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Preface

Mehr Licht!

(J. W. v. Goethe)

The application of X-ray scattering for the study of soft matter has a long tradition.
By shining X-rays on a piece of material, representative structure information is col-
lected in a scattering pattern. Moreover, during the last three decades X-ray scattering
has gained new attractivity, for it developed from a static to a dynamic method.

The progress achieved is closely linked to the development of both power-
ful detectors and brilliant X-ray sources (synchrotron radiation, rotating anode).
Such point-focus equipment has replaced older slit-focus equipment (Kratky cam-
era, Rigaku-Denki camera) in many laboratories, and the next step of instrumental
progress is already discernible. With the “X-ray free electron laser” (XFEL) it will
become possible to study very fast processes like the structure relaxation of elas-
tomers after the removal of mechanical load.

Today, structure evolution can be tracked in-situ with a cycle time of less than a
second. Moreover, if a polymer part is scanned by the X-ray beam of a microbeam
setup, the variation of structure and orientation can be documented with a spatial
resolution of 1 µm. For the application of X-rays no special sample preparation is
required, and as the beam may travel through air for at least several centimeters,
manufacturing or ageing machinery can be integrated in the beamline with ease.

On the other hand, the result of the scattering method is not a common image of
the structure. There is not even a way to reconstruct it from scattering data, except for
the cases in which either anomalous scattering is employed, or a diffraction diagram
of an almost perfect lattice structure is recorded. Because most of the man-made
polymer materials suffer from polydispersity and heterogeneity, the crystallographic
algorithms of structure inversion are in general restricted to the field of biopolymers
(e.g., protein crystallography). Thus the ordinary polymer scientist will deal with
scattering data rather than with diffraction data. These data must be interpreted or
analyzed. This book is intended both to guide the beginner in this field, and to present
a collection of strategies for the analysis of scattering data gathered with modern
equipment. Common misunderstandings are discussed. Instead, advanced strategies
are advertised.

An advantage of a laboratory-oriented textbook is the fact that many technical
aspects of our trade can be communicated1. Their consideration may help to im-
prove the quality and to assure the completeness of the recorded data. On the other

1An example is the chapter entitled “It’s Beamtime, Phil”. It is written in the hope that in particular the
practical work of students will benefit from it.
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hand, the concept is restricting the presentation of the mathematical background to
a terse treatment. For a field like the scattering that is virtually interpenetrated by
mathematical concepts this is not unproblematic. As a consequence, it was impos-
sible to present mathematical deductions, which could have been an assistance to
methodical development by the reader. In this respect even the references given to
original papers are not really helpful, because in such publications the fundamental
mathematical tools are expected to be known. Nevertheless, this restriction may be
advantageous from a different perspective. The terse scheme is enhancing the pre-
sentation of the fundamental ideas and their repetitive use in different subareas of the
scattering technique.

This book with its special focus on application was stimulated by a sugges-
tion of Prof. Dr.-Ing. W.-M. Kulicke. I greatly appreciate his support. Moreover,
the manuscript has its roots in thirty years of practical work in the field of scatter-
ing from soft materials conducted in several labs and at several synchrotron sources.
During this time the author has assisted many external groups with their practical
work at the soft-matter beamlines of the Hamburg Synchrotron Radiation Labora-
tory (HASYLAB at DESY), supported evaluation of scattering data, and worked as a
referee in the soft-condensed matter review-committee of the European Synchrotron
Radiation Facility (ESRF) in Grenoble. The accumulated handouts prepared during
twenty years of lecturing scattering methods at the University of Hamburg have been
a valuable source for the book manuscript.

There are many other people who have – in different respect – contributed to this
work. The first to mention is my teacher, Prof. Dr. W. Ruland. I am grateful for his art
of teaching the scattering. Wherever in this book I should have been able to explain
something clearly and concisely, it is his merit. The second to mention is Prof. Dr.
H. G. Zachmann. In his group I enjoyed to become involved in many practical is-
sues of soft matter physics. In particular I appreciate many helpful comments on the
manuscript that have been supplied by Prof. Dr. W. Ruland, Dr. C. Burger, Prof. Dr.
A. Thünemann and Prof. Dr. S. Murthy. In addition, there are many other colleagues
who have stimulated my work by fruitful cooperation, discussion and support. To
mention them all would fill pages.

The complex task of writing a scientific manuscript has been significantly eased
by authoring tools that keep track of the formal aspects of the growing manuscript.
For this reason I thank the developers of LYX, Koma-Script and LATEX (in particular
Matthias Ettrich and Markus Kohm) for their free and superb software. Moreover, I
highly appreciate the excellent guidance and the distinguished manuscript editing by
the team at Springer Publishers.

Last but not least I express cordial thanks to my wife Marie-Luise and to my
children for their continuous support.

Hamburg, January 2007 N. Stribeck



List of Symbols and Abbreviations

The handling of polar coordinates is a general problem in a book on scattering, where the sym-
bol θ that is normally used to indicate the polar angle is already used to indicate the Bragg
angle. Too late I became aware of the problem and tried to introduce a consistent notation.
Unfortunately the problem was more involved than I thought, as colleagues pointed out after
proofreading the manuscript. Based on suggestions I finally tried to harmonize the nomencla-
ture. Nevertheless, the reader should be aware of possible remnant inconsistencies concerning
the use of the symbols ψ , ϕ and symbols of related angles.

〈 〉 Averaging operator

〈 〉V Irradiated volume average

〈 〉ω Solid-angle average

�� Slice mapping

{} Projection mapping

� Convolution operator

∗ϕ Angular convolution

⊗ Correlation operator

�2 Autocorrelation operator

∗ Complex conjugate. z = a + ib; z∗ = a− ib

∇ Gradient operator

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

A(s) Scattering amplitude

a Scaling vector (anisotropic dilation)

a Scaling factor (isotropic or 1D dilation)



X List of Symbols and Abbreviations

a In a lattice: edge length of unit cell, i.e., the distance between the
δ ( )-elements that make the abstract lattice c( )

αi Angle of incidence on the sample surface

αe Angle of exit from the sample surface

B(h) Integral breadth of the distribution h

c() Comb function (abstract lattice)

CLD Chord length distribution g(r) = −�p γ ′′ (r)

CCD Charge-coupled device

CDF Chord distribution function z(r) ∝ −∆γ (r)

δ ( ) DIRAC’s delta function

∆ Laplacian operator

DESY Deutsches Elektronen-SYnchrotron (Hamburg, Germany)

DI Digital image processing

D Fractal dimension

dhkl Lattice repeat in WAXS (distance between net planes of a crystal
indexed by hkl)

DDF Distance distribution function

ESRF European Synchrotron Radiation Facility (Grenoble, France)

ε Mechanical elongation (ε = l/l0 −1)

exp(−µ�) Linear absorption factor

F (s) Fourier transform

Fn ( ) n-dimensional Fourier transform

F−n () n-dimensional Fourier back-transform

fP Polarization factor

for Uniaxial orientation parameter (HERMANS’ orientation function)

FIT2D Scattering data evaluation program by A. Hammersley (ESRF)

FLASH Free Electron Laser Hamburg

FWHM Full width at half-maximum



List of Symbols and Abbreviations XI

g(r) (Radial) chord length distribution (CLD)

g1 (x) (One-dimensional) interface distribution function (IDF)

GEL Image data format returned by image plate scanners

γ (r) = ρ∗2 (r)/k Normalized correlation function

HASYLAB Hamburg Synchrotron Radiation Laboratory

h() Some kind of distribution function

hkl MILLER’s index of a crystal reflection in reciprocal space

(h) Order of a reflection, line or peak. Short for hkl

H ( ) Fourier transform of the distribution h()

hH (a) Size distribution (of particles, clusters)

ℑ( ) Imaginary part of a complex number

I (s) = F3
(
ρ∗2 (r)

)
Scattering intensity

I0 Incident intensity (i.e. primary beam intensity)

It Transmitted intensity behind the sample

IDL Commercial programming system for image data processing

ImageJ Open-source programming system for image data processing

J (s3) = �{I}2 (s2,s3)�1 (s3) Slit-smeared scattering intensity

Ji Bessel function of the first kind and order i

k =
∫

I (s)d3s = ρ∗2 (0) Scattering power

L Lattice repeat (in SAXS: long period, in WAXS identical to dhkl

according to Bragg’s law)

� Path of the photon through the sample

�p Chord length related to size of crystals or domains

l In straining experiments: actual length of the sample

l0 In straining experiments: initial length of the sample

λ X-ray wavelength

λd Draw ratio λd = l/l0 = ε + 1

Linac Linear accelerator



XII List of Symbols and Abbreviations

M Molecular mass

MAXS Middle-angle X-ray scattering

M () Mellin transform

µ Linear absorption coefficient

µi i-th central moment of a distribution function

µ ′
i i-th moment about origin of a distribution function

OTOKO Scattering curve evaluation program by M. Koch (EMBL, Ham-
burg)

pv-wave Commercial programming system for image data processing

P(r) = ρ∗2 (r) Patterson function

p(r) (Radial) distance distribution function p(r) = r2γ (r)

Φ(s) Fourier transform of a shape function Φ(s) = F (Y (r))

q = 2π s Alternate scattering vector

Q = k/V Invariant (SAXS)

QP Polarization quality (of a synchrotron source)

IR The set of real numbers

IRn The n-dimensional vector space

ℜ() Real part of a complex number

R Sample-to-detector distance

Rg Guinier radius (i.e. radius of gyration)

r = (r1,r2,r3) Real space vector

re COMPTON’s classical electron radius (2.818×10−15m)

ROI Region of interest (from Digital Image Processing)

ρm Mass density

ρ (r) Electron density (in the field of SAXS: deviation of the electron
density from the average electron density)

ρ∗2 (r) = kγ (r) (SAXS) correlation function

〈ρ〉V Average electron density



Lists of Symbols and Abbreviations XIII

s Magnitude of the scattering vector

s = (s1,s2,s3) Scattering vector in Cartesian coordinates

s = (s,φ ,ψ) Scattering vector in polar coordinates (φ polar angle, ψ azimuthal
angle). – See the preamble to this “List of Abbreviations”

SAXS Small-angle X-ray scattering

S/N Signal-to-noise ratio

SSRL Stanford Synchrotron Radiation Laboratory

σ Standard deviation

σ2 Variance

t Sample thickness

topt Optimum sample thickness

TIFF Tagged Image File Format

TOPAS Scattering curve evaluation program by N. Stribeck

θ Bragg angle (half of the scattering angle)

2θ Scattering angle

θc Critical angle of total reflection

USAXS Ultra small-angle X-ray scattering

USB Universal Serial Bus (an interface to couple external devices to
computers)

V The sample volume irradiated by the X-ray beam

VFC Voltage-to-frequency converter

VUV Vacuum ultra-violet light

W Beam cross-section of the incident X-ray beam

x Principal axis of uniaxial structure,
depth in which a photon is scattered

XFEL X-ray free electron laser

Y (r) Shape function (Y (r) = 0 outside the body, Y (r) = 1 inside)

YH (x) Heaviside function. YH (x > 0)= 1, YH (x < 0)= 0. ∂YH (x)/∂x =
δ (x)

WAXS Wide-angle X-ray scattering

z(r) = −∆P(r) Chord distribution function
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1 Polydispersity and Heterogeneity

The heterogeneity immanent to materials that show scattering but not diffraction
patterns should not be ignored. An assessment concerning the significance of results
can only be expected if the collected data are complete (cf. Sect. 8.4.2) and show
low noise (exposure time long enough). Whenever a measured parameter value is
discussed, heterogeneity results in fundamental questions to be answered: What kind
of average does my method return? Is it possible to determine the width and skewness
of the parameter value distribution? A brief review of such “probability distributions”
and their moments is given for later reference.

1.1 Scattering, Polydispersity and Materials Properties

Except for biopolymers, most polymer materials are polydisperse and heteroge-
neous. This is already the case for the length distribution of the chain molecules
(molecular mass distribution). It is continued in the polydispersity of crystalline do-
mains (crystal size distribution), and in the heterogeneity of structural entities made
from such domains (lamellar stacks, microfibrils). Although this fact is known for
long time, its implications on the interpretation and analysis of scattering data are, in
general, not adequately considered.

DEBYE & MENKE (1931) [1]: “It is futile

Figure 1.1. P. Debye (1884-1966) and
his small-angle light-scattering device
on a Dutch stamp

to draw distinct conclusions if genuine scatter-
ing curves are not at hand. It is insufficient un-
der any circumstances if authors state that an
interference maximum or several of them ex-
ist at certain angular positions. Only a contin-
uous scattering pattern can be the fundament
of proper reasoning. Concerning the abundant
reports on disordered materials it must unfor-
tunately be stated that they are unsatisfactory
in this respect. Although even in this way, by
mere accumulation of data and comparison of
data from materials with similar chemical composition, some valuable conclusion
was drawn with a higher or a lower level of significance. This situation is the result
of the fact that we are insufficiently informed on the theory of the arrangement of
molecules in a fluid. Only if it were possible to theoretically describe this arrange-
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ment in a similar manner as can be done for the arrangement of atoms in a crystal, it
would be sufficient to report interference maxima.”

Heterogeneity. In reality, structure is frequently heterogeneous. For example, if
colloidal crystals have been produced by means of nanotechnology, it must be as-
sumed that the material is not perfect. Thus it is of some importance to describe the
deviation of the individual sample from the ideal material. For such purposes scat-
tering methods are frequently employed and the scattering patterns are qualitatively
interpreted. Nevertheless, the mechanisms of structure formation remain obscured as
long as the amount of heterogeneity cannot be determined quantitatively during the
structure formation process.

Different kinds of heterogeneity can be imagined. In the most simple case only
a few differing structural entities are found to coexist without correlation inside the
volume irradiated by the primary beam. In this case it is the task of the scientist to
identify, to separate and to quantify the components of such a multimodal structure.
In an extreme case heterogeneity may even result in a fractal structure that can no
longer be analyzed by the classical methods of materials science.

Polydispersity. Quite frequently many different but similar structural entities can
be found in a material. This is the common notion of polydispersity. Thus polydis-
persity means that every structural unit in the sample can be generated by compres-
sion or expansion (dilation) from a template. This building principle is mathemati-
cally governed by the Mellin convolution [2], which generates the observed structure
from the template structure and its size distribution. The determination of the latter
is a major goal in the field of materials science. Considering the simple case of pure
particle scattering, the searched size distribution is the particle dimension distribu-
tion [3]. If, for example, the studied particles are spheres, the number distribution
of sphere diameters would be of interest, and the material would advantageously be
characterized by the mean diameter and the variance of the sphere diameters. More-
over, even a value describing the skewness of the sphere diameter distribution may
become important in order to understand property variations of different materials.

1.2 Distribution Functions and Physical Parameters

A general principle is governing the relation between physical parameters and under-
lying distribution functions. Its paramount importance in the field of soft condensed
matter originates from the importance of polydispersity in this field. Let us recall
the principle by resorting to a very basic example: molecular mass distributions of
polymers and the related characteristic parameters.

1.2.1 The Number Molecular Mass Distribution

In the basic molecular mass distribution, N (M), the number N of molecules in a
sample is plotted vs. their molecular mass, M. Figure 1.2 presents a sketch of a
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Figure 1.2. A number molecular mass distribution N (M) of an ideal chain polymer. N (M) is
defined for integer multiples of Mm, the monomer mass. The integer factor, P, is called the
degree of polymerization

molecular mass distribution. For ideal chains the distribution is a discrete function
which is only defined for integer multiples of the monomer mass, Mm. The function
is called the number molecular mass distribution, because it exhibits the number of
molecules with a certain molecular weight M.

The function N (M) can be considered a continuous function, if the average
molecular weight of the chains is high enough. In this case we draw a continuous
line through the points in Fig. 1.2.

It is reasonable to normalize N (M) with respect to the total number of molecules
in the sample

n(M) = N (M)/

∫ ∞

0
N (M) dM. (1.1)

Now the function displays the number fraction of molecules with a certain molecular
mass. Its integral is 1 by definition. Nevertheless, we still call it the number molecular
weight distribution because the factor

∫
N (M) dM is nothing but a constant.

1.2.2 The Number Average Molecular Mass

The obvious definition of the number average, Mn, of the distribution is the position
on the M-axis that divides the area under the n(M)– curve in equal parts (cf. Fig. 1.3).
Because of the fact that n(M) is normalized to 1, each of the subareas is equal to 0.5.
As 50% of all the molecules are shorter than Mn, the other 50% are longer than Mn.
Bearing in mind the normalization, the number average molecular mass is

Mn =
∫ ∞

0
M n(M) dM. (1.2)

This equation is, as well, the definition of the mean (cf. ABRAMOWITZ [4] chap. 26)
– the first moment of the distribution n(M) about origin. In fact, with respect to a
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Figure 1.3. The number average molecular mass, Mn, is the position that divides the area
under the corresponding distribution in equal parts

normalized distribution (
∫

n(M) dM = 1) the mean is the center of gravity of the
distribution.

In order to describe the discussed distribution function, three characteristic pa-
rameters are used in polymer science. They are named number average1, weight
average (Mw), and centrifuge average (Mz)

Mn =
∫

M1 n(M) dM∫
M0 n(M) dM

(1.3)

Mw =
∫

M2 n(M) dM∫
M1 n(M) dM

(1.4)

Mz =
∫

M3 n(M) dM∫
M2 n(M) dM

(1.5)

This series of equations demonstrates a general principle in physics, namely how
measurable materials parameters are generated from moments of the related distri-
bution function.

1.3 Moments

The i-th moment (about origin) of a distribution h(x) is defined by

µ ′
i (h) =

∫
xi h(x) dx (1.6)

(ABRAMOWITZ [4] chap. 26). We have demonstrated that the structure parameters
of a polydisperse structure are closely related to these moments. µ ′

0 (h) is the norm

1This is the center of gravity of the distribution n(M).
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and m(h) := µ ′
1 (h) the mean of the distribution on which the definition of central

moments

µi (h) :=
∫

(x−m(h))i dx (1.7)

is based. As a measure of distribution width it is common to report the variance

σ2 (h) := µ2 (h) (1.8)

or the standard deviation, σ (h). µ3 (h)/σ3 (h) is known as skewness of the distribu-
tion (ABRAMOWITZ [4] chap. 26).

Application in the Field of Scattering. Let us consider two important distri-
bution functions, hc (x) and hL (x). These functions shall describe the thicknesses of
crystalline layers and the distances (long periods) between them, respectively. In this
case we take into account polydispersity of the crystalline layers, if (at least) the two
parameters d̄c and σc/d̄c are determined which are defined as the average thickness
of the crystalline layers,

d̄c =
µ ′

1 (hc)
µ ′

0 (hc)
,

and the relative standard deviation of the crystalline layer distribution,

σc

d̄c
=

σ (hc)
d̄c

.

In the classical treatment of the paracrystal, HOSEMANN [5] refers to the quantity
σc/d̄c as “g-factor”.

If we knew that the long periods are varying from stack to stack, but not within
one and the same stack, the quantities

L̄ =
µ ′

1 (hL)
µ ′

0 (hL)

(average long period) and
σL

L̄
=

σ (hL)
L̄

(relative standard deviation of the long periods, which is another HOSEMANN

g-factor) describe the polydispersity of this material.



2 General Background

Interpretation of scattering data requires understanding of the general dimensions
of the field and a general background of scattering theory which is reviewed in this
chapter. Reference is given to textbooks and original work, where detailed discussion
would extend beyond the scope of this book.

2.1 The Subareas of X-Ray Scattering

Scattering experiments are carried out in four different angular regions which will be
frequently addressed in this book. In Table 2.1

the subareas are identified by the typical distance R between the sample and
the detector. The wavelength selected for the example is close to the historical
wavelength of an X-ray tube equipped with a copper anode (CuKα radiation with
λ = 0.15418nm).

Classical X-ray diffraction and scattering is carried out in the subarea of wide-
angle X-ray scattering (WAXS). The corresponding scattering patterns yield infor-
mation on the arrangement of polymer-chain segments (e.g., orientation of the amor-
phous phase, crystalline structure, size of crystals, crystal distortions, WAXS crys-
tallinity).

The subarea of middle-angle X-ray scattering (MAXS) covers the characteristic
scattering of liquid-crystalline structure and rigid-rod polymers.

In the small-angle X-ray scattering (SAXS) regime the typical nanostructures
(in semicrystalline materials, thermoplastic elastomers) are observed. Because of the
long distance between sample and detector time-resolved measurements can only be
carried out at synchrotron radiation sources (Sect. 4.2.1.2).

Table 2.1. Subareas of scattering as a function of the sample–detector
distance R assuming an X-ray wavelength of λ ≈ 0.15nm

Subarea R [m] Focus
WAXS 0.05 – 0.2 arrangement of chain segments
MAXS 0.2 – 1 liquid-crystalline structure
SAXS 1 – 3 nanostructure 3 nm – 50 nm

USAXS 6 – 15 nanostructure 15 nm – 2 µm
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The ultra small-angle X-ray scattering (USAXS) extends the accessible structure
towards the micrometer range. Time-resolved measurements require a synchrotron
beam that is intensified by an insertion device (Sect. 4.2.2).

2.2 X-Rays and Matter

2.2.1 General

X-rays are electromagnetic radiation with short wavelengths of about 0.01 to 10 nm.
λ ≈ 0.15 nm is the typical wavelength for the study of soft condensed matter. When-
ever X-rays are interacting with matter, their main partners are the electrons in the
studied sample. Thus X-ray scattering is probing the distribution of electron density,
ρ (r), inside the material.

As scattering intensity is computed from ρ (r) in this book, the symbol ρ (r) has
two different meanings. Only in the field of WAXS it is identical to the plain electron
density. However, in the area of SAXS it indicates the electron density difference1,
i.e., the deviation of the local electron density from the average electron density
〈ρ (r)〉V in the irradiated volume V .

Electron Density Computation. The average2 electron density of a material or
of a specific phase within a material,

ρ = Zm ρm = NA
ZM

MM
ρm, (2.1)

is computed from the respective average mass density, ρm, by multiplication with
the “number of electrons per gram”, Zm, given by Avogadro’s number, NA = 6.022×
1023mol−1, the number of electrons per molecule or monomer unit, ZM , and the
molecular weight of molecule or monomer unit, MM .

For polybutadiene with the chemical composition C4H6 we have a molecular
weight of MM = 54.092g/mol and ZM = 30e.u. (electrons in “electron units”). If the
mass density is ρm = 0.90g/cm3, the electron density becomes ρ = 300.6 e.u./nm3.

2.2.2 Polarization

Polarization is a relevant issue, because we are dealing with transversal waves
(GUINIER [6], p. 10-11). Polarization correction should be carried out for MAXS
and WAXS data. It is less important for SAXS and USAXS patterns. In particular, if
synchrotron radiation is used, the polarization correction is quite involved and based
on the degree of polarization. For the purpose of reliable correction it is thus recom-
mended to let a polarization monitor measure the actual degree of synchrotron beam
polarization.

1In many publications the electron density difference is addressed as ∆ρ (r) = ρ (r)−〈ρ (r)〉V .
2Exercise: Compute the average electron density 〈ρ〉V of a sample from pure poly(ethylene terephtha-
late) (PET) with a mass density of 1.38 g/cm3. The chemical formula of PET is C10H8O4. Because
PET is most probably in the semicrystalline state, it makes sense to stress that the computed electron
density is a volume average 〈〉V .


