
Lecture Notes
in Computational Science
and Engineering 64

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Christian H. Bischof · H. Martin Bücker
Paul Hovland · Uwe Naumann
Jean Utke
Editors

Advances in Automatic
Differentiation

With 111 Figures and 37 Tables

ABC

Christian H. Bischof
H. Martin Bücker
Institute for Scientific Computing
RWTH Aachen University
52056 Aachen
Germany
bischof@sc.rwth-aachen.de
buecker@sc.rwth-aachen.de

Paul Hovland
Jean Utke
Mathematics and Computer Science Division
Argonne National Laboratory
9700 S Cass Ave
Argonne, IL 60439
USA
hovland@mcs.anl.gov
utke@mcs.anl.gov

Uwe Naumann
Software and Tools for Computational
Engineering
RWTH Aachen University
52056 Aachen
Germany
naumann@stce.rwth-aachen.de

ISBN 978-3-540-68935-5 e-ISBN 978-3-540-68942-3

Lecture Notes in Computational Science and Engineering ISSN 1439-7358

Library of Congress Control Number: 2008928512

Mathematics Subject Classification (2000): 65Y99, 90C31, 68N19

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: deblik, Berlin

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

spinger.com

Preface

The Fifth International Conference on Automatic Differentiation held from
August 11 to 15, 2008 in Bonn, Germany, is the most recent one in a series that
began in Breckenridge, USA, in 1991 and continued in Santa Fe, USA, in 1996,
Nice, France, in 2000 and Chicago, USA, in 2004. The 31 papers included in these
proceedings reflect the state of the art in automatic differentiation (AD) with respect
to theory, applications, and tool development. Overall, 53 authors from institutions in
9 countries contributed, demonstrating the worldwide acceptance of AD technology
in computational science.

Recently it was shown that the problem underlying AD is indeed NP-hard, for-
mally proving the inherently challenging nature of this technology. So, most likely,
no deterministic “silver bullet” polynomial algorithm can be devised that delivers
optimum performance for general codes. In this context, the exploitation of domain-
specific structural information is a driving issue in advancing practical AD tool and
algorithm development. This trend is prominently reflected in many of the publi-
cations in this volume, not only in a better understanding of the interplay of AD
and certain mathematical paradigms, but in particular in the use of hierarchical AD
approaches that judiciously employ general AD techniques in application-specific al-
gorithmic harnesses. In this context, the understanding of structures such as sparsity
of derivatives, or generalizations of this concept like scarcity, plays a critical role, in
particular for higher derivative computations.

On the tool side, understanding of program structure is the key to improving
performance of AD tools. In this context, domain-specific languages, which by de-
sign encompass high-level information about a particular application context, play
an increasingly larger role, and offer both challenges and opportunities for efficient
AD augmentation. This is not to say that tool development for general purpose lan-
guages is a solved issue. Advanced code analysis still leads to improvements in AD-
generated code, and the set of tools capable of both forward- and reverse mode AD
for C and C++ continues to expand. General purpose AD tool development remains
to be of critical importance for unlocking the great wealth of AD usage scenarios,
as the user interface and code performance of such tools shape computational prac-
titioners’ view of AD technology.

VI Preface

Overall, the realization that simulation science is a key requirement to funda-
mental insight in science and industrial competitiveness continues to grow. Hence,
issues such as nonlinear parameter fitting, data assimilation, or sensitivity analysis of
computer programs are becoming de rigueur for computational practitioners to adapt
their models to experimental data. Beyond the “vanilla” nonlinear least squares for-
mulation one needs also to question in this context which parameters can at all be
reliably identified by the data available in a particular application context, a question
that again requires the computation of derivatives if one employs methods based on,
for example, Fisher information matrix. Beyond that, experimental design then tries
to construct experimental setups that, for a given computer model, deliver experi-
mental data that have the highest yield with respect to model fitting or even model
discrimination. It is worth noting that all these activities that are critical in reliably
correlating computer model predictions with real experiments rely on the computa-
tion of first- and second-order derivatives of the underlying computer models and
offer a rich set of opportunities for AD.

These activities are also examples of endeavors that encompass mathematical
modeling, numerical techniques as well as applied computer science in a specific
application context. Fortunately, computational science curricula that produce re-
searchers mentally predisposed to this kind of interdisciplinary research continue to
grow, and, from a computer science perspective, it is encouraging to see that, albeit
slowly, simulation practitioners realize that there is more to computer science than
“programming,” a task that many code developers feel they really do not need any
more help in, except perhaps in parallel programming.

Parallel programming is rising to the forefront of software developers’ atten-
tion due to the fact that shortly multicore processors, which, in essence, provide the
programming ease of shared-memory multiprocessors at commodity prices, will put
32-way parallel computing (or even more) on desk- and laptops everywhere. Going a
step further, in the near future any substantial software system will, with great proba-
bility, need to be both parallel and distributed. Unfortunately, many computer science
departments consider these issues solved, at least in theory, and do not require their
students to develop practical algorithmic and software skills in that direction. In the
meantime, the resulting lag in exploiting technical capabilities offers a great chance
for AD, as the associativity of the chain rule of differential calculus underlying AD
as well as the additional operations inserted in the AD-generated code provide op-
portunities for making use of available computational resources in a fashion that is
transparent to the user. The resulting ease of use of parallel computers could be a
very attractive feature for many users.

Lastly, we would like to thank the members of the program committee for their
work in the paper review process, and the members of the Institute for Scientific
Computing, in particular Oliver Fortmeier and Cristian Wente, for their help in orga-
nizing this event. The misfit and velocity maps of the Southern Ocean on the cover
were provided by Matthew Mazloff and Patrick Heimbach from Massachusetts In-
stitute of Technology and are a result of an ocean state estimation project using au-
tomatic differentiation. We are also indebted to Mike Giles from Oxford University,
Wolfgang Marquardt from RWTH Aachen University, Arnold Neumeier from the

Preface VII

University of Vienna, Alex Pothen from Old Dominion University, and Eelco Visser
from the Technical University in Delft for accepting our invitation to present us in-
spirations on AD possibilities in their fields of expertise. We also acknowledge the
support of our sponsors, the Aachen Institute for Advanced Study in Computational
Engineering Science (AICES), the Bonn-Aachen International Center for Informa-
tion Technology (B-IT), and the Society for Industrial and Applied Mathematics
(SIAM).

Aachen and Chicago, Christian Bischof
April 2008 H. Martin Bücker

Paul Hovland
Uwe Naumann

Jean Utke

Program Committee AD 2008

Bruce Christianson (University of Hertfordshire, UK)
Shaun Forth (Cranfield University, UK)

Laurent Hascoët (INRIA, France)
Patrick Heimbach (Massachusetts Institute of Technology, USA)

Koichi Kubota (Chuo University, Japan)
Kyoko Makino (Michigan State University, USA)

Boyana Norris (Argonne National Laboratory, USA)
Eric Phipps (Sandia National Laboratories, USA)
Trond Steihaug (University of Bergen, Norway)

Andrea Walther (Dresden University of Technology, Germany)

Contents

Preface . V

List of Contributors . XIII

Reverse Automatic Differentiation of Linear Multistep Methods
Adrian Sandu . 1

Call Tree Reversal is NP-Complete
Uwe Naumann . 13

On Formal Certification of AD Transformations
Emmanuel M. Tadjouddine . 23

Collected Matrix Derivative Results for Forward and Reverse Mode
Algorithmic Differentiation
Mike B. Giles . 35

A Modification of Weeks’ Method for Numerical Inversion of the Laplace
Transform in the Real Case Based on Automatic Differentiation
Salvatore Cuomo, Luisa D’Amore, Mariarosaria Rizzardi,
and Almerico Murli . 45

A Low Rank Approach to Automatic Differentiation
Hany S. Abdel-Khalik, Paul D. Hovland, Andrew Lyons, Tracy E. Stover,
and Jean Utke . 55

Algorithmic Differentiation of Implicit Functions and Optimal Values
Bradley M. Bell and James V. Burke . 67

Using Programming Language Theory to Make Automatic
Differentiation Sound and Efficient
Barak A. Pearlmutter and Jeffrey Mark Siskind . 79

X Contents

A Polynomial-Time Algorithm for Detecting Directed Axial Symmetry
in Hessian Computational Graphs
Sanjukta Bhowmick and Paul D. Hovland . 91

On the Practical Exploitation of Scarsity
Andrew Lyons and Jean Utke . 103

Design and Implementation of a Context-Sensitive, Flow-Sensitive
Activity Analysis Algorithm for Automatic Differentiation
Jaewook Shin, Priyadarshini Malusare, and Paul D. Hovland 115

Efficient Higher-Order Derivatives of the Hypergeometric Function
Isabelle Charpentier, Claude Dal Cappello, and Jean Utke 127

The Diamant Approach for an Efficient Automatic Differentiation
of the Asymptotic Numerical Method
Isabelle Charpentier, Arnaud Lejeune, and Michel Potier-Ferry 139

Tangent-on-Tangent vs. Tangent-on-Reverse for Second Differentiation
of Constrained Functionals
Massimiliano Martinelli and Laurent Hascoët . 151

Parallel Reverse Mode Automatic Differentiation for OpenMP Programs
with ADOL-C
Christian Bischof, Niels Guertler, Andreas Kowarz, and Andrea Walther 163

Adjoints for Time-Dependent Optimal Control
Jan Riehme, Andrea Walther, Jörg Stiller, and Uwe Naumann 175

Development and First Applications of TAC++
Michael Voßbeck, Ralf Giering, and Thomas Kaminski . 187

TAPENADE for C
Valérie Pascual and Laurent Hascoët . 199

Coping with a Variable Number of Arguments when Transforming
MATLAB Programs
H. Martin Bücker and Andre Vehreschild . 211

Code Optimization Techniques in Source Transformations
for Interpreted Languages
H. Martin Bücker, Monika Petera, and Andre Vehreschild 223

Automatic Sensitivity Analysis of DAE-systems Generated
from Equation-Based Modeling Languages
Atya Elsheikh and Wolfgang Wiechert . 235

Contents XI

Index Determination in DAEs Using the Library indexdet
and the ADOL-C Package for Algorithmic Differentiation
Dagmar Monett, René Lamour, and Andreas Griewank . 247

Automatic Differentiation for GPU-Accelerated 2D/3D Registration
Markus Grabner, Thomas Pock, Tobias Gross, and Bernhard Kainz 259

Robust Aircraft Conceptual Design Using Automatic Differentiation
in Matlab
Mattia Padulo, Shaun A. Forth, and Marin D. Guenov . 271

Toward Modular Multigrid Design Optimisation
Armen Jaworski and Jens-Dominik Müller . 281

Large Electrical Power Systems Optimization Using Automatic
Differentiation
Fabrice Zaoui . 293

On the Application of Automatic Differentiation to the Likelihood
Function for Dynamic General Equilibrium Models
Houtan Bastani and Luca Guerrieri . 303

Combinatorial Computation with Automatic Differentiation
Koichi Kubota . 315

Exploiting Sparsity in Jacobian Computation via Coloring and Automatic
Differentiation: A Case Study in a Simulated Moving Bed Process
Assefaw H. Gebremedhin, Alex Pothen, and Andrea Walther 327

Structure-Exploiting Automatic Differentiation of Finite Element
Discretizations
Philipp Stumm, Andrea Walther, Jan Riehme, and Uwe Naumann 339

Large-Scale Transient Sensitivity Analysis of a Radiation-Damaged
Bipolar Junction Transistor via Automatic Differentiation
Eric T. Phipps, Roscoe A. Bartlett, David M. Gay, and Robert J. Hoekstra 351

List of Contributors

Hany S. Abdel-Khalik
North Carolina State University
Department of Nuclear Engineering
Raleigh, NC 27695–7909
USA
abdelkhalik@ncsu.edu

Roscoe A. Bartlett
Sandia National Laboratories
PO Box 5800
Albuquerque, NM 87185
USA
rabartl@sandia.gov

Houtan Bastani
Board of Governors of the Federal
Reserve System Washington, DC
20551 USA
houtan.bastani@frb.gov

Bradley Bell
University of Washington
Applied Physics Laboratory
1013 NE 40th Street
Seattle, Washington 98105–6698
USA
bradbell@washington.edu

Sanjukta Bhowmick
The Pennsylvania State University
343 H IST Building
University Park PA 16802
USA
bhowmick@cse.psu.edu

Christian Bischof
RWTH Aachen University
Institute for Scientific Computing
Seffenter Weg 23
D–52074 Aachen
Germany
bischof@sc.rwth-aachen.de

H. Martin Bücker
RWTH Aachen University
Institute for Scientific Computing
Seffenter Weg 23
D–52074 Aachen
Germany
buecker@sc.rwth-aachen.de

James V. Burke
University of Washington
Department of Mathematics
Box 354350
Seattle, Washington 98195–4350
USA
burke@math.washington.edu

Isabelle Charpentier
Centre National de la Recherche
Scientifique
Laboratoire de Physique et Mécanique
des Matériaux
UMR CNRS 7554
Ile du Saulcy

XIV List of Contributors

57045 Metz Cedex 1
France
isabelle.charpentier@
univ-metz.fr

Salvatore Cuomo
University of Naples Federico II
Via Cintia
Naples
Italy
salvatore.cuomo@unina.it

Luisa D’Amore
University of Naples Federico II
Via Cintia
Naples
Italy
luisa.damore@dma.unina.it

Claude Dal Cappello
Université de Metz
Laboratoire de Physique Moléculaire et
des Collisions
1 Bd Arago
57078 Metz Cedex 3
France
cappello@univ-metz.fr

Atya Elsheikh
Siegen University
Department of Simulation
D–57068 Siegen
Germany
elsheikh@simtec.mb.
uni-siegen.de

Shaun A. Forth
Cranfield University
Applied Mathematics & Scientific
Computing Group
Engineering Systems Department
Defence College of Management and
Technology
Shrivenham, Swindon SN6 8LA
UK
S.A.Forth@cranfield.ac.uk

David M. Gay
Sandia National Laboratories
PO Box 5800
Albuquerque, NM 87185
USA
dmgay@sandia.gov

Assefaw Gebremedhin
Old Dominion University
Computer Science Department and
Center for Computational Sciences
4700 Elkhorn Ave., Suite 3300
Norfolk, VA 23529
USA
assefaw@cs.odu.edu

Ralf Giering
FastOpt
Schanzenstrasse 36
D–20357 Hamburg
Germany
ralf.giering@fastopt.com

Mike Giles
Oxford University
Mathematical Institute
24–29 St Giles
Oxford OX1 3LB
UK
mike.giles@maths.ox.ac.uk

Markus Grabner
Graz University of Technology
Inffeldgasse 16a/II
8010 Graz
Austria
grabner@icg.tugraz.at

Andreas Griewank
Humboldt-Universität zu Berlin
Institute of Mathematics
Unter den Linden 6
D–10099 Berlin
Germany
griewank@math.hu-berlin.de

List of Contributors XV

Tobias Gross
Graz University of Technology
Inffeldgasse 16a/II
8010 Graz
Austria
tobias.gross@student.
tugraz.at

Marin D. Guenov
Cranfield University
Engineering Design Group
Aerospace Engineering Department
School of Engineering
Bedfordshire MK43 0AL
UK
M.D.Guenov@cranfield.ac.uk

Luca Guerrieri
Board of Governors of the Federal
Reserve System
Washington, DC 20551
USA
luca.guerrieri@frb.gov

Niels Guertler
RWTH Aachen University
Institute for Scientific Computing
Seffenter Weg 23
D–52074 Aachen
Germany
Niels.Guertler@
rwth-aachen.de

Laurent Hascoët
INRIA
Sophia-Antipolis
2004 route des lucioles – BP 93
FR–06902 Sophia Antipolis Cedex
France
Laurent.Hascoet@sophia.
inria.fr

Robert J. Hoekstra
Sandia National Laboratories
PO Box 5800
Albuquerque, NM 87185
USA
rjhoeks@sandia.gov

Paul D. Hovland
Argonne National Laboratory
Mathematics and Computer Science
Division
9700 S. Cass Ave.
Argonne, IL 60439
USA
hovland@mcs.anl.gov

Armen Jaworski
Warsaw University of Technology
Institute of Aeronautics and Applied
Mechanics
Plac Politechniki 1
00661 Warsaw
Poland
armen@meil.pw.edu.pl

Bernhard Kainz
Graz University of Technology
Inffeldgasse 16a/II
8010 Graz
Austria
kainz@icg.tugraz.at

Thomas Kaminski
FastOpt
Schanzenstrasse 36
D–20357 Hamburg
Germany
thomas.kaminski@fastopt.
com

Andreas Kowarz
Technische Universität Dresden
Institute of Scientific Computing
Mommsenstr. 13
D–01062 Dresden
Germany
Andreas.Kowarz@tu-dresden.
de

XVI List of Contributors

Koichi Kubota
Chuo University
Kasuga 1–13–27
Bunkyo-ku,
Tokyo 112–0003
Japan
kubota@ise.chuo-u.ac.jp

René Lamour
Humboldt-Universität zu Berlin
Unter den Linden 6
D–10099 Berlin
Germany
lamour@math.hu-berlin.de

Arnaud Lejeune
Université de Metz
Laboratoire de Physique et Mécanique
des Matériaux
UMR CNRS 7554, Ile du Saulcy
57045 Metz Cedex 1
France
arnaud.lejeune@univ-metz.
fr

Andrew Lyons
University of Chicago
Computation Institute
5640 S. Ellis Avenue
Chicago, IL 60637
USA
lyonsam@gmail.com

Priyadarshini Malusare
Argonne National Laboratory
Mathematics and Computer Science
Division
9700 S. Cass Ave.
Argonne, IL 60439
USA
malusare@mcs.anl.gov

Massimiliano Martinelli
INRIA
Sophia-Antipolis

2004 route des lucioles – BP 93
FR–06902 Sophia Antipolis Cedex
France
Massimiliano.Martinelli@
sophia.inria.fr

Dagmar Monett
Humboldt-Universität zu Berlin
DFG Research Center MATHEON
Unter den Linden 6
D–10099 Berlin
Germany
monett@math.hu-berlin.de

Jens-Dominik Müller
Queen Mary, University of London
School of Engineering and Materials
Science
Mile End Road
London, E1 4NS
UK
j.mueller@qmul.ac.uk

Almerico Murli
University of Naples Federico II
Via Cintia
Naples
Italy
almerico.murli@dma.unina.
it

Uwe Naumann
RWTH Aachen University
LuFG Informatik 12: Software and
Tools for Computational Engineering
RWTH Aachen University
D–52056 Aachen
Germany
naumann@stce.rwth-aachen.
de

Mattia Padulo
Cranfield University
Engineering Design Group,
Aerospace Engineering Department

List of Contributors XVII

School of Engineering
Bedfordshire MK43 0AL
UK
M.Padulo@cranfield.ac.uk

Valerie Pascual
INRIA
Sophia-Antipolis
2004 route des lucioles – BP 93
FR–06902 Sophia Antipolis Cedex
France
Valerie.Pascual@sophia.
inria.fr

Barak Pearlmutter
Hamilton Institute
NUI Maynooth
Co. Kildare
Ireland
barak@cs.nuim.ie

Monika Petera
RWTH Aachen University
Institute for Scientific Computing
Seffenter Weg 23
D–52074 Aachen
Germany
petera@sc.rwth-aachen.de

Eric Phipps
Sandia National Laboratories
PO Box 5800
Albuquerque, NM 87185
USA
etphipp@sandia.gov

Thomas Pock
Graz University of Technology
Inffeldgasse 16a/II
8010 Graz
Austria
pock@icg.tugraz.at

Alex Pothen
Old Dominion University
Computer Science Department and
Center for Computational Sciences
4700 Elkhorn Ave., Suite 3300
Norfolk, VA 23529
USA
pothen@cs.odu.edu

Michel Potier-Ferry
Université de Metz
Laboratoire de Physique et Mécanique
des Matériaux
UMR CNRS 7554, Ile du Saulcy
57045 Metz Cedex 1
France
michel.potierferry@
univ-metz.fr

Jan Riehme
University of Hertfordshire
Department of Computer Science
College Lane
Hatfield, Herts AL10 9AB
UK
riehme@stce.rwth-aachen.de

Mariarosaria Rizzardi
University of Naples Parthenope
Centro Direzionale is. C4
Naples
Italy
mariarosaria.rizzardi@
uniparthenope.it

Adrian Sandu
Virginia Polytechnic Institute and State
University
Blacksburg, VA 24061
USA
sandu@cs.vt.edu

Jaewook Shin
Argonne National Laboratory
Mathematics and Computer Science
Division

XVIII List of Contributors

9700 S. Cass Ave.
Argonne, IL 60439
USA
jaewook@mcs.anl.gov

Jeffrey Mark Siskind
School of Electrical and Computer
Engineering
Purdue University
465 Northwestern Avenue
West Lafayette, IN 47907–2035
USA
qobi@purdue.edu

Jörg Stiller
Technische Universität Dresden
Institute for Aerospace Engineering
D–01062 Dresden
Germany
joerg.stiller@tu-dresden.d

Tracy E. Stover
North Carolina State University
Department of Nuclear Engineering
Raleigh, NC 27695–7909
USA
testover@ncsu.edu

Philipp Stumm
Technische Universität Dresden
Fachrichtung Mathematik
Institut für Wissenschaftliches Rechnen
Zellescher Weg 12–14
D–01062 Dresden
Germany
Philipp.Stumm@tu-dresden.
de

Emmanuel Tadjouddine
Aberdeen University
King’s College
Department of Computing Science
Aberdeen AB24 3UE, Scotland
UK
etadjoud@csd.abdn.ac.uk

Jean Utke
Argonne National Laboratory
Mathematics and Computer Science
Division,

9700 S. Cass Ave.
Argonne, IL 60439
USA
utke@mcs.anl.gov

Andre Vehreschild
RWTH Aachen University
Institute for Scientific Computing
Seffenter Weg 23
D–52074 Aachen
Germany
vehreschild@sc.
rwth-aachen.de

Michael Voßbeck
FastOpt
Schanzenstrasse 36
D–20357 Hamburg
Germany
michael.vossbeck@fastopt.
com

Andrea Walther
Technische Universität Dresden
Fachrichtung Mathematik
Institut für Wissenschaftliches Rechnen
Zellescher Weg 12–14
D–01062 Dresden
Germany
Andrea.Walther@tu-dresden.
de

Wolfgang Wiechert
Siegen University
Department of Simulation
D–57068 Siegen
Germany
wiechert@simtec.mb.
uni-siegen.de

Fabrice Zaoui
RTE
9 rue de la porte de Buc
78000 Versailles
France
fabrice.zaoui@RTE-FRANCE.
com

Reverse Automatic Differentiation of Linear
Multistep Methods

Adrian Sandu

Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA, sandu@cs.vt.edu

Summary. Discrete adjoints are very popular in optimization and control since they can be
constructed automatically by reverse mode automatic differentiation. In this paper we analyze
the consistency and stability properties of discrete adjoints of linear multistep methods. The
analysis reveals that the discrete linear multistep adjoints are, in general, inconsistent approx-
imations of the adjoint ODE solution along the trajectory. The discrete adjoints at the initial
time converge to the adjoint ODE solution with the same order as the original linear mul-
tistep method. Discrete adjoints inherit the zero-stability properties of the forward method.
Numerical results confirm the theoretical findings.

Keywords: Reverse automatic differentiation, linear multistep methods, consistency,
stability.

1 Introduction

Consider an ordinary differential equation (ODE)

y′ = f (y) , y(tini) = yini , tini ≤ t ≤ tend , y ∈ℜd . (1)

We are interested to find the initial conditions for which the following cost func-
tion is minimized

min
yini

Ψ (yini) subject to (1) ; Ψ(yini) = g
(
y(tend)

)
. (2)

The general optimization problem (2) arises in many important applications includ-
ing control, shape optimization, parameter identification, data assimilation, etc. This
cost function depends on the initial conditions of (1). We note that general problems
where the solution depends on a set of arbitrary parameters can be transformed into
problems where the parameters are the initial values. Similarly, cost functions that
involve an integral of the solution along the entire trajectory can be transformed into
cost functions that depend on the final state only via the introduction of quadrature
variables. Consequently the formulation (1)–(2) implies no loss of generality.

2 Adrian Sandu

To solve (1)–(2) via a gradient based optimization procedure one needs to com-
pute the derivatives of the cost functionΨ with respect to the initial conditions. This
can be done effectively using continuous or discrete adjoint approaches.

In the continuous adjoint (“differentiate-then-discretize”) approach [8] one de-
rives the adjoint ODE associated with (1)

λ ′ =−JT
(

t,y(t)
)
λ , λ (tend) =

(
∂g
∂y

(
y(tend)

)
)T

, tend ≥ t ≥ tini , (3)

Here J = ∂ f/∂y is the Jacobian of the ODE function. The system (3) is solved back-
wards in time from tend to tini to obtain the gradients of the cost function with respect
to the state [8]. Note that the continuous adjoint equation (3) depends on the forward
solution y(t) via the argument of the Jacobian. For a computer implementation the
continuous adjoint ODE (3) is discretized and numerical solutions λ n ≈ λ (tn) are
obtained at time moments tend = tN > tN−1 > · · · > t1 > t0 = tini.

In the discrete adjoint (“discretize-then-differentiate”) approach [8] one starts
with a numerical discretization of (1) which gives solutions yn ≈ y(tn) at tini = t0 <
· · · < tN = tend

y0 = yini , yn = Mn (y0, · · · ,yn−1) , n = 1, · · · ,N . (4)

The numerical solution at the final time is yN ≈ y(tend). The optimization problem
(2) is reformulated in terms of the numerical solution minimized,

min
yini
Ψ (yini) = g

(
yN

)
subject to (4) . (5)

The gradient of (5) is computed directly from (4) using the transposed chain rule.
This calculation and produces the discrete adjoint variables λN , λN−1, · · · , λ0

λN =
(
∂g
∂y

(
yN

)
)T

, λn = 0 , n = N−1, · · · ,0 , (6)

λ� = λ� +
(
∂Mn

∂y�

(
y0, · · · ,yn−1

)
)T

λn , � = n−1, · · · ,0 , n = N, · · · ,0 .

Note that the discrete adjoint equation (6) depends on the forward numerical solution
y0, · · · ,yN via the arguments of the discrete model. The discrete adjoint process gives
the sensitivities of the numerical cost function (5) with respect to changes in the
forward numerical solution (4).

Consistency properties of discrete Runge-Kutta adjoints have been studied by
Hager [3], Walther [9], Giles [2], and Sandu [6]. Baguer et al. [1] have constructed
discrete adjoints for linear multistep methods in the context of control problems.
Their work does not discuss the consistency of these adjoints with the adjoint ODE
solution.

In this paper we study the consistency of discrete adjoints of linear multistep
methods (LMM) with the adjoint ODE. The analysis is carried out under the follow-
ing conditions. The cost function depends (only) on the final solution values, and the

Reverse AD on LMM 3

(only) control variables are the initial conditions. The system of ODEs and its solu-
tion are continuously differentiable sufficiently many times to make the discussion
of order of consistency meaningful. The analysis assumes small time steps, such that
the error estimates hold for non-stiff systems. The sequence of (possibly variable)
step sizes in the forward integration is predefined, or equivalently, the step control
mechanism is not differentiated (special directives may have to be inserted in the
code before automatic differentiation is applied).

2 Linear Multistep Methods

Consider the linear multistep method

y0 = yini , (7a)
yn = θn (y0, · · · ,yn−1) , n = 1, · · · ,k−1 , (7b)

k

∑
i=0
α [n]

i yn−i = hn

k

∑
i=0
β [n]

i fn−i , n = k, · · · ,N . (7c)

The upper indices indicate the dependency of the method coefficients on the step
number; this formulation accommodates variable step sizes. The numerical solution
is computed at the discrete moments tini = t0 < t1 < · · · < tN = tend. As usual yn repre-
sents the numerical approximation at time tn. The right hand side function evaluated
at tn using the numerical solution yn is denoted fn = f (tn,yn), while its Jacobian is
denoted by Jn = J(tn,yn) = (∂ f /∂y)(tn,yn).

The discretization time steps and their ratios are

hn = tn− tn−1 , n = 1, · · · ,N ; ωn =
hn

hn−1
, n = 2, · · · ,N . (8)

We denote the sequence of discretization step sizes and the maximum step size by

h =
(
h1, · · · ,hN

)
and |h|= max

1≤n≤N
hn . (9)

The number of steps depends on the step discretization sequence, N = N(h).
Equation (7a)–(7c) is a k-step method. The method coefficients α [n]

i , β [n]
i depend

on the sequence of (possibly variable) steps, specifically, they depend on the ratios
ωn−k+2, · · · ,ωn.

A starting procedure θ is used to produce approximations of the solution yi =
θi (y0, · · · ,yi−1) at times ti, i = 1, · · · ,k−1. We will consider the starting procedures
to be linear numerical methods. This setting covers both the case of self-starting
LMM methods (a linear i-step method gives yi for i = 1, · · · ,k− 1) as well as the
case where a Runge Kutta method is used for initialization (yi = θi (yi−1) for i =
1, · · · ,k−1).

We next discuss the discrete adjoint method associated with (7a)–(7c). The fol-
lowing result was obtained in [7].

4 Adrian Sandu

Theorem 1 (The discrete LMM adjoint process).
The discrete adjoint method associated with the linear multistep method

(7a)–(7c) and the cost function

Ψ (yini) = g
(
yN

)

reads:

α [N]
0 λN = hN β

[N]
0 JT

N ·λN +
(
∂g
∂y

(yN)
)T

, (10a)

N−m

∑
i=0
α [m+i]

i λm+i = JT
m ·

N−m

∑
i=0

hm+iβ
[m+i]
i λm+i , m = N−1, · · · ,N− k +1, (10b)

k

∑
i=0
α [m+i]

i λm+i = hm+1 JT (ym
)
·

k

∑
i=0
β̂ [m+i]

i λm+i , m = N− k, · · · ,k , (10c)

λk−1 +
k

∑
i=1
α [k−1+i]

i λk−1+i = JT
k−1 ·

k

∑
i=1

(
hk−1+iβ

[k−1+i]
i λk−1+i

)
, (10d)

λm +
k

∑
i=k−m

α [m+i]
i λm+i =

k−1

∑
i=m+1

(
∂θi

∂ym

)T

λi (10e)

+JT
m ·

k

∑
i=k−m

hm+iβ
[m+i]
i λm+i , m = k−2, · · · ,0 .

where

β̂ [m]
0 =ω−1

m+1β
[m]
0 , β̂ [m+1]

1 = β [m+1]
1 , β̂ [m+i]

i =

(
i

∏
�=2
ωm+�

)

β [m+i]
i , i = 2, · · · ,k .

The gradient of the cost function with respect to the initial conditions is

∇yiniΨ =
(
∂Ψ
∂yini

)T

= λ0 . (11)

Proof. The proof is based on a tedious, but straightforward variational calculus
approach.

��
The original LMM method (7a)–(7c) applied to solve the adjoint ODE has coef-

ficients α [n]
i , β [n]

i which depend on the sequence of steps hn in reverse order due to
the backward in time integration. These coefficients depend on the ratios ω−1

n+k, · · · ,
ω−1

n+2k−2. They are in general different than the forward method coefficients α [n]
i , β [n]

i

Reverse AD on LMM 5

which depend on the ratios ωn, · · · , ωn−k+2. The one-leg counterpart [5, Section V.6]
of the LMM method applied to solve the adjoint ODE reads

λN =
(
∂g
∂y

(
y(tN)

)
)T

, (12a)

λm = θm

(
λN , · · · ,λm+1

)
, m = N−1, · · · ,N− k +1 , (12b)

k

∑
i=0
α [m]

i λm+i = hm+1 JT (y(τ [m])
)
·

k

∑
i=0
β [m]

i λm+i , (12c)

τ [m] =
k

∑
�=0

β [m]
�

β [m] tm+� , β [m]
=

k

∑
�=0
β [m]

� , m = N− k, · · · ,0 .

Note that, due to linearity of the right hand side, the scaling by the β [m]
does

not appear in the sum of λ ’s multiplied by JT . The order of accuracy of the dis-
cretization (12c) is min(p,r + 1), where r is the interpolation order of the method
[5, Section V.6].

The discrete adjoint step (10c) looks like the one-leg method (12c). The argument
at which the Jacobian is evaluated is, however, different. The initialization of the
discrete adjoint (10a)–(10b) and of the one-leg continuous adjoint (12a)–(12b) are
also different. Moreover the termination relations for the discrete adjoint calculation
(10d), (10e) are different and depend on the initialization procedure of the forward
method. We will analyze the impact of these differences on the accuracy of the the
discrete adjoint as a numerical method to solve the adjoint ODE.

2.1 Consistency Analysis for Fixed Step Sizes

Consider first the case where the multistep method is applied with a fixed step size.
With some abuse of notation relative to (9) in this section we consider hn = h for all
n. The LMM coefficients are the same for all steps and the discrete adjoint step (10c).

Theorem 2 (Fixed stepsize consistency at interior trajectory points).
In the general case equation (10c) with fixed steps is a first order consistent

method for the adjoint ODE. The order of consistency equals that of the one-leg
counterpart for LMMs with

k

∑
�=1

�β� = 0. (13)

Proof. The consistency analysis can be done by direct differentiation. We take an ap-
proach that highlights the relation between (10c) and the one-leg continuous adjoint
step (12c). For the smooth forward solution it holds that

τ [m] = tm +h
k

∑
�=0

�β�

β
, β =

k

∑
�=0
β� �= 0, y(τ [m])− y(tm) = O

(

h
k

∑
�=0

�β�

β

)

.

6 Adrian Sandu

The step (10c) can be regarded as a perturbation of the one-leg step (12c)

k

∑
i=0
αiλm+i = hJT (y(τ [m])

) k

∑
i=0
βiλm+i + εm .

The perturbation comes from the change in the Jacobian argument. Under the
smoothness assumptions all derivatives are bounded and we have that the size of
the perturbation is given by the size of the argument difference:

εm =

(
k

∑
�=0

�β�

)

·O
(
h2)+O

(
hmin(p+1,r+1)

)

The order of consistency of the discrete adjoint step (10c) is therefore equal to one
in the general case, and is equal to the order of consistency of the associated one-leg
method when (13) holds. For Adams methods the order of consistency of the discrete
adjoint is one. For BDF methods β0 �= 0 and β� = 0, � ≥ 1, therefore the order of
consistency equals that of the one-leg counterpart, i.e., equals that of the original
method.

We are next concerned with the effects of the initialization steps (10a), (10b) and
of the termination steps (10d) and (10e).

Theorem 3 (Accuracy of the adjoint initialization steps).
For a general LMM the discrete adjoint initialization steps (10a), (10b) do not

provide consistent approximations of the adjoint ODE solution. For Adams methods
the initialization steps are O(h) approximations of the continuous adjoint solution.

Proof. By Taylor series expansion.

Theorem 4 (Accuracy of the adjoint termination steps).
For a general LMM the discrete adjoint termination steps (10d) and (10e) are

not consistent discretizations of the adjoint ODE.

Proof. By Taylor series expansion.

Note that one can change the discrete adjoint initialization and the termination
steps to consistent relations, as discussed in [7]. In this case we expect the method to
be at least first order consistent with the adjoint ODE.

2.2 Consistency Analysis for Variable Step Sizes

For variable steps the consistency of the discrete adjoint with the adjoint ODE is not
automatic. In this section we will use the notation (8).

Theorem 5 (Variable stepsize consistency at the intermediate trajectory points).
In general the numerical process (10a)–(10e) is not a consistent discretization of

the adjoint ODE (3).

Reverse AD on LMM 7

Proof. The relation (10c) can be regarded as a perturbation of a one-leg discretization
method (10c) applied to the adjoint ODE. Replacing JT

(
ym

)
by JT

(
y(tm)

)
in (10c)

introduces an O(hp+1) approximation error

k

∑
i=0
α [m+i]

i λm+i = hm+1 JT (y(tm)
)
·

k

∑
i=0
β̂ [m+i]

i λm+i +O
(
hp+1) , m = N− k, · · · ,k .

The following consistency analysis of (10c) will be performed on this modified equa-
tion and its results are valid within O(hp+1).

A Taylor series expansion around tm leads to the zeroth order consistency condition

k

∑
i=0
α [m+i]

i = 0 . (14)

For a general sequence of step sizes hm the values of α [m+i]
i at different steps m

are not necessarily constrained by (14). A general discrete adjoint LMM process is
therefore inconsistent with the adjoint ODE.

In the case where the forward steps are chosen automatically to maintain the local
error estimate under a given threshold the step changes are smooth [4, Section III.5]
in the sense that

|ωn−1| ≤ const ·hn−1 ⇒ ωn = 1+O(|h|) . (15)

Recall that we do not consider the derivatives of the step sizes with respect to system
state. Nevertheless, let us look at the impact of these smooth step changes on the
discrete adjoint consistency. If the LMM coefficients α [n]

i and β [n]
i depend smoothly

on step size ratiosωn, then for each n they are small perturbations of the constant step
size values: α [n]

i =αi +O(|h|) and β [n]
i = βi +O(|h|). It then holds that∑k

i=0α
[m+i]
i =

O(|h|). Consequently the zeroth order consistency condition (14) is satisfied. The
O(|h|) perturbation, however, prevents first order consistency of the discrete adjoint
method.

For Adams methods in particular the relation (14) is automatically satisfied. The
first order consistency condition for Adams methods reads ∑k

i=0 β̂
[m+i]
i = 1. For a

general sequence of step sizes hm the values of β [m+i]
i at different steps m are not

constrained by any relation among them and this condition is not satisfied. If the
forward steps are chosen such that (15) holds [4, Section III.5], and if the LMM
coefficients depend smoothly on step size ratios, we have that ∑k

i=0 β̂
[m+i]
i = 1 +

O(|h|). In this situation the discrete Adams adjoint methods are first order consistent
with the adjoint ODE.

��

3 Zero-Stability of the Discrete Adjoints

The method (7a)–(7c) is zero-stable if it has only bounded solutions when applied to
the test problem

8 Adrian Sandu

y′ = 0 , y(tini) = yini , tini ≤ t ≤ tend . (16)

To be specific consider the LMM (7a)–(7c) scaled such that α [n]
0 = 1 for all n. Using

the notation e1 = [1,0, · · · ,0]T , 1 = [1,1, · · · ,1]T , and

Yn =

⎡

⎢
⎣

yn
...

yn−k+1

⎤

⎥
⎦ , An =

⎡

⎢
⎢
⎢
⎣

−α [n]
1 I · · · −α [n]

k−1 I −α [n]
k I

I 0 0
...

. . .
...

0 · · · I 0

⎤

⎥
⎥
⎥
⎦

.

The LMM (7a)–(7c) is zero-stable if [4, Definition 5.4]

‖An+� An+�−1 · · · An+1 An‖ ≤ const ∀ n, � > 0 . (17)

A consequence of zero-stability (17) is that small changes δyini in the initial condi-
tions of the test problem lead to small changes δΨ in the cost function.

The discrete adjoint of the numerical process (7a)–(7c) applied to (16) is zero
stable if ∥

∥AT
n AT

n+1 · · · AT
n+�−1 AT

n+�

∥
∥≤ const ∀ n, � > 0 , (18)

which ensures that all its numerical solutions remain bounded. The product of ma-
trices in (18) is the transpose of the product of matrices in (17), and consequently if
(17) holds then (18) holds. In other words if a variable-step LMM is zero-stable then
its discrete adjoint is zero-stable. A consequence of the discrete adjoint zero-stability
(18) is that small perturbations of (∂g/∂y)T (yN) lead to only small changes in the
adjoint initial value λ0.

4 Derivatives at the Initial Time

We now prove a remarkable property of the discrete LMM adjoints. Even if the
discrete adjoint variables λn are poor approximations of the continuous adjoints λ (tn)
at the intermediate grid points, the discrete adjoint at the initial time converges to the
continuous adjoint variable with the same order as the original LMM.

Theorem 6 (Consistency at the initial time).
Consider a LMM (7a)–(7c) convergent of order p, and initialized with linear

numerical methods. (This covers the typical situation where the initialization pro-
cedures θ1, · · · ,θk−1 are Runge Kutta or linear multistep numerical methods). The
numerical solutions at the final time are such that

∥
∥
∥yh

N(h)− y(tend)
∥
∥
∥
∞

= O (|h|p) , ∀h : |h| ≤ H ,

for a small enough H. Let λ h
n be the solution of the discrete LMM adjoint process

(10a)–(10e).

Reverse AD on LMM 9

Then the discrete adjoint solution λ h
0 is an order p approximation of the contin-

uous adjoint λ (t0) at the initial time, i.e.
∥
∥
∥λ h

0 −λ (t0)
∥
∥
∥
∞

= O (|h|p) , ∀h : |h| ≤ H , (19)

for a small enough H.

Proof. The proof is based on the linearity of the LMM and of its starting procedures,
which makes the tangent linear LMM to be the same as the LMM applied to solve
the tangent linear ODE. The tangent linear LMM solves the entire sensitivity matrix
as accurately as it solves for the solution. which leads to an order p approximation
of the full sensitivity matrix.

The continuous sensitivity matrix S(t) ∈ R
d×d contains the derivatives of the

ODE solution components at time t with respect to the initial value components.
The discrete sensitivity matrix Qn ∈ R

d×d contains the derivatives of the numerical
solution components at (the discrete approximation time) tn with respect to the initial
value components. These matrices are defined as

Si, j(t) =
∂yi(t)
∂y j (tini)

,
(

Qh
n

)i, j
=
∂yi

n

∂y j
0

, 1≤ i, j ≤ d .

Superscripts are indices of matrix or vector components.
The entire sensitivity d×d matrix S (tend) can be obtained column by column via

d forward solutions of the tangent linear ODE model initialized with δy(tini) = e j. It
is well known that the tangent linear model of a linear numerical methods gives the
same computational process as the numerical method applied to the tangent linear
ODE. Since both the initialization steps θi and the LMM are linear numerical meth-
ods we have that Qh

N(h) is a numerical approximation of S obtained by applying the
method (7a)–(7c) to the tangent linear ODE. Since the LMM method is convergent
with order p we have that ‖Qh

N(h)−S(tend)‖∞ = O(|h|p) ∀h : |h| ≤ H .
The continuous and discrete adjoint variables at the initial time are

λ (tini) = ST (tend) ·
(
∂g
∂y

(
y(tend)

)
)T

, λ0 =
(

Qh
N(h)

)T
·
(
∂g
∂y

(
yh

N(h)

))T

.

Their difference is

λ (tini)−λ0 =
(

S(tend)−Qh
N(h)

)T
·
(
∂g
∂y

(y(tend))
)T

(20)

+
(

Qh
N(h)

)T
·
(
∂g
∂y

(y(tend))−
∂g
∂y

(
yh

N(h)

))T

.

Taking infinity norms in (20), using the smoothness of g, the convergence of the
LMM, and the fact that ‖∂g/∂y(y(tend))‖∞ is independent of the discretization h,
leads to the bound (19).

��

10 Adrian Sandu

5 Numerical Experiments

We illustrate the theoretical findings with numerical results on the Arenstorf orbit
with the parameters and the initial conditions presented in [4]. We consider the ad-
joints of the cost functional

Ψ = g
(
y(tend)

)
= y1 (tend) where

(
∂g
∂y

(
y(tend)

)
)T

= e1 .

For the integration we choose the explicit Adams-Bashforth methods of order two
(AB2) and three (AB3) and the second order BDF2 method. AB2 is initialized with
the forward Euler method, AB3 is initialized with a second order explicit Runge
Kutta method, and BDF2 is initialized with the implicit Euler method. This allows
each method to converge at the theoretical order. The simulations are performed in
Matlab. The reference solutions for the Arenstorf system and its continuous adjoint
ODE are obtained with the ode45 routine with the tight tolerances RelTol = 1.e-8,
AbsTol = 1.e-8. The root mean square (RMS) norms of the difference between the
numerical adjoint solution (λn)num and the reference continuous adjoint solution
(λ n)ref at each time moment define instantaneous errors En, n = 0, · · · ,N. The tra-
jectory errors measure the total difference between the numerical and the reference
adjoint solutions throughout the integration interval

En =

√√
√
√1

d

d

∑
i=1

(
(λ i

n)num− (λ i
n)ref

(λ i
n)ref

)2

, ‖E‖=

√
1

N +1

N

∑
n=0

E2
n . (21)

We compute the discrete adjoint solutions with N =150, 210, 300, 425, 600, 850,
and 1200 steps and obtain the errors E0 and ‖E‖ against the reference continuous
adjoint solution. We then estimate the convergence orders and report them in Table 1

For all cases both the trajectory and the final time errors of the continuous adjoint
methods decrease at the theoretical rates [7]. The discrete adjoint BDF2 solution is
not consistent with the continuous adjoint solution at intermediate integration times,
and the numerical error is heavily influenced by the pattern of step size changes. The

Table 1. Experimental convergence orders for different continuous and discrete adjoints. We
consider both the trajectory error ‖E‖ and the initial time error E0.

Continuous Adjoint Discrete Adjoint
AB2 BDF2 AB3 AB2 BDF2 AB3

‖E‖, fixed steps 1.99 1.99 2.94 0.97 0.00 1.00
E0, fixed steps 2.00 2.00 2.96 1.99 2.00 2.94
‖E‖, fixed steps, modified initialization/termination – – – 0.97 1.99 1.00
E0, fixed steps, modified initialization/termination – – – 0.97 2.00 1.01
‖E‖, variable steps 2.03 2.03 2.98 1.01 -0.01 1.01
E0, variable steps 2.00 2.00 2.96 1.99 2.00 2.94

Reverse AD on LMM 11

fixed step BDF2 adjoint is not consistent with the adjoint ODE due to initialization
and termination procedures. When these steps are changed the solution converges at
second order. The discrete AB2 and AB3 adjoints converge to the adjoint ODE solu-
tion at first order. For all methods the discrete adjoints at the initial time convergence
at the theoretical order of the forward methods.

6 Conclusions

In this paper we derive the discrete adjoints of linear multistep formulas and have
analyzed their consistency properties. Discrete adjoints are very popular in opti-
mization and control since they can be constructed automatically by reverse mode
automatic differentiation.

In general the discrete LMM adjoints are not consistent with the adjoint ODE
along the trajectory when variable time steps are used. If the forward LMM
integration is zero-stable then the discrete adjoint process is zero-stable as well.
For fixed time steps the discrete adjoint steps are consistent with the adjoint ODE at
the internal grid points but not at the initial and terminal points. The initialization and
termination steps in the fixed step discrete adjoint process can be changed to obtain
consistent schemes. The discrete adjoints at the initial time, however, converge to
the continuous adjoint at a rate equal to the convergence order of the original LMM.
This remarkable property is due to the linearity of the method and of its initialization
procedure. Numerical tests on the Arenstorf orbit system confirm the theoretical
findings.

Future work will be devoted to the error analysis of discrete adjoints in the case of
stiff systems. The effect of automatic differentiation on step-size control mechanisms
will also be considered in a follow-up work.

Acknowledgement. This work was supported by the National Science Foundation (NSF)
through the awards NSF CAREER ACI-0413872, NSF ITR AP&IM 020519, and NSF CCF–
0515170, by the National Oceanic and Atmospheric Administration (NOAA) and by the Texas
Environmental Research Consortium (TERC). The author thanks Mihai Alexe who helped
with running the TAMC automatic differentiation on some of the codes.

References

1. Baguer, M., Romisch, W.: Computing gradients in parametrization-discretization schemes
for constrained optimal control problems. Approximation and Optimization in the Car-
ribbean II. Peter Lang, Frankfurt am Main (1995)

2. Giles, M.: On the use of Runge-Kutta time-marching and multigrid for the solution of
steady adjoint equations. Technical Report NA00/10, Oxford University Computing Lab-
oratory (2000)

3. Hager, W.: Runge-Kutta methods in optimal control and the transformed adjoint system.
Numerische Mathematik 87(2), 247–282 (2000)

12 Adrian Sandu

4. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer-Verlag, Berlin (1993)

5. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems. Springer-Verlag, Berlin (1991)

6. Sandu, A.: On the Properties of Runge-Kutta Discrete Adjoints. In: Lecture Notes in
Computer Science, vol. LNCS 3994, Part IV, pp. 550–557. “International Conference on
Computational Science” (2006)

7. Sandu, A.: On consistency properties of discrete adjoint linear multistep methods. Tech.
Rep. CS–TR–07–40, Computer Science Department, Virginia Tech (2007)

8. Sandu, A., Daescu, D., Carmichael, G.: Direct and adjoint sensitivity analysis of chemical
kinetic systems with KPP: I – Theory and software tools. Atmospheric Environment 37,
5083–5096 (2003)

9. Walther, A.: Automatic differentiation of explicit Runge-Kutta methods for optimal con-
trol. Computational Optimization and Applications 36(1), 83–108 (2007)

Call Tree Reversal is NP-Complete

Uwe Naumann

LuFG Informatik 12, Department of Computer Science, RWTH Aachen University, Aachen,
Germany, naumann@stce.rwth-aachen.de

Summary. The data flow of a numerical program is reversed in its adjoint. We discuss the
combinatorial optimization problem that aims to find optimal checkpointing schemes at the
level of call trees. For a given amount of persistent memory the objective is to store selected
arguments and/or results of subroutine calls such that the overall computational effort (the total
number of floating-point operations performed by potentially repeated forward evaluations of
the program) of the data-flow reversal is minimized. CALL TREE REVERSAL is shown to be
NP-complete.

Keywords: Adjoint code, call tree reversal, NP-completeness

1 Background

We consider implementations of multi-variate vector functions F : R
n→R

m as com-
puter programs y = F(x). The interpretation of reverse mode automatic differenti-
ation (AD) [8] as a semantic source code transformation performed by a compiler
yields an adjoint code x̄+ = F̄(x, ȳ). For given x and ȳ the vector x̄ is incremented
with (F ′(x))T · ȳ where F ′(x) denotes the Jacobian matrix of F at x. Adjoint codes
are of particular interest for the evaluation of large gradients as the complexity of the
adjoint computation is independent of the gradient’s size. Refer to [1, 2, 3, 4] for an
impressive collection of applications where adjoint codes are instrumental to making
the transition form pure numerical simulation to optimization of model parameters
or even of the model itself.

In this paper we propose an extension to the notion of joint call tree reversal [8]
with the potential storage of the results of a subroutine call. We consider call trees
as runtime representations of the interprocedural flow of control of a program. Each
node in a call tree corresponds uniquely to a subroutine call.1 We assume that no
checkpointing is performed at the intraprocedural level, that is, a “store-all” strat-
egy is employed inside all subroutines. A graphical notation for call tree reversal

1 Generalizations may introduce nodes for various parts of the program, thus yielding arbi-
trary checkpointing schemes.

14 Uwe Naumann

advance tape (store all)

store arguments restore arguments

store results restore results

reverse (store all) dummy call

Fig. 1. Calling modes for interprocedural data-flow reversal.

1

2

3

1

2

3 3

2

1 1

2

3

2

1

2

33 3

1

2

3

2

1

2

33 3

(a) (b) (c) (d)

Fig. 2. Interprocedural data-flow reversal modes: Original call tree (a), split reversal (b), joint
reversal with argument checkpointing (c), joint reversal with result checkpointing (d).

under the said constraints is proposed in Fig. 1. A given subroutine can be executed
without modifications (“advance”) or in an augmented form where all values that are
required for the evaluation of its adjoint are stored (taped) on appropriately typed
stacks (“tape (store all)”). We refer to this memory as the tape associated with a
subroutine call, not to be confused with the kind of tape as generated by AD-tools
that use operator overloading such as ADOL-C [9] or variants of the differentiation-
enabled NAGWare Fortran compiler [14]. The arguments of a subroutine call can
be stored (“store arguments”) and restored (“restore arguments”). Results of a sub-
routine call can be treated similarly (“store results” and “restore results”). The ad-
joint propagation yields the reversed data flow due to popping the previously pushed
values from the corresponding stacks (“reverse (store all)”). Subroutines that only
call other subroutines without performing any local computation are represented by
“dummy calls.” For example, such wrappers can be used to visualize arbitrary check-
pointing schemes for time evolutions (implemented as loops whose body is wrapped
into a subroutine). Moreover they occur in the reduction used for proving CALL
TREE REVERSAL to be NP-complete. Dummy calls can be performed in any of the
other seven modes.

Figure 2 illustrates the reversal in split (b), classical joint (c), and joint with result
checkpointing (d) modes for the call tree in (a). The order of the calls is from left to
right and depth-first.

Call Tree Reversal 15

For the purpose of conceptual illustration we assume that the sizes of the tapes of
all three subroutine calls in Fig. 2 (a) as well as the corresponding computational
complexities are identically equal to 2 (memory units/floating-point operation (flop)
units). The respective calls are assumed to occur in the middle, e.g. the tape associ-
ated with the statements performed by subroutine 1 prior to the call of subroutine 2
has size 1. Consequently the remainder of the tape has the same size. One flop unit
is performed prior to a subroutine call which is followed by another unit. The size of
argument and result checkpoints is assumed to be considerably smaller than that of
the tapes. Refer also to footnotes 2 and 3.

Split call tree reversal minimizes the number of flops performed by the forward
calculation (6 flop units). However an image of the entire program execution (6 mem-
ory units) needs to fit into persistent memory which is infeasible for most relevant
problems. This shortcoming is addressed by classical joint reversal (based solely on
argument checkpointing). The maximum amount of persistent memory needed is re-
duced to 4 (half of subroutine 1 plus half of subroutine 2 plus subroutine 3)2 at the
cost of additional 6 flop units (a total of 12 flop units is performed). This number
can be reduced to 10 flop units (while the maximum memory requirement remains
unchanged3) by storing the result of subroutine 3 and using it for taping subroutine
2 in Fig. 2 (d). The impact of these savings grows with the depth of the call tree.

It is trivial to design toy problems that illustrate this effect impressively. An ex-
ample can be found in the appendix. The computation of the partial derivative of y
with respect to x as arguments of the top-level routine f0 in adjoint mode requires the
reversal of a call tree (a simple chain in this case) of depth five. The leaf routine f5 is
computationally much more expensive than the others. Classical joint reversal takes
about 0.6 seconds whereas additional result checkpointing as in Fig. 5 reduces the
runtime to 0.25 seconds. These results were obtained on a state-of-the-art Intel PC.
The full code can be obtained by sending an email to the author. The use of result
checkpointing in software tools for AD such as Tapenade [12], OpenAD [15], or the
differentiation-enabled NAGWare Fortran compiler [14] is the subject of ongoing
research and development.

Finding an optimal (or at least near-optimal) distribution of the checkpoints or,
equivalently, corresponding combinations of split and joint (with argument check-
pointing) reversal applied to subgraphs of the call tree has been an open problem
for many years. In this paper we show that a generalization of this problem that al-
lows for subsets of subroutine arguments and/or results to be taped is NP-complete.
Hence, we believe that the likelihood of an efficient exact solution of this problem
is low. Heuristics for finding good reversal schemes are currently being developed
in collaboration with colleagues at INRIA, France, and at Argonne National Labora-
tory, USA.

2 ...provided that the size of an argument checkpoint of subroutine 3 is less than or equal to
one memory unit, i.e. sizeof(argchp3)≤ 1, and that sizeof(argchp2)≤ 2.

3 ...provided that sizeof(argchp2) + sizeof(reschp3) ≤ 2 and sizeof(argchp3) +
sizeof(reschp3) ≤ 2, where sizeof(reschpi) denotes the size of a result checkpoint of
subroutine i (in memory units).

