Springer Laboratory

Springer Laboratory Manuals in Polymer Science

Pasch, Trathnigg: HPLC of Polymers ISBN: 3-540-61689-6 (hardcover) ISBN: 3-540-65551-4 (softcover)

Mori, Barth: Size Exclusion Chromatography ISBN: 3-540-65635-9

Pasch, Schrepp: MALDI-TOF Mass Spectrometry of Synthetic Polymers ISBN: 3-540-44259-6

Kulicke, Clasen: Viscosimetry of Polymers and Polyelectrolytes ISBN: 3-540-40760-X

Hatada, Kitayama: NMR Spectroscopy of Polymers ISBN: 3-540-40220-9

Brummer, R.: Rheology Essentials of Cosmetics and Food Emulsions ISBN: 3-540-25553-2

Mächtle, W., Börger, L.: Analytical Ultracentrifugation of Polymers and Nanoparticles ISBN: 3-540-23432-2

Heinze, T., Liebert, T., Koschella, A.: Esterification of Polysaccharides ISBN: 3-540-32103-9

Koetz, J., Kosmella, S.: Polyelectrolytes and Nanoparticles ISBN: 3-540-46381-X

Stribeck, N.: X-Ray Scattering of Soft Matter ISBN: 3-540-46488-4

Norbert Stribeck

X-Ray Scattering of Soft Matter

With 92 Figures and 6 Tables

Norbert Stribeck

Universität Hamburg Institut für Technische und Makromolekulare Chemie Bundesstr. 45 20146 Hamburg Germany *e-mail: norbert@stribeck.de*

Library of Congress Control Number: 2007922403

DOI 10.1007/978-3-540-69856-2

ISBN 978-3-540-69855-5 Springer Berlin Heidelberg New York

e-ISBN 978-3-540-69856-2

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permissions for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

The publisher and the authors accept no legal responsibility for any damage caused by improper use of the instructions and programs contained in this book and the CD-ROM. Although the software has been tested with extreme care, errors in the software cannot be excluded.

Springer is a part of Springer Science+Business Media springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready copy from the author Data conversion and production by LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany Cover design: eStudio Calamar, Girona/Spain

SPIN 11533863 55/3100/YL - 5 4 3 2 1 0 Printed on acid-free paper

Springer Laboratory Manuals in Polymer Science

Editor

Priv.-Doz. Dr. Harald Pasch Deutsches Kunststoff-Institut Abt. Analytik Schloßgartenstr. 6 64289 Darmstadt Germany e-mail: hpasch@dki.tu-darmstadt.de

Editorial Board

PD Dr. Ingo Alig Deutsches Kunststoff-Institut Abt. Physik Schloßgartenstr. 6 64289 Darmstadt Germany email: ialig@dki.tu-darmstadt.de

Prof. Josef Janca Université de La Rochelle Pole Sciences et Technologie Avenue Michel Crépeau 17042 La Rochelle Cedex 01 France email: jjanca@univ-lr.fr

Prof. W.-M. Kulicke Inst. f. Technische u. Makromol. Chemie Universität Hamburg Bundesstr. 45 20146 Hamburg Germany email: kulicke@chemie.uni-hamburg.de

Preface

Mehr Licht!

(J. W. v. Goethe)

The application of X-ray scattering for the study of soft matter has a long tradition. By shining X-rays on a piece of material, representative structure information is collected in a scattering pattern. Moreover, during the last three decades X-ray scattering has gained new attractivity, for it developed from a static to a dynamic method.

The progress achieved is closely linked to the development of both powerful detectors and brilliant X-ray sources (synchrotron radiation, rotating anode). Such point-focus equipment has replaced older slit-focus equipment (Kratky camera, Rigaku-Denki camera) in many laboratories, and the next step of instrumental progress is already discernible. With the "X-ray free electron laser" (XFEL) it will become possible to study very fast processes like the structure relaxation of elastomers after the removal of mechanical load.

Today, structure evolution can be tracked *in-situ* with a cycle time of less than a second. Moreover, if a polymer part is scanned by the X-ray beam of a microbeam setup, the variation of structure and orientation can be documented with a spatial resolution of 1 μ m. For the application of X-rays no special sample preparation is required, and as the beam may travel through air for at least several centimeters, manufacturing or ageing machinery can be integrated in the beamline with ease.

On the other hand, the result of the scattering method is not a common image of the structure. There is not even a way to reconstruct it from scattering data, except for the cases in which either anomalous scattering is employed, or a diffraction diagram of an almost perfect lattice structure is recorded. Because most of the man-made polymer materials suffer from polydispersity and heterogeneity, the crystallographic algorithms of structure inversion are in general restricted to the field of biopolymers (e.g., protein crystallography). Thus the ordinary polymer scientist will deal with scattering data rather than with diffraction data. These data must be interpreted or analyzed. This book is intended both to guide the beginner in this field, and to present a collection of strategies for the analysis of scattering data gathered with modern equipment. Common misunderstandings are discussed. Instead, advanced strategies are advertised.

An advantage of a laboratory-oriented textbook is the fact that many technical aspects of our trade can be communicated¹. Their consideration may help to improve the quality and to assure the completeness of the recorded data. On the other

¹An example is the chapter entitled "It's Beamtime, Phil". It is written in the hope that in particular the practical work of students will benefit from it.

hand, the concept is restricting the presentation of the mathematical background to a terse treatment. For a field like the scattering that is virtually interpenetrated by mathematical concepts this is not unproblematic. As a consequence, it was impossible to present mathematical deductions, which could have been an assistance to methodical development by the reader. In this respect even the references given to original papers are not really helpful, because in such publications the fundamental mathematical tools are expected to be known. Nevertheless, this restriction may be advantageous from a different perspective. The terse scheme is enhancing the presentation of the fundamental ideas and their repetitive use in different subareas of the scattering technique.

This book with its special focus on application was stimulated by a suggestion of Prof. Dr.-Ing. W.-M. Kulicke. I greatly appreciate his support. Moreover, the manuscript has its roots in thirty years of practical work in the field of scattering from soft materials conducted in several labs and at several synchrotron sources. During this time the author has assisted many external groups with their practical work at the soft-matter beamlines of the Hamburg Synchrotron Radiation Laboratory (HASYLAB at DESY), supported evaluation of scattering data, and worked as a referee in the soft-condensed matter review-committee of the European Synchrotron Radiation Facility (ESRF) in Grenoble. The accumulated handouts prepared during twenty years of lecturing scattering methods at the University of Hamburg have been a valuable source for the book manuscript.

There are many other people who have – in different respect – contributed to this work. The first to mention is my teacher, Prof. Dr. W. Ruland. I am grateful for his art of teaching the scattering. Wherever in this book I should have been able to explain something clearly and concisely, it is his merit. The second to mention is Prof. Dr. H. G. Zachmann. In his group I enjoyed to become involved in many practical issues of soft matter physics. In particular I appreciate many helpful comments on the manuscript that have been supplied by Prof. Dr. W. Ruland, Dr. C. Burger, Prof. Dr. A. Thünemann and Prof. Dr. S. Murthy. In addition, there are many other colleagues who have stimulated my work by fruitful cooperation, discussion and support. To mention them all would fill pages.

The complex task of writing a scientific manuscript has been significantly eased by authoring tools that keep track of the formal aspects of the growing manuscript. For this reason I thank the developers of L_YX, Koma-Script and LAT_EX (in particular Matthias Ettrich and Markus Kohm) for their free and superb software. Moreover, I highly appreciate the excellent guidance and the distinguished manuscript editing by the team at Springer Publishers.

Last but not least I express cordial thanks to my wife Marie-Luise and to my children for their continuous support.

Hamburg, January 2007

N. Stribeck

List of Symbols and Abbreviations

The handling of polar coordinates is a general problem in a book on scattering, where the symbol θ that is normally used to indicate the polar angle is already used to indicate the Bragg angle. Too late I became aware of the problem and tried to introduce a consistent notation. Unfortunately the problem was more involved than I thought, as colleagues pointed out after proofreading the manuscript. Based on suggestions I finally tried to harmonize the nomenclature. Nevertheless, the reader should be aware of possible remnant inconsistencies concerning the use of the symbols ψ , ϕ and symbols of related angles.

$\langle \rangle$	Averaging operator
$\langle \rangle_V$	Irradiated volume average
$\langle \rangle_{\boldsymbol{\omega}}$	Solid-angle average
[]	Slice mapping
{}	Projection mapping
*	Convolution operator
$*\phi$	Angular convolution
\otimes	Correlation operator
*2	Autocorrelation operator
*	Complex conjugate. $z = a + ib$; $z^* = a - ib$
∇	Gradient operator
1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
$A\left(\mathbf{s}\right)$	Scattering amplitude
a	Scaling vector (anisotropic dilation)
a	Scaling factor (isotropic or 1D dilation)

a	In a lattice: edge length of unit cell, i.e., the distance between the $\delta()$ -elements that make the abstract lattice $c()$
α_i	Angle of incidence on the sample surface
α_e	Angle of exit from the sample surface
B(h)	Integral breadth of the distribution h
<i>c</i> ()	Comb function (abstract lattice)
CLD	Chord length distribution $g(r) = -\ell_p \gamma''(r)$
CCD	Charge-coupled device
CDF	Chord distribution function $z(\mathbf{r}) \propto -\Delta \gamma(\mathbf{r})$
$\delta()$	DIRAC's delta function
Δ	Laplacian operator
DESY	Deutsches Elektronen-SYnchrotron (Hamburg, Germany)
DI	Digital image processing
D	Fractal dimension
d_{hkl}	Lattice repeat in WAXS (distance between net planes of a crystal indexed by hkl)
DDF	Distance distribution function
ESRF	European Synchrotron Radiation Facility (Grenoble, France)
ε	Mechanical elongation ($\varepsilon = l/l_0 - 1$)
$\exp(-\mu\ell)$	Linear absorption factor
$\mathscr{F}(\mathbf{s})$	Fourier transform
$\mathscr{F}_n()$	<i>n</i> -dimensional Fourier transform
$\mathscr{F}_{-n}()$	<i>n</i> -dimensional Fourier back-transform
f_P	Polarization factor
f_{or}	Uniaxial orientation parameter (HERMANS' orientation function)
FIT2D	Scattering data evaluation program by A. Hammersley (ESRF)
FLASH	Free Electron Laser Hamburg
FWHM	Full width at half-maximum

List of Symbols and Abbreviations

Х

$g\left(r ight)$	(Radial) chord length distribution (CLD)
$g_1(x)$	(One-dimensional) interface distribution function (IDF)
GEL	Image data format returned by image plate scanners
$\gamma(\mathbf{r}) = \rho^{*2}(\mathbf{r}) / k$	k Normalized correlation function
HASYLAB	Hamburg Synchrotron Radiation Laboratory
h()	Some kind of distribution function
hkl	MILLER's index of a crystal reflection in reciprocal space
(h)	Order of a reflection, line or peak. Short for <i>hkl</i>
H()	Fourier transform of the distribution $h()$
$h_{H}\left(a ight)$	Size distribution (of particles, clusters)
$\Im()$	Imaginary part of a complex number
$I(\mathbf{s}) = \mathscr{F}_3\left(\rho^{*2}\right)$	r)) Scattering intensity
I_0	Incident intensity (i.e. primary beam intensity)
I_t	Transmitted intensity behind the sample
IDL	Commercial programming system for image data processing
ImageJ	Open-source programming system for image data processing
$J(s_3) = \lceil \{I\}_2 (s_3) \rceil$	(s_2, s_3)] ₁ (s_3) Slit-smeared scattering intensity
J _i	Bessel function of the first kind and order <i>i</i>
$k = \int I(\mathbf{s}) d^3 s =$	$\rho^{*2}(0)$ Scattering power
L	Lattice repeat (in SAXS: long period, in WAXS identical to d_{hkl} according to Bragg's law)
l	Path of the photon through the sample
ℓ_p	Chord length related to size of crystals or domains
l	In straining experiments: actual length of the sample
l_0	In straining experiments: initial length of the sample
λ	X-ray wavelength
λ_d	Draw ratio $\lambda_d = l/l_0 = \varepsilon + 1$
Linac	Linear accelerator

Μ	Molecular mass	
MAXS	Middle-angle X-ray scattering	
$\mathcal{M}(\cdot)$	Mellin transform	
μ	Linear absorption coefficient	
μ_i	<i>i</i> -th central moment of a distribution function	
μ_i'	<i>i</i> -th moment about origin of a distribution function	
ОТОКО	Scattering curve evaluation program by M. Koch (EMBL, Hamburg)	
pv-wave	Commercial programming system for image data processing	
$P(\mathbf{r}) = \rho^{*2}(\mathbf{r})$	Patterson function	
p(r)	(Radial) distance distribution function $p(r) = r^2 \gamma(r)$	
$\Phi(\mathbf{s})$	Fourier transform of a shape function $\Phi(\mathbf{s}) = \mathscr{F}(Y(\mathbf{r}))$	
$\mathbf{q} = 2\pi \mathbf{s}$	Alternate scattering vector	
Q = k/V	Invariant (SAXS)	
Q_P	Polarization quality (of a synchrotron source)	
R	The set of real numbers	
\mathbb{R}^n	The <i>n</i> -dimensional vector space	
$\Re()$	Real part of a complex number	
R	Sample-to-detector distance	
R_g	Guinier radius (i.e. radius of gyration)	
$\mathbf{r} = (r_1, r_2, r_3)$	Real space vector	
r _e	COMPTON's classical electron radius $(2.818 \times 10^{-15} \text{m})$	
ROI	Region of interest (from Digital Image Processing)	
$ ho_m$	Mass density	
$ ho\left(\mathbf{r} ight)$	Electron density (in the field of SAXS: deviation of the electron density from the average electron density)	
$\rho^{*2}(\mathbf{r}) = k\gamma(\mathbf{r})$	(SAXS) correlation function	
$\langle ho angle_V$	Average electron density	

S	Magnitude of the scattering vector
$\mathbf{s} = (s_1, s_2, s_3)$	Scattering vector in Cartesian coordinates
$\mathbf{s} = (s, \phi, \psi)$	Scattering vector in polar coordinates (ϕ polar angle, ψ azimuthal angle). – See the preamble to this "List of Abbreviations"
SAXS	Small-angle X-ray scattering
S/N	Signal-to-noise ratio
SSRL	Stanford Synchrotron Radiation Laboratory
σ	Standard deviation
σ^2	Variance
t	Sample thickness
t _{opt}	Optimum sample thickness
TIFF	Tagged Image File Format
TOPAS	Scattering curve evaluation program by N. Stribeck
θ	Bragg angle (half of the scattering angle)
20	Scattering angle
θ_c	Critical angle of total reflection
USAXS	Ultra small-angle X-ray scattering
USB	Universal Serial Bus (an interface to couple external devices to computers)
V	The sample volume irradiated by the X-ray beam
VFC	Voltage-to-frequency converter
VUV	Vacuum ultra-violet light
W	Beam cross-section of the incident X-ray beam
x	Principal axis of uniaxial structure, depth in which a photon is scattered
XFEL	X-ray free electron laser
$Y(\mathbf{r})$	Shape function ($Y(\mathbf{r}) = 0$ outside the body, $Y(\mathbf{r}) = 1$ inside)
$\mathbf{Y}_{H}\left(x\right)$	Heaviside function. $Y_H(x > 0) = 1$, $Y_H(x < 0) = 0$. $\partial Y_H(x) / \partial x = \delta(x)$
WAXS	Wide-angle X-ray scattering
$z(\mathbf{r}) = -\Delta P(\mathbf{r})$	Chord distribution function

Table of Contents

1	Poly	disper	sity and Heterogeneity	1
	1.1	Scatter	ing, Polydispersity and Materials Properties	1
	1.2	Distrib	ution Functions and Physical Parameters	2
		1.2.1	The Number Molecular Mass Distribution	2
		1.2.2	The Number Average Molecular Mass	3
	1.3	Mome	nts	4
2	Gen	eral Ba	ackground	7
	2.1	The Su	bareas of X-Ray Scattering	7
	2.2	X-Ray	s and Matter	8
		2.2.1	General	8
		2.2.2	Polarization	8
			2.2.2.1 Polarization Factor of a Laboratory Source	9
			2.2.2.2 Synchrotron Beam Polarization Factor	9
		2.2.3	Compton Scattering	10
		2.2.4	Fluorescence	10
	2.3	Classic	cal X-Ray Setup	11
	2.4	s-Spac	e and q-Space	11
	2.5	Scatter	ing Intensity and Sample Structure	13
		2.5.1	Lay-Out of the Magic Square	14
		2.5.2	Analysis Options – Example for SAXS Data	14
		2.5.3	Parameters, Functions and Operations in the Magic Square .	15
		2.5.4	Convolution, Correlation and Autocorrelation	16
	2.6	Polydi	spersity and Scattering Intensity	18
	2.7	A Glar	ice at the Mathematical Laboratory of Scattering	21
		2.7.1	The Slice	22
		2.7.2	The Projection	23
		2.7.3	Fourier Slice Theorem	23
		2.7.4	Fourier Derivative Theorem	23
		2.7.5	Breadth Theorem	24
		2.7.6	Dilation and Reciprocity	24
		2.7.7	DIRAC's δ -Function	25
		2.7.8	Convolution Theorem	25
		2.7.9	Bandlimited Functions	25
	2.8	How to	Collect Complete Scattering Patterns	26

		2.8.1	Isotropic	Scattering	26
		2.8.2	Anisotro	pic Scattering	26
			2.8.2.1	Single Crystal Anisotropy	26
			2.8.2.2	Fiber Symmetry	27
	2.9	Applic	ation of D	vigital Image Processing (DI)	29
		2.9.1	DI and the	ne Analysis of Scattering Patterns	29
		2.9.2	A Scatte	ring Pattern Is a Matrix of Numbers, Not a Photo .	30
		2.9.3	How to U	Jtilize DI	30
		2.9.4	Concepts	s of DI that Ease the Analysis of Scattering Images .	30
			2.9.4.1	The Paradigm: Arithmetics with Matrices	30
			2.9.4.2	Submatrix Ranking Operators	31
			2.9.4.3	Primitive Operators: Erode, Median, and Dilate .	31
			2.9.4.4	Combined Operators: Opening & Closing	32
3	Тур	ical Pro	oblems fo	or Analysis by X-Ray Scattering	33
	3.1	Everyo	lay Indust	rial Problems	33
	3.2	At the	Front of I	nnovation	34
		3.2.1	Web Res	ources	34
		3.2.2	Fields of	Innovation	34
			3.2.2.1	Visualize and Model Structure Automatically	34
			3.2.2.2	Study Gradient Materials	35
			3.2.2.3	Study Thin Films	35
			3.2.2.4	Study Structure Evolution	35
4	Fxn	erimen	tal Over	view	37
•	4 1	The St	hape of the	Primary Beam	38
		4 1 1	Point Fo	cus Collimation	38
		412	Slit Focu	is Collimation	39
			4.1.2.1	Common Cameras and Properties	39
			4122	Infinite Slit Length	39
			4.1.2.3	A Fiber in a Slit-Focus Camera	40
		4.1.3	Desmear	ing of Slit-Focus Data	40
		4.1.4	Smearin	g of Point-Focus Data	41
	4.2	Setup	of Point-C	follimation Apparatus	41
		4.2.1	The Rad	iation Source	42
			4.2.1.1	Rotating Anode	42
			4.2.1.2	Synchrotron Radiation	42
				VEEL . The V Day Free Electron Laser	11
			4.2.1.3	ATEL. THE A-Kay FILE LIEUTON LASER	
		4.2.2	4.2.1.3 Beam Ai	mplification by Insertion Devices	46
		4.2.2 4.2.3	4.2.1.3 Beam An Beam Sh	mplification by Insertion Devices	46 46
		4.2.2 4.2.3	4.2.1.3 Beam An Beam Sh 4.2.3.1	mplification by Insertion Devices	44 46 46 46
		4.2.2 4.2.3	4.2.1.3 Beam An Beam Sh 4.2.3.1 4.2.3.2	mplification by Insertion Devices	44 46 46 46 47
		4.2.2 4.2.3	4.2.1.3 Beam An Beam Sh 4.2.3.1 4.2.3.2 4.2.3.3	mplification by Insertion Devices	46 46 46 47 47
		4.2.2 4.2.3	4.2.1.3 Beam An Beam Sh 4.2.3.1 4.2.3.2 4.2.3.3 4.2.3.4	mplification by Insertion Devices	46 46 46 47 47 48

			4.2.3.6	Shutters	50
			4.2.3.7	Slits	50
			4.2.3.8	Stabilizers	51
			4.2.3.9	Absorbers	51
		4.2.4	The Sam	ple Recipient	51
			4.2.4.1	Optical Bench vs. Dance Floor	52
			4.2.4.2	Chambers for Sample Positioning	52
			4.2.4.3	Recipients for Sample Processing	53
		4.2.5	Detector	· · · · · · · · · · · · · · · · · · ·	53
			4.2.5.1	Criteria for Detector Performance	53
			4.2.5.2	CCD Detectors	54
			4.2.5.3	Image Plates	55
			4.2.5.4	Gas-Filled Detectors	56
			4.2.5.5	Other X-Ray Detectors	57
			4.2.5.6	Detector Operation Mode: Binning	58
		426	Experim	ent Monitors	58
			42.61	Monitoring Journaling Control	58
			4262	Ream Intensity Monitoring	59
	43	Data A	Acquisition	Experiment Control and Its Principles	59
	1.5	431	Voltage-	to-Frequency Conversion (VFC)	59
		432	Unix and	the Communication Among Acquisition Modules	61
		1.0.2	e inv unv		01
5	Acc	uisitio	n of Syn	chrotron Beamtime	63
	5.1	Test M	leasureme	nts	63
	5.2	Suppo	rt or Colla	boration	63
	5.3	A Gui	de to Prop	osal Writing	64
6	lt's	Beamt	ime. Phil	: A Guide to Collect a Complete Set of Data	67
-	6.1	Be Or	ganized .		67
	6.2	Verv I	mportant:	Data File Check	67
	6.3	Never	Store Test	Snapshots from Detector Memory	68
	6.4	To Be	Collected	Before the First Experiment	68
		6.4.1	Measure	ment of the Sample-Detector Distance	69
		6.4.2	Measure	ment of the Detector Response	69
		6.4.3	Measure	ment of the Primary Beam Profile	69
	65	To Be	Collected	for Each New Run	69
	6.6	Adjust	tments wif	h Each Experiment	70
	67	Collec	t Good Da		70
	6.8	To Be	Collected	with Each Scattering Pattern	71
_	_				
1		-evalua	ation of S	cattering Data	73
	/.1 7.2	Access	ing the Scal	AVS Multiple Sectoring	74
	1.2	Assess	sment of S	AAS Multiple Scattering	14
	1.5	Norma	alization .	·····	15
	1.4	Valid A	Area Mask	ing	15

	7.5	Alignn	nent		76
	7.6	Absorp	otion and I	Background Correction	76
		7.6.1	Absorpti	on – the Principle	77
		7.6.2	Absorpti	on in Normal-Transmission Geometry	77
		7.6.3	Absorpti	on in Reflection Geometries	80
			7.6.3.1	Thin Samples in Symmetrical-Reflection Geometry	81
			7.6.3.2	Thin Samples in Asymmetrical-Reflection Geom-	
				etry	82
		7.6.4	Calculati	ons: Absorption Factor, Optimum Sample Thickness	83
		7.6.5	Refractio	on Correction	84
	7.7	Recons	struction o	f Proper Constitution	85
	7.8	Conver	rsion to Re	eciprocal Space Units	85
		7.8.1	Isotropic	Scattering	85
		7.8.2	Anisotro	pic Scattering	85
			7.8.2.1	USAXS and SAXS	85
			7.8.2.2	MAXS and WAXS with Fiber Symmetry	85
			7.8.2.3	MAXS and WAXS Without Fiber Symmetry	85
	7.9	Harmo	ony		86
	7.10	Calibra	ation to Al	osolute Scattering Intensity	86
		7.10.1	The Unit	s of Absolute Scattering Intensity	86
		7.10.2	Absolute	Intensity in SAXS	87
			7.10.2.1	The Idea of Direct Calibration	87
			7.10.2.2	Direct Calibration for the Kratky Camera	88
			7.10.2.3	Direct Calibration for a Synchrotron Beamline	90
			7.10.2.4	Indirect Calibration Using a Polymer Sample	91
			7.10.2.5	Indirect Calibration by Fluid Standards	92
		7.10.3	A Link to	D Absolute Intensity in WAXS	92
8	Inte	rpretat	ion of Sc	attering Patterns	95
	8.1	Shape	of the Sca	ttering Intensity at Very Small Angles	95
		8.1.1	GUINIEF	R's approximation	95
		8.1.2	Usability	for Data Extrapolation	96
		8.1.3	Usability	for Structure Parameter Determination	96
		8.1.4	Determin	nation of the Parameters of GUINIER's law	96
		8.1.5	Meaning	of the Parameters of GUINIER's Law	97
	8.2	Peak S	potting: W	/AXS Reflections, Long Periods	99
		8.2.1	Discrete	and Diffuse Scattering	99
		8.2.2	Peaks in	Isotropic and Anisotropic Scattering Patterns	99
			8.2.2.1	Isotropy and Anisotropy	99
			8.2.2.2	Where to Search for Peaks of Fibers	100
		8.2.3	WAXS P	Peaks and Peak Positions	100
		8.2.4	Determin	nation of WAXS Crystallinity	102
			8.2.4.1	Phenomenon	102
			8.2.4.2	Crystallinity Index	103
			8.2.4.3	WAXS Crystallinity for Undistorted Crystals	103

		8.2.4.4	WAXS Crystallinity Considering Distortions	104
	8.2.5	WAXS L	ine Profile Analysis	104
		8.2.5.1	Experimental Technique	104
		8.2.5.2	Scientific Goals of Line Profile Analysis	104
		8.2.5.3	Instrumental Broadening	106
		8.2.5.4	Crystal Size and Lattice Distortion – Separability	106
		8.2.5.5	Separation According to WARREN-AVERBACH .	107
		8.2.5.6	Matching Lattice Distortions and Structural Models	109
		8.2.5.7	Classical WARREN-AVERBACH Separation	110
		8.2.5.8	Separation After Peak Shape Modeling	114
	8.2.6	Peaks in a	SAXS Patterns	117
8.3	No Pea	ks: The In	terpretation of Diffuse Scattering	118
	8.3.1	Intensity	Level Between SAXS and WAXS: Electron Density	
		Fluctuatio	ons	119
	8.3.2	Intensity	Decay Between SAXS and WAXS: POROD's Law	121
	8.3.3	SAXS: F	ractal Structure	127
8.4	Genera	l Evaluatio	on by Integration of Scattering Data	129
	8.4.1	Azimutha	al Averaging of Isotropic Scattering Patterns	129
	8.4.2	Isotropiza	ation of Anisotropic Scattering Patterns	130
	8.4.3	SAXS Pr	ojections	132
		8.4.3.1	Scattering Power (Invariant)	132
		8.4.3.2	1D Projections	135
		8.4.3.3	2D Projections	138
8.5	Visuali	zation of I	Domain Topology from SAXS Data	138
	8.5.1	Extractio	n of the Topological Information	139
	8.5.2	1D Corre	lation Function Analysis	142
	8.5.3	Isotropic	Chord Length Distributions (CLD)	148
	8.5.4	1D Interf	ace Distribution Functions (IDF)	150
	8.5.5	Anisotrop	bic Chord Distribution Functions (CDF)	152
		8.5.5.1	Definition	152
		8.5.5.2	Computation of the CDF for Materials with Fiber	
			Symmetry	153
		8.5.5.3	Relation Between a CDF and IDFs	154
		8.5.5.4	How to Interpret a CDF	155
		8.5.5.5	Semi-quantitative CDF Analysis. An Example	157
8.6	Biopoly	ymers: Iso	tropic Scattering of Identical Uncorrelated Particles	161
8.7	Quantit	tative Ana	lysis of Multiphase Topology from SAXS Data	163
	8.7.1	Models for	or Uncorrelated Polydisperse Particles	164
		8.7.1.1	Polydisperse Layers and 1D Particles	164
		8.7.1.2	Uncorrelated Particles in 2D: Fibril Diameters in	
			Fibers	165
		8.7.1.3	Uncorrelated Polydisperse Homogeneous Spheres	169
		8.7.1.4	Inhomogeneous Spherical Particles	170
	8.7.2	Stochasti	cally Condensed Structure	171
	8.7.3	Distorted	Structure by Infinite 1D Arrangement	175

8.7.3.2Application18.7.3.3The Stacking Model18.7.3.4The Lattice Model18.7.3.5Model Fitting: Choice of Starting Values for the Model Parameters18.7.3.5Model Fitting: Choice of Starting Values for the Model Parameters18.8Nanostructures – Soft Materials with Long Range Order18.8.1Required Corrections of the Scattering Intensity18.8.2 $I_1(s)$ from a Nanostructured Layer System18.8.3Typical Results18.9Anomalous X-Ray Scattering19High but Imperfect Orientation19.1Basic Definitions Concerning Orientation19.1.1Pole Figures and Their Expansion19.1.2The Uniaxial Oriented Intensity – The Relation19.1Observed Intensity and Oriented Intensity – The Relation19.3Desmearing by Use of a Master Orientation Distribution19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\varphi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections29.6.2Unimodal Meridional Reflection Intensity2	176 178 182 184 185 185 185 185 185 185 185 185 185 185
8.7.3.3The Stacking Model18.7.3.4The Lattice Model18.7.3.5Model Fitting: Choice of Starting Values for the Model Parameters18.7.3.5Model Parameters18.8Nanostructures – Soft Materials with Long Range Order18.8Required Corrections of the Scattering Intensity18.8.1Required Corrections of the Scattering Intensity18.8.2 $I_1(s)$ from a Nanostructured Layer System18.8.3Typical Results18.9Anomalous X-Ray Scattering19High but Imperfect Orientation19.1Pole Figures and Their Expansion19.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\varphi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections29.6.2Unimodal Meridional Reflection Intensity2	178 182 184 185 185 186 187 188 192 192 192 194 192 194 196 197 197
8.7.3.4The Lattice Model18.7.3.5Model Fitting: Choice of Starting Values for the Model Parameters18.8Nanostructures – Soft Materials with Long Range Order18.8Nanostructures – Soft Materials with Long Range Order18.8.1Required Corrections of the Scattering Intensity18.8.2 $I_1(s)$ from a Nanostructured Layer System18.8.3Typical Results18.9Anomalous X-Ray Scattering19High but Imperfect Orientation19.1Pasic Definitions Concerning Orientation19.1.1Pole Figures and Their Expansion19.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\varphi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\varphi)$ from Meridional Reflection Intensity29.6.2Unimodal Meridional Reflection Intensity2	182 184 185 185 186 187 188 192 192 192 192 194 196 197 197
8.7.3.5Model Fitting: Choice of Starting Values for the Model Parameters18.8Nanostructures – Soft Materials with Long Range Order18.8Nanostructures – Soft Materials with Long Range Order18.8.1Required Corrections of the Scattering Intensity18.8.2 $I_1(s)$ from a Nanostructured Layer System18.8.3Typical Results18.9Anomalous X-Ray Scattering19High but Imperfect Orientation19.1Basic Definitions Concerning Orientation19.1.1Pole Figures and Their Expansion19.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.4F2: Double Fiber Symmetry – Solution29.6Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections29.6.1Unimodal Meridional Reflection Intensity29.6.2Unimodal Equatorial Reflection Intensity2	184 185 185 186 187 188 192 192 192 192 192 192 192 197 197
Model Parameters18.8Nanostructures – Soft Materials with Long Range Order18.8.1Required Corrections of the Scattering Intensity18.8.2 $I_1(s)$ from a Nanostructured Layer System18.8.3Typical Results18.9Anomalous X-Ray Scattering19High but Imperfect Orientation19.1Basic Definitions Concerning Orientation19.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\varphi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\varphi)$ from Meridional Reflection Intensity29.6.2Unimodal Equatorial Reflection Intensity2	 184 185 185 186 187 188 192 192 192 192 194 196 197 197 198
8.8 Nanostructures – Soft Materials with Long Range Order 1 8.8.1 Required Corrections of the Scattering Intensity 1 8.8.2 $I_1(s)$ from a Nanostructured Layer System 1 8.8.3 Typical Results 1 8.9 Anomalous X-Ray Scattering 1 9 High but Imperfect Orientation 1 9.1 Basic Definitions Concerning Orientation 1 9.1.1 Pole Figures and Their Expansion 1 9.1.2 The Uniaxial Orientation Parameter f_{or} 1 9.1.3 Character of Fiber-Symmetrical Orientation Distributions 1 9.2 Observed Intensity and Oriented Intensity – The Relation 1 9.3 Desmearing by Use of a Master Orientation Distribution 1 9.4 F2: Double Fiber Symmetry – Simplified Integral Transform 1 9.5 F3: $g(\varphi)$ Shows Fiber Symmetry – Solution 2 9.6 Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity 2 9.6.2 Unimodal Equatorial Reflection Intensity 2	 185 186 187 188 91 192 192 192 194 196 197 197 198
8.8.1 Required Corrections of the Scattering Intensity 1 8.8.2 $I_1(s)$ from a Nanostructured Layer System 1 8.8.3 Typical Results 1 8.9 Anomalous X-Ray Scattering 1 9 High but Imperfect Orientation 1 9.1 Basic Definitions Concerning Orientation 1 9.1.1 Pole Figures and Their Expansion 1 9.1.2 The Uniaxial Orientation Parameter f_{or} 1 9.1.3 Character of Fiber-Symmetrical Orientation Distributions 1 9.2 Observed Intensity and Oriented Intensity – The Relation 1 9.3 Desmearing by Use of a Master Orientation Distribution 1 9.4 F2: Double Fiber Symmetry – Simplified Integral Transform 1 9.5 F3: $g(\varphi)$ Shows Fiber Symmetry – Solution 2 9.6 Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity 2 9.6.2 Unimodal Equatorial Reflection Intensity 2	 185 186 187 188 91 192 192 194 196 .97 .97 .98
8.8.2 $I_1(s)$ from a Nanostructured Layer System18.8.3Typical Results18.9Anomalous X-Ray Scattering19High but Imperfect Orientation19.1Basic Definitions Concerning Orientation19.1.1Pole Figures and Their Expansion19.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.3Desmearing by Use of a Master Orientation Distribution19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\phi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\phi)$ from Meridional or Equatorial Reflections29.6.1Unimodal Meridional Reflection Intensity29.6.2Unimodal Equatorial Reflection Intensity2	 186 187 188 91 192 192 194 196 .97 .98
8.8.3 Typical Results 1 8.9 Anomalous X-Ray Scattering 1 9 High but Imperfect Orientation 1 9.1 Basic Definitions Concerning Orientation 1 9.1.1 Pole Figures and Their Expansion 1 9.1.2 The Uniaxial Orientation Parameter f_{or} 1 9.1.3 Character of Fiber-Symmetrical Orientation Distributions 1 9.2 Observed Intensity and Oriented Intensity – The Relation 1 9.3 Desmearing by Use of a Master Orientation Distribution 1 9.4 F2: Double Fiber Symmetry – Simplified Integral Transform 1 9.5 F3: $g(\varphi)$ Shows Fiber Symmetry – Solution 2 9.6 Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity 2 9.6.2 Unimodal Equatorial Reflection Intensity 2	 187 188 91 192 192 194 196 197 197 198
8.9Anomalous X-Ray Scattering19High but Imperfect Orientation19.1Basic Definitions Concerning Orientation19.1.1Pole Figures and Their Expansion19.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.2Observed Intensity and Oriented Intensity – The Relation19.3Desmearing by Use of a Master Orientation Distribution19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\phi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\phi)$ from Meridional or Equatorial Reflections29.6.1Unimodal Meridional Reflection Intensity29.6.2Unimodal Equatorial Reflection Intensity2	 88 91 92 92 94 96 97 97 98
9 High but Imperfect Orientation19.1 Basic Definitions Concerning Orientation19.1.1 Pole Figures and Their Expansion19.1.2 The Uniaxial Orientation Parameter f_{or} 19.1.3 Character of Fiber-Symmetrical Orientation Distributions19.2 Observed Intensity and Oriented Intensity – The Relation19.3 Desmearing by Use of a Master Orientation Distribution19.4 F2: Double Fiber Symmetry – Simplified Integral Transform19.5 F3: $g(\varphi)$ Shows Fiber Symmetry – Solution29.6 Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections29.6.1 Unimodal Meridional Reflection Intensity29.6.2 Unimodal Equatorial Reflection Intensity2	91 92 94 96 97 97 98
 9.1 Basic Definitions Concerning Orientation	92 92 94 96 97 97 98
9.1.1Pole Figures and Their Expansion19.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.2Observed Intensity and Oriented Intensity – The Relation19.3Desmearing by Use of a Master Orientation Distribution19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\varphi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections29.6.1Unimodal Meridional Reflection Intensity29.6.2Unimodal Equatorial Reflection Intensity2	92 94 96 97 97 98
9.1.2The Uniaxial Orientation Parameter f_{or} 19.1.3Character of Fiber-Symmetrical Orientation Distributions19.2Observed Intensity and Oriented Intensity – The Relation19.3Desmearing by Use of a Master Orientation Distribution19.4F2: Double Fiber Symmetry – Simplified Integral Transform19.5F3: $g(\varphi)$ Shows Fiber Symmetry – Solution29.6Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections29.6.1Unimodal Meridional Reflection Intensity29.6.2Unimodal Equatorial Reflection Intensity2	94 96 97 97 98
 9.1.3 Character of Fiber-Symmetrical Orientation Distributions . 1 9.2 Observed Intensity and Oriented Intensity – The Relation 1 9.3 Desmearing by Use of a Master Orientation Distribution 1 9.4 F2: Double Fiber Symmetry – Simplified Integral Transform 1 9.5 F3: g(φ) Shows Fiber Symmetry – Solution 2 9.6 Extraction of g(φ) from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity	196 197 197 198
 9.2 Observed Intensity and Oriented Intensity – The Relation 1 9.3 Desmearing by Use of a Master Orientation Distribution 1 9.4 F2: Double Fiber Symmetry – Simplified Integral Transform 1 9.5 F3: g(φ) Shows Fiber Symmetry – Solution 2 9.6 Extraction of g(φ) from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity 2 9.6.2 Unimodal Equatorial Reflection Intensity	.97 .97 .98
 9.3 Desmearing by Use of a Master Orientation Distribution 1 9.4 F2: Double Fiber Symmetry – Simplified Integral Transform 1 9.5 F3: g (φ) Shows Fiber Symmetry – Solution 2 9.6 Extraction of g (φ) from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity 2 9.6.2 Unimodal Equatorial Reflection Intensity	.97 .98
 9.4 F2: Double Fiber Symmetry – Simplified Integral Transform 1 9.5 F3: g(φ) Shows Fiber Symmetry – Solution 2 9.6 Extraction of g(φ) from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity 2 9.6.2 Unimodal Equatorial Reflection Intensity	98
 9.5 F3: g(φ) Shows Fiber Symmetry – Solution	
 9.6 Extraction of g (φ) from Meridional or Equatorial Reflections 2 9.6.1 Unimodal Meridional Reflection Intensity 2 9.6.2 Unimodal Equatorial Reflection Intensity	200
9.6.1Unimodal Meridional Reflection Intensity29.6.2Unimodal Equatorial Reflection Intensity2	200
9.6.2 Unimodal Equatorial Reflection Intensity	200
· · · · · · · · · · · · · · · · · · ·	201
9.7 The Ruland Streak Method	201
9.8 Analytical Functions Wrapped Around Spheres: Shape Change 2	205
10 Orientation Growing from the Isotropic State 2	:09
10.1 RULAND's Theory of Affine Deformation	210
10.1.1 Overview	210
10.1.2 Application	211
10.2 The MGZ Technique of Elliptical Coordinates	213
11 Fitting Models to Data 2	17
11.1 Which Data Are Fitted?	217
11.2 Which Techniques Are Applied?	218
References 2	21
Subject Index 2	

1 Polydispersity and Heterogeneity

The heterogeneity immanent to materials that show scattering but not diffraction patterns should not be ignored. An assessment concerning the significance of results can only be expected if the collected data are complete (cf. Sect. 8.4.2) and show low noise (exposure time long enough). Whenever a measured parameter value is discussed, heterogeneity results in fundamental questions to be answered: What kind of average does my method return? Is it possible to determine the width and skewness of the parameter value distribution? A brief review of such "probability distributions" and their moments is given for later reference.

1.1 Scattering, Polydispersity and Materials Properties

Except for biopolymers, most polymer materials are polydisperse and heterogeneous. This is already the case for the length distribution of the chain molecules (molecular mass distribution). It is continued in the polydispersity of crystalline domains (crystal size distribution), and in the heterogeneity of structural entities made from such domains (lamellar stacks, microfibrils). Although this fact is known for long time, its implications on the interpretation and analysis of scattering data are, in general, not adequately considered.

DEBYE & MENKE (1931) [1]: "It is futile to draw distinct conclusions if genuine scattering curves are not at hand. It is insufficient under any circumstances if authors state that an interference maximum or several of them exist at certain angular positions. Only a continuous scattering pattern can be the fundament of proper reasoning. Concerning the abundant reports on disordered materials it must unfortunately be stated that they are unsatisfactory in this respect. Although even in this way, by mere accumulation of data and comparison of

Figure 1.1. P. Debye (1884-1966) and his small-angle light-scattering device on a Dutch stamp

data from materials with similar chemical composition, some valuable conclusion was drawn with a higher or a lower level of significance. This situation is the result of the fact that we are insufficiently informed on the theory of the arrangement of molecules in a fluid. Only if it were possible to theoretically describe this arrangement in a similar manner as can be done for the arrangement of atoms in a crystal, it would be sufficient to report interference maxima."

Heterogeneity. In reality, structure is frequently heterogeneous. For example, if colloidal crystals have been produced by means of nanotechnology, it must be assumed that the material is not perfect. Thus it is of some importance to describe the deviation of the individual sample from the ideal material. For such purposes scattering methods are frequently employed and the scattering patterns are *qualitatively* interpreted. Nevertheless, the mechanisms of structure formation remain obscured as long as the amount of heterogeneity cannot be determined *quantitatively* during the structure formation process.

Different kinds of heterogeneity can be imagined. In the most simple case only a few differing structural entities are found to coexist without correlation inside the volume irradiated by the primary beam. In this case it is the task of the scientist to identify, to separate and to quantify the components of such a multimodal structure. In an extreme case heterogeneity may even result in a fractal structure that can no longer be analyzed by the classical methods of materials science.

Polydispersity. Quite frequently many *different but similar* structural entities can be found in a material. This is the common notion of polydispersity. Thus polydispersity means that every structural unit in the sample can be generated by compression or expansion (dilation) from a template. This building principle is mathematically governed by the Mellin convolution [2], which generates the observed structure from the template structure and its size distribution. The determination of the latter is a major goal in the field of materials science. Considering the simple case of pure particle scattering, the searched size distribution is the particle dimension distribution [3]. If, for example, the studied particles are spheres, the number distribution of sphere diameters would be of interest, and the material would advantageously be characterized by the mean diameter and the variance of the sphere diameters. Moreover, even a value describing the skewness of the sphere diameter distribution may become important in order to understand property variations of different materials.

1.2 Distribution Functions and Physical Parameters

A general principle is governing the relation between physical parameters and underlying distribution functions. Its paramount importance in the field of soft condensed matter originates from the importance of polydispersity in this field. Let us recall the principle by resorting to a very basic example: molecular mass distributions of polymers and the related characteristic parameters.

1.2.1 The Number Molecular Mass Distribution

In the basic molecular mass distribution, N(M), the number N of molecules in a sample is plotted vs. their molecular mass, M. Figure 1.2 presents a sketch of a

Figure 1.2. A number molecular mass distribution N(M) of an ideal chain polymer. N(M) is defined for integer multiples of M_m , the monomer mass. The integer factor, P, is called the degree of polymerization

molecular mass distribution. For ideal chains the distribution is a discrete function which is only defined for integer multiples of the monomer mass, M_m . The function is called the *number* molecular mass distribution, because it exhibits the number of molecules with a certain molecular weight M.

The function N(M) can be considered a continuous function, if the average molecular weight of the chains is high enough. In this case we draw a continuous line through the points in Fig. 1.2.

It is reasonable to normalize N(M) with respect to the total number of molecules in the sample

$$n(M) = N(M) / \int_0^\infty N(M) \, dM.$$
 (1.1)

Now the function displays the number fraction of molecules with a certain molecular mass. Its integral is 1 by definition. Nevertheless, we still call it the number molecular weight distribution because the factor $\int N(M) dM$ is nothing but a constant.

1.2.2 The Number Average Molecular Mass

The obvious definition of the number average, M_n , of the distribution is the position on the *M*-axis that divides the area under the n(M)- curve in equal parts (cf. Fig. 1.3). Because of the fact that n(M) is normalized to 1, each of the subareas is equal to 0.5. As 50% of all the molecules are shorter than M_n , the other 50% are longer than M_n . Bearing in mind the normalization, the number average molecular mass is

$$M_n = \int_0^\infty M n(M) \, dM. \tag{1.2}$$

This equation is, as well, the definition of the mean (cf. ABRAMOWITZ [4] chap. 26) – the first moment of the distribution n(M) about origin. In fact, with respect to a

Figure 1.3. The number average molecular mass, M_n , is the position that divides the area under the corresponding distribution in equal parts

normalized distribution $(\int n(M) dM = 1)$ the mean is the *center of gravity* of the distribution.

In order to describe the discussed distribution function, three characteristic parameters are used in polymer science. They are named number average¹, weight average (M_w) , and centrifuge average (M_z)

$$M_{n} = \frac{\int M^{1} n(M) \, dM}{\int M^{0} n(M) \, dM}$$
(1.3)

$$M_w = \frac{\int M^2 n(M) \, dM}{\int M^1 n(M) \, dM} \tag{1.4}$$

$$M_{z} = \frac{\int M^{3} n(M) \, dM}{\int M^{2} n(M) \, dM}$$
(1.5)

This series of equations demonstrates a general principle in physics, namely how measurable materials parameters are generated from moments of the related distribution function.

1.3 Moments

The *i*-th *moment* (about origin) of a distribution h(x) is defined by

$$\mu_i'(h) = \int x^i h(x) \, dx \tag{1.6}$$

(ABRAMOWITZ [4] chap. 26). We have demonstrated that the structure parameters of a polydisperse structure are closely related to these moments. $\mu'_0(h)$ is the norm

¹This is the center of gravity of the distribution n(M).

and $m(h) := \mu'_1(h)$ the mean of the distribution on which the definition of *central* moments

$$\mu_{i}(h) := \int (x - m(h))^{i} dx$$
(1.7)

is based. As a measure of distribution width it is common to report the variance

$$\sigma^2(h) := \mu_2(h) \tag{1.8}$$

or the standard deviation, $\sigma(h)$. $\mu_3(h) / \sigma^3(h)$ is known as skewness of the distribution (ABRAMOWITZ [4] chap. 26).

Application in the Field of Scattering. Let us consider two important distribution functions, $h_c(x)$ and $h_L(x)$. These functions shall describe the thicknesses of crystalline layers and the distances (long periods) between them, respectively. In this case we take into account polydispersity of the crystalline layers, if (at least) the two parameters \bar{d}_c and σ_c/\bar{d}_c are determined which are defined as the average thickness of the crystalline layers,

$$ar{d_c} = rac{\mu_1'\left(h_c
ight)}{\mu_0'\left(h_c
ight)},$$

and the relative standard deviation of the crystalline layer distribution,

$$\frac{\sigma_c}{\bar{d}_c} = \frac{\sigma(h_c)}{\bar{d}_c}$$

In the classical treatment of the paracrystal, HOSEMANN [5] refers to the quantity $\sigma_c/\bar{d_c}$ as "g-factor".

If we knew that the long periods are varying from stack to stack, but not within one and the same stack, the quantities

$$\bar{L} = \frac{\mu_1'(h_L)}{\mu_0'(h_L)}$$

(average long period) and

$$\frac{\sigma_L}{\bar{L}} = \frac{\sigma\left(h_L\right)}{\bar{L}}$$

(relative standard deviation of the long periods, which is another HOSEMANN g-factor) describe the polydispersity of this material.

2 General Background

Interpretation of scattering data requires understanding of the general dimensions of the field and a general background of scattering theory which is reviewed in this chapter. Reference is given to textbooks and original work, where detailed discussion would extend beyond the scope of this book.

2.1 The Subareas of X-Ray Scattering

Scattering experiments are carried out in four different angular regions which will be frequently addressed in this book. In Table 2.1

the subareas are identified by the typical distance *R* between the sample and the detector. The wavelength selected for the example is close to the historical wavelength of an X-ray tube equipped with a copper anode (CuK_{α} radiation with $\lambda = 0.15418$ nm).

Classical X-ray diffraction and scattering is carried out in the subarea of wideangle X-ray scattering (WAXS). The corresponding scattering patterns yield information on the arrangement of polymer-chain segments (e.g., orientation of the amorphous phase, crystalline structure, size of crystals, crystal distortions, WAXS crystallinity).

The subarea of middle-angle X-ray scattering (MAXS) covers the characteristic scattering of liquid-crystalline structure and rigid-rod polymers.

In the small-angle X-ray scattering (SAXS) regime the typical nanostructures (in semicrystalline materials, thermoplastic elastomers) are observed. Because of the long distance between sample and detector time-resolved measurements can only be carried out at synchrotron radiation sources (Sect. 4.2.1.2).

Table 2.1. Subareas of scattering as a function of the sample–detector distance *R* assuming an X-ray wavelength of $\lambda \approx 0.15$ nm

Subarea	<i>R</i> [m]	Focus
WAXS	0.05 - 0.2	arrangement of chain segments
MAXS	0.2 - 1	liquid-crystalline structure
SAXS	1 – 3	nanostructure 3 nm – 50 nm
USAXS	6 – 15	nanostructure 15 nm – 2 μ m

The ultra small-angle X-ray scattering (USAXS) extends the accessible structure towards the micrometer range. Time-resolved measurements require a synchrotron beam that is intensified by an insertion device (Sect. 4.2.2).

2.2 X-Rays and Matter

2.2.1 General

X-rays are electromagnetic radiation with short wavelengths of about 0.01 to 10 nm. $\lambda \approx 0.15$ nm is the typical wavelength for the study of soft condensed matter. Whenever X-rays are interacting with matter, their main partners are the electrons in the studied sample. Thus X-ray scattering is probing the distribution of electron density, ρ (**r**), inside the material.

As scattering intensity is computed from $\rho(\mathbf{r})$ in this book, the symbol $\rho(\mathbf{r})$ has two different meanings. Only in the field of WAXS it is identical to the plain *electron density*. However, in the area of SAXS it indicates the *electron density difference*¹, i.e., the deviation of the local electron density from the average electron density $\langle \rho(\mathbf{r}) \rangle_V$ in the irradiated volume V.

Electron Density Computation. The average² electron density of a material or of a specific phase within a material,

$$\rho = Z_m \rho_m = N_A \frac{Z_M}{M_M} \rho_m, \qquad (2.1)$$

is computed from the respective average mass density, ρ_m , by multiplication with the "number of electrons per gram", Z_m , given by Avogadro's number, $N_A = 6.022 \times 10^{23} \text{mol}^{-1}$, the number of electrons per molecule or monomer unit, Z_M , and the molecular weight of molecule or monomer unit, M_M .

For polybutadiene with the chemical composition C_4H_6 we have a molecular weight of $M_M = 54.092 \text{ g/mol}$ and $Z_M = 30 \text{ e.u.}$ (electrons in "electron units"). If the mass density is $\rho_m = 0.90 \text{ g/cm}^3$, the electron density becomes $\rho = 300.6 \text{ e.u./nm}^3$.

2.2.2 Polarization

Polarization is a relevant issue, because we are dealing with transversal waves (GUINIER [6], p. 10-11). Polarization correction should be carried out for MAXS and WAXS data. It is less important for SAXS and USAXS patterns. In particular, if synchrotron radiation is used, the polarization correction is quite involved and based on the degree of polarization. For the purpose of reliable correction it is thus recommended to let a polarization monitor measure the actual degree of synchrotron beam polarization.

¹In many publications the electron density difference is addressed as $\Delta \rho (\mathbf{r}) = \rho (\mathbf{r}) - \langle \rho (\mathbf{r}) \rangle_V$.

²*Exercise:* Compute the average electron density $\langle \rho \rangle_V$ of a sample from pure poly(ethylene terephthalate) (PET) with a mass density of 1.38 g/cm³. The chemical formula of PET is C₁₀H₈O₄. Because PET is most probably in the semicrystalline state, it makes sense to stress that the computed electron density is a volume average $\langle \rangle_V$.