhat different from the classic one based
on the elasticity behavior of the entire component.

In view of the above considerations, one can replace the curve in Fig. 1.1
with that in Fig. 1.2, whereas in a first segment σ is proportional to ε (totally
elastic behavior of material) followed by a segment parallel to the x-axis (per-
fectly plastic behavior of the material). Such simplification is most frequently
used for resistance verification in the elastic–plastic field.
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The maximum value of σ in the tensile test is usually called rupture stress,
although a better term would be unitary maximum load in the tensile test
(σR). This is a characteristic parameter of the steel’s behavior that cannot be
ignored with regard to safety since it identifies its maximum level of resistance.
It is therefore considered by adopting a relatively high factor of safety to
ensure that the stresses present in the vessel are substantially distant from
such value.

Steel does not always show a curve σ–ε similar to the one in Fig. 1.1; in
the case of steel with a high content of carbon, for instance, the first segment
of the curve has a shape similar to the one shown in Fig. 1.3. Moreover, this
shape also characterizes steel used at high temperatures that exhibits a curve
σ–ε, as in Fig. 1.1 at room temperature.

After the first linear segment the curve exhibits a substantial and progres-
sive slope decrease, but the portion characterized by increasing deformations
at basically constant stress is no longer present.

Since σs has not been found, we consider a conventional stress that sub-
stitutes for all practical purposes the classic yield strength with regard to
calculus.
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This is the stress that during the specimen’s release that takes place
according to Hooke’s law causes a permanent deformation equal to 0.2%
(Fig. 1.3). Therefore, it is indicated with the symbol σ(0.2).

Up to this point, we have discussed the steel’s behavior at room temper-
ature. It is, however, of the greatest importance to be aware of the influence
of temperature on the mechanical characteristics of the material.

As we shall see, not only temperature but also time may have a strong
influence, but right now we shall focus on the effects of temperature on the
results of the classic tensile test.

The temperature also affects the values of resilience, of the elongation to
rupture and of the area reduction. Limiting our focus to the values of σ(0.2)

and σR, we notice that σ(0.2) decreases with the increase in temperature,
while σR increases initially within a moderate range of temperatures and
then decreases. In Fig. 1.4, we show the representative curves of carbon steel
as a reference.

Moreover, the decrease of σ(0.2) has an important impact on the sizing of
the vessel and, under certain conditions, on the selection of the steel to be
used. In fact, the decrease of σ(0.2) can be more or less substantial for steel of
different composition.

Knowing σ(0.2) and σR, however, is not always sufficient to identify the
mechanical characteristics of steel under hot conditions, in order to calculate
the allowable stress, as we shall see in Sect. 1.2.

When temperatures are typically below 300◦C (570◦F), the elongation of
the specimen under tensile load does not increase over time, or it does so
in a negligible fashion. When temperatures are higher than 300◦C (570◦F)
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Fig. 1.4
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the specimen is instead subject to an increased elongation over time; such
elongation is also of variable entity as a function of temperature and stress
applied to it.

Under certain temperature and load conditions the specimen can go into
rupture over time. Such phenomenon, called creep, is clearly of great impor-
tance for the behavior of vessels over time for both safety and business reasons.
If we examine the phenomenon in greater detail (see Fig. 1.5), we notice that
the strain increases while the elongation’s speed decreases over time until it
reaches a minimum value.

This first portion of the curve identifies that which is called the first period.
In the second period the elongation’s speed remains practically constant; the
representative point of the end of the second period is called point of transi-
tion. Finally, in the third period the elongation’s speed and the values of the
strain increase rapidly up to the rupture.

Amongst the three analyzed periods, the first and third are rather short,
while the second takes most of the total time during which the specimen goes
into rupture. As a reference point, please note that for a total time of about
100,000 h the first period represents at most a few hundred hours.

Finally, it is important to understand the great importance played by the
point of transition that represents the beginning of the short period during
which the specimen goes into rupture. The literature sometimes considers its
reference time more important than the rupture time itself. In order to be able
to take into account the creep in the sizing of components working under hot
conditions, researchers and institutions initially developed different proposals
that had in common the characteristic of forecasting tests of short duration,
even though they differed with respect to the duration of the test and the
evaluation of the results.

In Europe, the most popular proposal came from the German Metallurgic
Union (DVM). Based on the name of this organization, the value of the stress
derived from the test was called σDVM and was adopted for some time, and
not only in Germany, to determine the allowable stress at high temperatures.
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The stress σDVM is the one that between the 25th and the 35th hour
causes an elongation’s speed inside the specimen not higher than 0.001% h−1

and a permanent deformation after 45 h not greater than 0.2%.
The advantage of such tests is the short duration, but they were soon

abandoned, mostly due to the extremely high variability of the values. In
fact, the test occurs during the first period of the curve that may have a
rather variable behavior from casting to casting of the same steel, even when
the behavior of the curve during the second period is basically the same. The
value of σDVM is a poor indicator of the performance of steel over long periods
of time. Thus it became necessary to carry out tests over very long periods of
time.

Nowadays, very many values of specimen made of steel of common usage
that have reached the 100,000 h, and a relevant number of specimen that have
been tested over even longer periods of time, are available. This allows us to
determine with absolute certainty the behavior of steel of common usage up
to 100,000 h of usage. Such is in fact the reference time that is typically taken
into consideration for resistance verification purposes.

The value that is considered for resistance verification is the average of
the rupture stress for a creep lasting 100,000 h. Such value is indicated with
the symbol σR/100000/t for a generic test temperature t. Note that this is an
average value: these values are characterized by a certain amount of scatter-
ing. We admit that the variability may have a range around the average value
considered for calculations equal to no more than 20% of the average value
itself. If the minimum value is outside such range, we shall assume the mini-
mum value multiplied by 1.25. If for a given steel and a given temperature we
indicate the time on the x-axis and the values of the stress on the y-axis that
cause the rupture of the specimen, which we call σR, in a doubly logarithmic
diagram, we obtain curves that are qualitatively like the one shown in Fig. 1.6.

These curves look like broken lines with more or less evident knees. There
are also instances – in most cases to be considered exceptional – where such
knees are missing, and the broken line becomes a straight line. Therefore, the
values of σR/100000/t are derived from these curves for 100,000 h. As we said
above, for steel of common usage there is no problem given the amount of
values for the rupture stress per 100,000 h that are available. The problems
arise when we deal with steel of new fabrication, or that has not yet undergone
extensive tests; in such instances there is nothing else to do but to extrapolate
on the basis of the values known for shorter periods of time. The extrapolation
is possible with all the necessary cautionary tales, but it is sufficiently reliable
only if it is not pushed too far. This is because of the presence of the knees, and
also because even a small mistake in the determination of the values related
to longer experimental time frames would result in substantial errors in the
values obtained through extrapolation.

An acceptable extrapolation should not involve a timing ratio greater than
10; limiting such ratio to five leads to values that are sufficiently reliable.
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In other words, to obtain reliable values for 100,000 h the longest test shall be
at least of 20,000 h.

1.2 Allowable Stress

The following stresses are typically considered to determine the basic allowable
stress of steel:

σR = minimum value of the unitary maximum load during the tensile test
(rupture stress) at room temperature.
σ(0.2)/t = minimum value of the unitary load during the tensile test at
temperature t with a permanent deformation equal to 0.2% of the initial
length between references after removal of load.
σR/100000/t = average value of the unitary rupture stress for creep after
100,000 h at temperature t.

In the case of austenitic steel there is general agreement that instead of a
permanent deformation of 0.2% we refer to a deformation of 1%. Note that
the temperature t is the average wall temperature.

As discussed in Sect. 1.1, the meaning of these values is certainly clear to
the reader; this not withstanding, further clarifications are due.

The rupture stress during the tensile test refers to room temperature.
This may sound surprising since the resistance verification must be executed
at design temperature t, to which the other two values above in fact refer.
As pointed out in Sect. 1.1, the value of the rupture stress at moderate
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temperatures is greater than the one at room temperature. Within this tem-
perature range, the adoption of this last value addresses basic safety criteria.
The use of this value is in fact justified within the range of moderate tem-
peratures: the goal here is to guarantee, through an adequate safety factor
(as we shall see later on), that stresses acting upon the vessel do not cause a
dangerous situation leading to rupture. Moreover, the value of σR is at times
crucial, as far as allowable stress is concerned, when steel with high levels of
yield strength are adopted. In this case if the design temperature is either
room temperature or anyway moderate, the value of σ(0.2)/t is very close to
σR. The determination of the allowable stress solely based on σ(0.2)/t may lead
to a value that does not sufficiently protect against rupture.

Considering now the unitary load that causes a permanent deformation of
0.2% at release during the tensile test (we use the symbol σ(0.2)/t to remember
that one should refer to the design temperature t), we pointed out in Sect. 1.1
that it practically replaces the yield strength when the steel does not exhibit
the classic yielding phenomenon. If, on the other hand, this were the case, it
would be easy to determine, due to the entity of the resulting deformations,
that the value of σ(0.2) coincides with the lower value of the yield strength.

We shall use the symbol σs instead of σ(0.2)/t in the following chapters for
simplicity purposes. The latter is in most cases crucial to determine the value
of allowable stress. We will also use the term “yield strength”, even though it
is formally incorrect, to simplify the language. Finally, as far as the rupture
stress per creep at 100,000 h is concerned, its importance is now evident, in
view of what discussed in Sect. 1.1, if the design temperature is high. For such
stress, given the dispersion of values present even for similar types of steel,
one refers to the mean value of the range, generally assuming that the size of
the range itself does not go beyond ±20%.

In order to obtain the allowable stress, the three characteristic stresses are
associated to safety factors, the values of which lack a general consensus, and
that have undergone numerous modifications over time. The general trend
has been to reduce them, as the behavior of different kinds of steel became
better understood, to require more stringent inspections and refine calculation
methodologies. We therefore recommend the following criterion that will be
applied throughout the book.

The basic allowable stress of the material that from now on we will call f
is given by the smallest of the following values:

σR

2.4
,

σ(0.2)/t

1.5
, and

σR/100,000/t

1.5
.

From a conceptual point of view, the basic value is the one derived from
σ(0.2)/t. For this reason, we will always refer to the yield strength when we
have to correlate the allowable stress with a value typical of the material’s
resistance. The other two values mentioned above occur in special instances,
even though σR/100000/t is found quite frequently.
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We have already discussed elsewhere the reasons that suggest to take σR

into consideration. σR/100000/t is critical for f when its value is lower than the
yield strength, since the safety factor has the same value of the one relative
to σ(0.2)/t. For instance, this happens for carbon steel at temperatures be-
yond 380–420◦C (715–790◦F), for low-alloy steel at temperatures higher than
470–500◦C (880–930◦F), and for austenitic steel at temperatures higher than
500◦C (930◦F).

Finally, note that we have defined the stress f as basic allowable stress
of the material. This does not necessarily mean that it corresponds to the
allowable stress during resistance verification of a specific piece in a specific
position.

As we shall often return to this, in some cases it is acceptable that the
ideal stress may reach the yield strength or even, in spite of being physically
impossible, twice the yield strength (only from the point of view of calculation
in the elastic field). We will discuss this issue in Sects. 1.4 and 1.5. The stress
f , which in other cases actually corresponds to the maximum stress allowable
for the piece, and at any rate to the maximum ideal stress of the membrane,
represents a reference point, since it is present in all equations to compute the
thickness of the various components. As a matter of fact, even when greater
allowable values are assumed, they are correlated to the value of f .

1.3 Theories of Failure

This is a widely discussed topic in construction theory. In this book it is
neither necessary nor relevant to examine all failure theories. We shall limit
ourselves to consider those that directly relate to resistance verification of
pressure vessels, and even for these we will highlight only those aspects that
are required to understand what follows next.

Pressure vessels are characterized by the existence of stresses along three
axis. First of all, due to pressure, there is a principal stress directed as the
pressure itself and thus orthogonal to the wall of the vessel, while two addi-
tional principal stresses act on the plane orthogonal to the previous one.

In the case of cylindrical elements the first of such stresses is radial, the
other two are directed, respectively, along the circumference and along the
axis of the cylinder.

Similarly, in the case of spherical elements the first stress is radial, the
other two are directed, respectively, along the meridian and the circumference
orthogonal to the meridian, and they are obviously identical.

Different situations may occur with elements that are neither cylindrical
nor spherical, e.g., in the case of a flat head the first of the three stresses
mentioned above is orthogonal with respect to the head, and therefore along
the same direction of the axis of the vessel, if the flat head is orthogonal to
the latter. The other two have circumferential and radial direction.
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In any case, we are faced with a state of stresses along three axis. This
calls for a failure theory that allows one to correlate such state of stress with
the resistance values of the material, derived from the tensile test that in turn
is based on a single stress directed along the axis of the specimen.

The most generally accepted failure theories for ductile materials, such as
steel used to build pressure vessels, are the well-known theory of maximum
shear stress or Guest–Tresca, and the one known as distorsion energy theory
or Huber–Hencky.

According to Guest–Tresca the level of danger is captured by the maxi-
mum shear stress, in other words all states having the same maximum shear
stress are equivalent with respect to danger. The state of stress relative to
the specimen being subjected to single tensile stress is represented in Mohr’s
plane by the only circle shown in Fig. 1.7. The maximum shear stress acting
at 45◦ with respect to the only principal stress σIII is equal to σIII /2.

Therefore, if we associate a dangerous condition to the yielding of the
material and we call σs the corresponding stress, the shear stress is given by

τs =
σs

2
. (1.1)

If the state of stress is along three axis, and we call σI , σII , and σIII the three
principal stresses, let us agree that the three increase in value from σI to σIII

(see Fig. 1.8).
The three maximum shear stresses on the three planes where they operate

are hence given, respectively, by

τIII ,I = (σIII − σI) /2;
τIII ,II = (σIII − σII ) /2; (1.2)
τII ,I = (σII − σI) /2.

With the above agreement the maximum value of the shear stress is given by
τIII .I and therefore the condition of danger is represented by the following

τmax=σIII /2

σIII

σ

τ

Fig. 1.7
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τmax=τIII,I=(σIII-σI)/2

σ

τ

σII

σIII
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Fig. 1.8

expression derived from (1.1):

τIII ,I =
σIII − σI

2
= τS =

σS

2
, (1.3)

or
σIII − σI = σS . (1.4)

From a formal point of view (let us not forget that conceptually the stress
at the basis of the theory is the shear one) a conventional stress (also called
ideal stress or stress intensity) appears which is given by

σid = σIII − σI . (1.5)

Such stress, in the case of stress condition along more than one axis, takes over
the same function that the only applied axial stress has inside the specimen,
i.e., it can pinpoint the examined fiber’s working condition with respect to
danger.

In fact, when the ideal stress reaches the value of yield strength, in view
of (1.4) and (1.5), according to the failure theory adopted here, we face a
situation of danger. In practice, the ideal stress is therefore assumed to be the
characteristic stress of the state of stress and to be limited to the allowable
stress in order to obtain the sizing of the piece, as we shall see later on.

According to Huber and Hencky, the level of danger is captured by the
distorsion energy, i.e., all conditions of stress that produce the same distorsion
energy are equivalent to the condition of danger.

Defining again the three principal stresses as σI , σII , and σIII , such energy
is given by the following equation:

L =
1

6G

(
σ2

I + σ2
II + σ2

III − σIσII − σII σIII − σIII σI

)
. (1.6)

In the specific case of the specimen since σI = σII = 0 we have

L =
1

6G
σ2
III . (1.7)
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The condition of danger characterized by σIII = σs corresponds to a distorsion
energy equal to

Ls =
1

6G
σ2

s . (1.8)

For a state of stresses along more than one axis the condition of danger is
therefore given by

L = Ls =
1

6G
σ2

s . (1.9)

From (1.6) and (1.9) we obtain
√

σ2
I + σ2

II + σ2
III − σIσII − σII σIII − σIII σI = σs. (1.10)

Therefore, also in this case an ideal stress is determined

σid =
√

σ2
I + σ2

II + σ2
III − σIσII − σII σIII − σIII σI . (1.11)

This ideal stress relates to the stress state and allows one to identify the
working condition of the fiber under scrutiny. As for the previously discussed
theory, when σid reaches the value of the yield strength a dangerous condition
takes place, according to (1.10) and (1.11). Similarly, the sizing of the piece
is obtained by making sure that σid does not go beyond the allowable stress.

According to von Mises, the condition of danger depends on the value of
the following conventional stress:

τid =
√

τ2
III ,I + τ2

III ,II + τ2
II ,I . (1.12)

It must not go above a threshold that depends on the average value of the
principal stresses given by

σm =
σI + σII + σIII

3
. (1.13)

If we rule out the dependency of the value of danger of τid on σm, we realize
that von Mises’ theory formally corresponds to Huber–Hencky’s, in the sense
that the ideal stress σid is the same as that in (1.11).

In fact, on the basis of (1.2) we obtain from (1.12):

τid =
1√
2

√
σ2

I + σ2
II + σ2

III − σIσII − σII σIII − σIII σI . (1.14)

In the case of the specimen

τid =
1√
2
σIII , (1.15)

and the condition of danger is reached when σIII = σs.



1.4 Plasticity Collaboration 13

By replacing σIII with σs in (1.15), and by comparing it with (1.14), we
obtain (1.10). The ideal stress is represented by (1.11) in this case as well.
Therefore, it is customary to talk about failure theory of Huber–Hencky–von
Mises every time (1.11) is adopted, even though, as we have seen above, von
Mises starts from assumptions that are completely different from a conceptual
point of view.

Today this theory is the most generally accepted for resistance verification
of pieces for which ductile materials are used, more than the Guest–Tresca
theory. Note, though, that codes in the most important industrialized coun-
tries are based on the theory of Guest–Tresca.

The reason for this is because the theory of Guest–Tresca is more con-
servative than that of Huber–Hencky and easier to apply as well, as one can
immediately realize by comparing the equations of σid in both cases.

We will generally refer to this theory of failure as well, without neglect-
ing to refer to the theory of Huber–Hencky, however, every time it will be
necessary or appropriate.

1.4 Plasticity Collaboration

In the sizing of pressure vessels the possibility of plastic collaboration of steel
is widely exploited. This is a topic that, if dealt with in great depth, would
result in a vast analysis that is in fact not justified considering what is of
practical interest for resistance verification, a topic we will shortly introduce.
Therefore, we will concentrate on reviewing the fundamental concepts by mod-
eling the problems in a simple way, and by analyzing only those aspects of
the phenomenon that find actual application in the analysis presented in the
coming chapters.

The principle at the core of plastic collaboration consists of the possibility
that less stressed fibers may contribute to the resistance of the piece by helping
the most stressed ones. More precisely, the adoption of the criteria of plastic
collaboration goes against the traditional concept of verification in the elastic
field, which says that the condition of danger is reached when the most stressed
fiber begins to show signs of yielding in the material. If the material is ductile
it can withstand major deformations before rupturing. Therefore, the fact that
the material yields in one area of the piece does not represent a condition of
danger, if the nearby fibers are still far from yielding.

Let us consider a simplified stress–deformation curve, as is usually done
in this cases, as in Fig. 1.9. The intuition is that the behavior of the steel is
elastic–plastic, where the first section of the curve shows a perfectly elastic
behavior, while the second section is parallel to the axis of deformations (i.e.,
a perfectly plastic behavior). In other words, we ignore the hardening, which
actually has a favorable effect on resistance, and we assume that the material
shows substantial yielding.
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Once yielding in a portion of the piece is reached, if we increase the external
forces acting on the piece itself (in our case it is generally the pressure),
the yielded fiber or fibers are unable to absorb another increase in stress.
They undergo an increase in deformation, but the stress remains constant.
At the same time, the nearby fibers that are still far from yielding are able
to absorb increasing stresses. These are greater than those derived from cal-
culation in the elastic field because of the greater deformation following the
yielding of nearby fibers or, operating within an equilibrium framework, given
the requirement to balance the increase in external forces for which the yielded
fibers are no longer able to provide a contribution.

The condition of danger is reached when all fibers have exhausted the
possibility to absorb an increase in stress; in other words, the condition of
danger is represented by the plastic flow of the entire piece. At this point,
while peaks of deformation are present given the constraint to the conditions
of congruence, peaks of stress have disappeared since in every point the stress
is equal to the yield strength. Following this simplified model, taking into
account plastic collaboration corresponds in practice to ignoring the peaks of
stress.

This issue is in fact more complex since there is vast case history, and
every stress condition should be examined separately through a process known
as stress analysis. This helps to identify the exact nature of the peak, in
order to determine which criteria to apply to carry out verification. Such
procedure can be found, e.g., in Sect. III of the ASME Code that deals with the
verification of nuclear vessels, where the responsibility of the investigation of
the stress condition is left to the designer. This can be done through traditional
computational methodologies, if the theoretical modeling of the problem is
possible, or through investigation criteria that are nowadays possible with the
help of a computer and finite element analysis techniques.

The ASME code indicates at this point which criteria should be used to
determine whether the values of stresses are compatible with the safety of
the vessel, based on the nature of the stresses themselves, including general



1.4 Plasticity Collaboration 15

and local membrane stresses, those concerning bending, self-limiting ones,
etc. We will focus on this topic in detail in Sect. 1.5 when we introduce the
modern criteria of verification. We shall refer to them in the next chapters
when we examine those cases that lend themselves to a theoretical analysis
of the problem. Through the criteria illustrated in Sect. 1.5, we shall find
confirmation to what stated in the beginning, i.e., the exploitation of plastic
collaboration of the material according to various criteria that indeed depend
on the different nature of peaks.

To understand the philosophy at the basis of the criteria in Sect. 1.5, it
is therefore appropriate to try to model the most frequent situations. From
this point of view a number of considerations can be made. The verification
may involve a component for which an average stress not equal to zero or not
localized is clearly identifiable. This is the case, for instance, of stresses in
a cylinder subject to pressure from the inside without holes, or, if holes are
present, in areas of the same but at such distance from the holes not to be
influenced by them. In this case, as we shall see, the circumferential and the
radial stress vary with the radius through the wall. Their difference represents
the ideal stress according to Guest. This has a value that varies across the wall
and shows a nonzero average value. With respect to the average value, the
ideal stress shows both positive and negative peaks that are going to disappear
if the cylinder becomes plastic, since the average stress, if ideally distributed
over the entire thickness, is able to balance the acting pressure.

The methodology of plastic collaboration corresponds to neglecting these
peaks by doing the calculations on the base of average values for the stresses.
As we shall see, in the case at hand it is also possible to define a mathematical
formulation of the distribution of stresses under total plastic conditions. This
makes it possible to reason on such boundary situation by examining the
resistance of the piece from a global viewpoint. Similar situations occur if there
are drilling lines with holes that are so close to be considered non isolated, as
we shall discuss in more detail later on. Even in this case the circumferential
stress between holes, and in some instances the longitudinal stress as well,
shows significant peaks in correspondence of the holes’ edges. Adopting the
criteria of plastic collaboration, these peaks are neglected by referring in the
calculation to the average value of stresses that occur between holes.

A completely different situation occurs when stresses through the wall
show a change in sign. In this case the average value may be even zero if there
is pure bending. In reality this never takes place because of the simultaneous
presence of stresses with a constant sign that overlap those caused by the
bending. The average value is by the way very small with respect to the
maximum values for stresses due to the clearly prevailing bending moment.

An example of this is a flat head or a vessel with a quadrangular section.
It is obvious that even adopting plastic collaboration, one cannot here refer
to the average value of stresses since it does not balance the external acting
forces.
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Let us consider at this point how plastic collaboration occurs on a beam
with a rectangular section under pure bending, as in Fig. 1.10.

In the elastic field stresses behave as shown on the left side of the figure.
When increasing the bending moment up to the total plastic flow, the first
fibers to yield are the external ones; subsequently, the yielding moves more
and more towards the neutral axis, until the diagram becomes as shown on
the right side of the figure.

At the limit of elastic behavior the moment is equal to

Me = Wσs =
1
6
ab2σs, (1.16)

where W is the section modulus. When the section is completely yielded, the
corresponding moment is equal to

Mp = F
b

2
= a

b

2
σs

b

2
=

1
4
ab2σs. (1.17)

The coefficient of plastic collaboration is therefore given by the relationship
between these two moments that represent the condition of danger, according
to the calculation that takes plastic collaboration into account, and accord-
ing to traditional computation practices in the elastic field, respectively. By
indicating the coefficient of collaboration with ψ we have:

ψ =
Mp

Me
= 1.5, (1.18)

a well-known value in the literature. As far as stress peaks that occur in
correspondence with isolated holes, the most appropriate way to approach
the problem consists of examining the stress status around the edge of the
hole in detail, and to apply the verification criteria discussed in Sect. 1.5.

If we are unable or do not want to perform such analysis, it is possible to
adopt the criteria discussed in Chap. 8 that have been included with minor
variations in the codes of the most industrialized countries for non-nuclear



1.4 Plasticity Collaboration 17

pressure vessels. As we shall see, even in this case plastic collaboration is
factored in, by limiting the width of the area where the fibers collaborate
with those subjected to most stress. In doing so, a limit is set to deformations
in correspondence of peaks. In fact, an indiscriminate extension of the yielding
to fibers far from reaching a peak, with regard to danger, would imply the
onset of large deformations in correspondence with the peak itself, something
clearly to be avoided.

It is also important to consider those peaks that are the consequence of the
respect for congruence of deformations among pieces of different geometrical
shape connected with each other. If they were ideally isolated, they would be
characterized by different values of deformations in correspondence with the
junction. Heads (whether flat, hemispherical or torospherical) connected to
the ends of the cylinders represent a typical case.

In these cases, the stresses are, as we usually say, self-limiting, since they
occur only out of necessity to respect congruence, and not to balance external
forces. If we reach the yielding point and the subsequent deformations are rela-
tively large, congruence is maintained without leading the material to rupture.

In fact, in these situations it would be more logical to carry out the analysis
in terms of deformations. In practice this is done according to the laws of
elasticity and peak stresses are obtained. We should also not forget the nature
of such stresses, and we should not be surprised, if values for stress higher than
the yield strength are introduced, which may seem absurd.

That is, the peak deformation takes on a value greater than that of the
yield strength. The stress resulting from the calculation is greater than σs only
from a formal point of view, as the product of deformation by the modulus of
elasticity; in reality, it is obvious that the stress is equal to σs.

In these cases it is acceptable that the ideal stress computed according to
the laws of elasticity may be even double that of the yield strength. Let us see
now why this is the case. Let us look at Fig. 1.11 and assume that the deforma-
tion is greater than the yield point deformation in correspondence of the peak.

σ

σ s

B

A 

-σ
s

ε
εB

εA

Fig. 1.11
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The deformation is εA in correspondence of point A on the typical curve for
perfectly elastic–plastic material. At release the material behaves elastically,
and we also assume that the residual deformation is εB in correspondence of
point B, and a residual stress equal to the negative yield strength.

If we next load the piece, we return to point A, and every subsequent
cycle causes the stress to vary between −σs and σs. In other words, except
for the first cycle, for all the following ones the piece’s behavior is elastic
between point A and B, without further deformations since εA constitutes
the deformation that takes congruence into account.

In order for this condition to occur, it is necessary and sufficient that the
stress, computed according to the laws of elasticity, be double than the yield
strength. Of course, if it happens to be lower the behavior of the material is
completely analogous with the only difference that during release the negative
yield strength is not reached. If, conversely, the stress should be more than
double the yield strength, we would have the cycle that appears dashed in
the figure. The material would therefore have an elastic–plastic behavior in
those cycles following the first one, with the danger that incremental plastic
deformations occur that the adopted model does not seem to justify, but that
may actually happen in reality.

The calculation criterion introduced here is not limited to the junctions of
pieces of different geometrical shape, but can be extended in general to all those
situations where stresses originate from noncongruent deformations. Therefore,
even the stresses due to thermal flux fall into this category, i.e., those stresses
caused by variable thermal expansion through the wall of the piece. To con-
clude, it is noteworthy that the exploitation of plastic collaboration and the
deriving lack of interest in peaks is possible and appropriate not only in rela-
tion with the type of steel used, but due to the absence of fatigue phenomena.

When an investigation about fatigue is required, the verification criteria
are obviously different, and this is discussed in Sect. 1.5. Moreover, it is impor-
tant to keep in mind that the verification criteria and the deriving equations
for sizing discussed in the following chapters refer to work conditions that
do not imply significant fatigue phenomena, due to the presence of a limited
number of cycles.

If this were not the case, the validity of the equations to calculate
the stresses that take peaks into account notwithstanding (thus ruling out
the equations that consider the components of the vessel as membranes), the
verification criteria must follow what discussed in Sect. 1.5 and in more detail
in Chap. 10.

1.5 Verification Criteria

According to modern verification criteria, stresses can be divided into three
categories: primary, secondary, and peak stresses. Primary stresses can then be
divided into general membrane stresses, local membrane stresses, and primary
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bending stresses. In summary, there are the following types of stresses: general
membrane, local membrane, primary bending, secondary, and peak.

1.5.1 General Membrane Stresses (σm)

They correspond to stresses derived from calculation when one considers the
element under test as a membrane. More generally, they correspond to the
average value of the stresses through the thickness of the vessel. In contrast
to local membrane stresses, that we will discuss shortly, the fundamental char-
acteristic of these stresses is that a potential yielding of the material does not
cause a redistribution of the stresses, since the same stress is present in all
the surrounding fibers.

A typical example of general membrane stresses is represented by the
average values of the stresses acting in a cylinder without holes (or in an
area that is not influenced by holes or by the junction with the heads). The
same is true for the average values of the stresses acting on a sphere, or in the
central area of a hemispheric or torospherical head.

1.5.2 Local Membrane Stresses (σml)

Here as well we are dealing with the average values of the stresses through
the thickness in the analyzed section. In contrast with the previous ones, they
involve a limited area of the component, and this means that the surrounding
fibers are subject to membrane stress of lower value. A potential yielding
of the material happens together with a redistribution of the stresses to the
surrounding fibers that are still able to contribute to the local resistance of
material, since they are not yielded.

Typical examples of stresses of this kind are the membrane stresses pro-
duced in the cylinder and in the dished heads in correspondence with their
junction, or the membrane stresses that occur in the cylinder (or in the
sphere), and in the nozzle welded on the same in correspondence of a hole.

Once again, these are the average values of the stresses. Stress peaks both
in the junction cylinder-heads and in correspondence of the nozzles are gen-
erated that do not fall into this kind of stress category.

1.5.3 Primary Bending Stresses (σf)

These stresses belong to the category of primary stresses, such as the ones
mentioned above, but they are characterized by the fact that their value is
proportional to the distance of the fiber from the neutral axis of the section. As
the previous ones, they derive from the balance conditions between internal
stresses and external forces acting upon the vessel (pressure or mechanical
loads). A typical example is represented by the stresses at the center of a flat
head. The stresses produced by bending moments exerted on a vessel with a
quadrangular section fall into this category, as well.
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At this point we must discuss a very important concept in more detail.
A bending moment may also generate a distribution of stresses that do not
vary linearly across the thickness. An example can be seen at the corners
of a vessel with a quadrangular section. Here, the primary bending stresses
are those that balance the acting moment with linear variation through
the thickness. With respect to these, the stresses that are actually present
in the section, display positive or negative differences characterized by a
resultant and a moment that are zero. These differential stresses do not bal-
ance the forces applied to the vessel, but only guarantee the congruence of
the deformations. Therefore, they fall into the category of secondary stresses.
The analogy with membrane stresses is evident: the latter ones represent the
average value of the stresses produced by a normal load. The primary bend-
ing stresses represent the average behavior of the stresses caused by a bending
moment.

The differential stresses versus the membrane ones (in the presence of a
normal load), or with respect to the primary bending stresses (in the presence
of a bending moment), are secondary stresses.

1.5.4 Secondary Stresses (σsec)

Their fundamental characteristic is not to be involved in balancing the forces
applied to the vessel, and to be for this reason self-limiting. Their only purpose
is to guarantee the congruence of the deformations and, therefore, once the
required deformations are produced (even though this happens through the
yielding of the material) they do neither cause further deformations nor do
they force the intervention of the surrounding fibers, as is the case instead for
the local membrane stresses.

The stresses in correspondence of the junction between cylinder and heads
belong to this category (not the membrane ones because in that case they
are local membrane stresses); the stresses still not related to membranes in
the cylinder or in the sphere and in the welded nipple in correspondence
of a hole belong to this category, as well. In this last case local peaks due
to the presence of sharp edges are excluded, as they belong to the next
category.

The stresses due to thermal flux are secondary, as well. In fact, they are also
self-limiting, since they are produced solely to reestablish the congruence of
the deformations that differ in the various fibers because of the temperature
gradient. Even though they originate elsewhere, some differences in stress
levels also belong to this category (with respect to the average value that
represents the general membrane stress); they occur in a cylinder or a sphere,
especially in the case of great thickness, along the radius. These differences in
stress do not contribute to balancing the pressure (as the balance is guaranteed
by the general membrane stress), but only to ensure the congruence of the
deformations.


