Springer Laboratory

Springer Laboratory Manuals in Polymer Science

Pasch, Trathnigg: HPLC of Polymers
ISBN: 3-540-61689-6 (hardcover)
ISBN: 3-540-65551-4 (softcover)

Mori, Barth: Size Exclusion Chromatography
ISBN: 3-540-65635-9
Pasch, Schrepp: MALDI-TOF Mass Spectrometry of Synthetic Polymers ISBN: 3-540-44259-6

Kulicke, Clasen: Viscosimetry of Polymers and Polyelectrolytes ISBN: 3-540-40760-X

Hatada, Kitayama: NMR Spectroscopy of Polymers ISBN: 3-540-40220-9

Brummer, R.: Rheology Essentials of Cosmetics and Food Emulsions ISBN: 3-540-25553-2

Mächtle, W., Börger, L.: Analytical Ultracentrifugation of Polymers and Nanoparticles
ISBN: 3-540-23432-2

Heinze, T., Liebert, T., Koschella, A.: Esterification of Polysaccharides ISBN: 3-540-32103-9

Koetz, J., Kosmella, S.: Polyelectrolytes and Nanoparticles ISBN: 3-540-46381-X

Stribeck, N.: X-Ray Scattering of Soft Matter
ISBN: 3-540-46488-4

Norbert Stribeck

X-Ray Scattering of Soft Matter

With 92 Figures and 6 Tables

Norbert Stribeck

Universität Hamburg
Institut für Technische und
Makromolekulare Chemie
Bundesstr. 45
20146 Hamburg
Germany
e-mail: norbert@stribeck.de

Library of Congress Control Number: 2007922403
DOI 10.1007/978-3-540-69856-2

ISBN 978-3-540-69855-5 Springer Berlin Heidelberg New York
e-ISBN 978-3-540-69856-2

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permissions for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law.

The publisher and the authors accept no legal responsibility for any damage caused by improper use of the instructions and programs contained in this book and the CD-ROM. Although the software has been tested with extreme care, errors in the software cannot be excluded.

Springer is a part of Springer Science+Business Media
springer.com
(C) Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready copy from the author
Data conversion and production by LE-TEX Jelonek, Schmidt \& Vöckler GbR, Leipzig, Germany
Cover design: eStudio Calamar, Girona/Spain

Springer Laboratory Manuals in Polymer Science

Editor

Priv.-Doz. Dr. Harald Pasch
Deutsches Kunststoff-Institut

Abt. Analytik
Schloßgartenstr. 6
64289 Darmstadt
Germany
e-mail: hpasch@ dki.tu-darmstadt.de

Editorial Board

PD Dr. Ingo Alig
Deutsches Kunststoff-Institut
Abt. Physik
Schloßgartenstr. 6
64289 Darmstadt
Germany
email: ialig@dki.tu-darmstadt.de
Prof. Josef Janca
Université de La Rochelle
Pole Sciences et Technologie
Avenue Michel Crépeau
17042 La Rochelle Cedex 01
France
email: jjanca@univ-lr.fr
Prof. W.-M. Kulicke
Inst. f. Technische u. Makromol. Chemie
Universität Hamburg
Bundesstr. 45
20146 Hamburg
Germany
email: kulicke@chemie.uni-hamburg.de

Preface

Mehr Licht!
(J. W. v. Goethe)

The application of X-ray scattering for the study of soft matter has a long tradition. By shining X-rays on a piece of material, representative structure information is collected in a scattering pattern. Moreover, during the last three decades X-ray scattering has gained new attractivity, for it developed from a static to a dynamic method.

The progress achieved is closely linked to the development of both powerful detectors and brilliant X-ray sources (synchrotron radiation, rotating anode). Such point-focus equipment has replaced older slit-focus equipment (Kratky camera, Rigaku-Denki camera) in many laboratories, and the next step of instrumental progress is already discernible. With the "X-ray free electron laser" (XFEL) it will become possible to study very fast processes like the structure relaxation of elastomers after the removal of mechanical load.

Today, structure evolution can be tracked in-situ with a cycle time of less than a second. Moreover, if a polymer part is scanned by the X-ray beam of a microbeam setup, the variation of structure and orientation can be documented with a spatial resolution of $1 \mu \mathrm{~m}$. For the application of X-rays no special sample preparation is required, and as the beam may travel through air for at least several centimeters, manufacturing or ageing machinery can be integrated in the beamline with ease.

On the other hand, the result of the scattering method is not a common image of the structure. There is not even a way to reconstruct it from scattering data, except for the cases in which either anomalous scattering is employed, or a diffraction diagram of an almost perfect lattice structure is recorded. Because most of the man-made polymer materials suffer from polydispersity and heterogeneity, the crystallographic algorithms of structure inversion are in general restricted to the field of biopolymers (e.g., protein crystallography). Thus the ordinary polymer scientist will deal with scattering data rather than with diffraction data. These data must be interpreted or analyzed. This book is intended both to guide the beginner in this field, and to present a collection of strategies for the analysis of scattering data gathered with modern equipment. Common misunderstandings are discussed. Instead, advanced strategies are advertised.

An advantage of a laboratory-oriented textbook is the fact that many technical aspects of our trade can be communicated ${ }^{1}$. Their consideration may help to improve the quality and to assure the completeness of the recorded data. On the other

[^0]hand, the concept is restricting the presentation of the mathematical background to a terse treatment. For a field like the scattering that is virtually interpenetrated by mathematical concepts this is not unproblematic. As a consequence, it was impossible to present mathematical deductions, which could have been an assistance to methodical development by the reader. In this respect even the references given to original papers are not really helpful, because in such publications the fundamental mathematical tools are expected to be known. Nevertheless, this restriction may be advantageous from a different perspective. The terse scheme is enhancing the presentation of the fundamental ideas and their repetitive use in different subareas of the scattering technique.

This book with its special focus on application was stimulated by a suggestion of Prof. Dr.-Ing. W.-M. Kulicke. I greatly appreciate his support. Moreover, the manuscript has its roots in thirty years of practical work in the field of scattering from soft materials conducted in several labs and at several synchrotron sources. During this time the author has assisted many external groups with their practical work at the soft-matter beamlines of the Hamburg Synchrotron Radiation Laboratory (HASYLAB at DESY), supported evaluation of scattering data, and worked as a referee in the soft-condensed matter review-committee of the European Synchrotron Radiation Facility (ESRF) in Grenoble. The accumulated handouts prepared during twenty years of lecturing scattering methods at the University of Hamburg have been a valuable source for the book manuscript.

There are many other people who have - in different respect - contributed to this work. The first to mention is my teacher, Prof. Dr. W. Ruland. I am grateful for his art of teaching the scattering. Wherever in this book I should have been able to explain something clearly and concisely, it is his merit. The second to mention is Prof. Dr. H. G. Zachmann. In his group I enjoyed to become involved in many practical issues of soft matter physics. In particular I appreciate many helpful comments on the manuscript that have been supplied by Prof. Dr. W. Ruland, Dr. C. Burger, Prof. Dr. A. Thünemann and Prof. Dr. S. Murthy. In addition, there are many other colleagues who have stimulated my work by fruitful cooperation, discussion and support. To mention them all would fill pages.

The complex task of writing a scientific manuscript has been significantly eased by authoring tools that keep track of the formal aspects of the growing manuscript. For this reason I thank the developers of LYX, Koma-Script and LATEX (in particular Matthias Ettrich and Markus Kohm) for their free and superb software. Moreover, I highly appreciate the excellent guidance and the distinguished manuscript editing by the team at Springer Publishers.

Last but not least I express cordial thanks to my wife Marie-Luise and to my children for their continuous support.

List of Symbols and Abbreviations

The handling of polar coordinates is a general problem in a book on scattering, where the symbol θ that is normally used to indicate the polar angle is already used to indicate the Bragg angle. Too late I became aware of the problem and tried to introduce a consistent notation. Unfortunately the problem was more involved than I thought, as colleagues pointed out after proofreading the manuscript. Based on suggestions I finally tried to harmonize the nomenclature. Nevertheless, the reader should be aware of possible remnant inconsistencies concerning the use of the symbols ψ, φ and symbols of related angles.

\rangle	Averaging operator
$\left\rangle_{V}\right.$	Irradiated volume average
$\left\rangle_{\omega}\right.$	Solid-angle average
\rceil	Slice mapping
$\}$	Projection mapping
\star	Convolution operator
$*_{\varphi}$	Angular convolution
\otimes	Correlation operator
$\star 2$	Autocorrelation operator
$*$	Complex conjugate. $z=a+i b ; z^{*}=a-i b$
∇	Gradient operator
1 D	One-dimensional
2 D	Two-dimensional
3 D	Three-dimensional
$A(\mathbf{s})$	Scattering amplitude
\mathbf{a}	Scaling vector (anisotropic dilation)
a	Scaling factor (isotropic or 1D dilation)

a	In a lattice: edge length of unit cell, i.e., the distance between the δ ()-elements that make the abstract lattice $c()$
α_{i}	Angle of incidence on the sample surface
α_{e}	Angle of exit from the sample surface
$B(h)$	Integral breadth of the distribution h
$c()$	Comb function (abstract lattice)
CLD	Chord length distribution $g(r)=-\ell_{p} \gamma^{\prime \prime}(r)$
CCD	Charge-coupled device
CDF	Chord distribution function $z(\mathbf{r}) \propto-\Delta \gamma(\mathbf{r})$
$\delta()$	DIRAC's delta function
Δ	Laplacian operator
DESY	Deutsches Elektronen-SYnchrotron (Hamburg, Germany)
DI	Digital image processing
D	Fractal dimension
$d_{h k l}$	Lattice repeat in WAXS (distance between net planes of a crystal indexed by $h k l$)
DDF	Distance distribution function
ESRF	European Synchrotron Radiation Facility (Grenoble, France)
ε	Mechanical elongation ($\varepsilon=l / l_{0}-1$)
$\exp (-\mu \ell)$	Linear absorption factor
$\mathscr{F}(\mathbf{s})$	Fourier transform
$\mathscr{F}_{n}()$	n-dimensional Fourier transform
$\mathscr{F}_{-n}()$	n-dimensional Fourier back-transform
f_{P}	Polarization factor
$f_{\text {or }}$	Uniaxial orientation parameter (HERMANS' orientation function)
FIT2D	Scattering data evaluation program by A. Hammersley (ESRF)
FLASH	Free Electron Laser Hamburg
FWHM	Full width at half-maximum

$g(r)$	(Radial) chord length distribution (CLD)
$g_{1}(x)$	(One-dimensional) interface distribution function (IDF)

GEL Image data format returned by image plate scanners $\gamma(\mathbf{r})=\rho^{* 2}(\mathbf{r}) / k$ Normalized correlation function

HASYLAB Hamburg Synchrotron Radiation Laboratory
$h() \quad$ Some kind of distribution function
$h k l \quad$ MiLLER's index of a crystal reflection in reciprocal space
(h) Order of a reflection, line or peak. Short for $h k l$
$H() \quad$ Fourier transform of the distribution $h()$
$h_{H}(a) \quad$ Size distribution (of particles, clusters)
$\mathfrak{I}() \quad$ Imaginary part of a complex number
$I(\mathbf{s})=\mathscr{F}_{3}\left(\rho^{* 2}(\mathbf{r})\right)$ Scattering intensity
$I_{0} \quad$ Incident intensity (i.e. primary beam intensity)
$I_{t} \quad$ Transmitted intensity behind the sample
IDL Commercial programming system for image data processing
ImageJ Open-source programming system for image data processing
$J\left(s_{3}\right)=\left\lceil\{I\}_{2}\left(s_{2}, s_{3}\right)\right\rceil_{1}\left(s_{3}\right)$ Slit-smeared scattering intensity
$\mathrm{J}_{i} \quad$ Bessel function of the first kind and order i
$k=\int I(\mathbf{s}) d^{3} s=\rho^{* 2}(0)$ Scattering power
$L \quad$ Lattice repeat (in SAXS: long period, in WAXS identical to $d_{h k l}$ according to Bragg's law)
$\ell \quad$ Path of the photon through the sample
$\ell_{p} \quad$ Chord length related to size of crystals or domains
$l \quad$ In straining experiments: actual length of the sample
$l_{0} \quad$ In straining experiments: initial length of the sample
$\lambda \quad$ X-ray wavelength
$\lambda_{d} \quad$ Draw ratio $\lambda_{d}=l / l_{0}=\varepsilon+1$
Linac Linear accelerator

M	Molecular mass
MAXS	Middle-angle X-ray scattering
$\mathscr{M}()$	Mellin transform
μ	Linear absorption coefficient
μ_{i}	i-th central moment of a distribution function
μ_{i}^{\prime}	i-th moment about origin of a distribution function
OTOKO	Scattering curve evaluation program by M. Koch (EMBL, Hamburg)
$p v$-wave	Commercial programming system for image data processing
$P(\mathbf{r})=\rho^{* 2}(\mathbf{r})$	Patterson function
$p(r)$	(Radial) distance distribution function $p(r)=r^{2} \gamma(r)$
$\Phi(\mathbf{s})$	Fourier transform of a shape function $\Phi(\mathbf{s})=\mathscr{F}(Y(\mathbf{r}))$
$\mathbf{q}=2 \pi \mathrm{~s}$	Alternate scattering vector
$Q=k / V$	Invariant (SAXS)
Q_{P}	Polarization quality (of a synchrotron source)
\mathbb{R}	The set of real numbers
\mathbb{R}^{n}	The n-dimensional vector space
$\mathfrak{R}()$	Real part of a complex number
R	Sample-to-detector distance
R_{g}	Guinier radius (i.e. radius of gyration)
$\mathbf{r}=\left(r_{1}, r_{2}, r_{3}\right)$	Real space vector
r_{e}	COMPTON's classical electron radius ($2.818 \times 10^{-15} \mathrm{~m}$)
ROI	Region of interest (from Digital Image Processing)
ρ_{m}	Mass density
$\rho(\mathbf{r})$	Electron density (in the field of SAXS: deviation of the electron density from the average electron density)
$\rho^{* 2}(\mathbf{r})=k \gamma(\mathbf{r})$	(SAXS) correlation function
$\langle\rho\rangle_{V}$	Average electron density

s	Magnitude of the scattering vector
$\mathbf{s}=\left(s_{1}, s_{2}, s_{3}\right)$	Scattering vector in Cartesian coordinates
$\mathbf{s}=(s, \phi, \psi)$	Scattering vector in polar coordinates (ϕ polar angle, ψ azimuthal angle). - See the preamble to this "List of Abbreviations"
SAXS	Small-angle X-ray scattering
S/N	Signal-to-noise ratio
SSRL	Stanford Synchrotron Radiation Laboratory
σ	Standard deviation
σ^{2}	Variance
t	Sample thickness
$t_{\text {opt }}$	Optimum sample thickness
TIFF	Tagged Image File Format
TOPAS	Scattering curve evaluation program by N. Stribeck
θ	Bragg angle (half of the scattering angle)
2θ	Scattering angle
θ_{c}	Critical angle of total reflection
USAXS	Ultra small-angle X-ray scattering
USB	Universal Serial Bus (an interface to couple external devices to computers)
V	The sample volume irradiated by the X-ray beam
VFC	Voltage-to-frequency converter
VUV	Vacuum ultra-violet light
W	Beam cross-section of the incident X-ray beam
x	Principal axis of uniaxial structure, depth in which a photon is scattered
XFEL	X-ray free electron laser
$Y(\mathbf{r})$	Shape function ($Y(\mathbf{r})=0$ outside the body, $Y(\mathbf{r})=1$ inside)
$\mathrm{Y}_{H}(x)$	Heaviside function. $\mathrm{Y}_{H}(x>0)=1, \mathrm{Y}_{H}(x<0)=0 . \partial \mathrm{Y}_{H}(x) / \partial x=$ $\delta(x)$
WAXS	Wide-angle X-ray scattering
$z(\mathbf{r})=-\Delta P(\mathbf{r})$	Chord distribution function

Table of Contents

1 Polydispersity and Heterogeneity 1
1.1 Scattering, Polydispersity and Materials Properties 1
1.2 Distribution Functions and Physical Parameters 2
1.2.1 The Number Molecular Mass Distribution 2
1.2.2 The Number Average Molecular Mass 3
1.3 Moments 4
2 General Background 7
2.1 The Subareas of X-Ray Scattering 7
2.2 X-Rays and Matter 8
2.2.1 General 8
2.2.2 Polarization 8
2.2.2.1 Polarization Factor of a Laboratory Source 9
2.2.2.2 Synchrotron Beam Polarization Factor 9
2.2.3 Compton Scattering 10
2.2.4 Fluorescence 10
2.3 Classical X-Ray Setup 11
2.4 s-Space and q-Space 11
2.5 Scattering Intensity and Sample Structure 13
2.5.1 Lay-Out of the Magic Square 14
2.5.2 Analysis Options - Example for SAXS Data 14
2.5.3 Parameters, Functions and Operations in the Magic Square 15
2.5.4 Convolution, Correlation and Autocorrelation 16
2.6 Polydispersity and Scattering Intensity 18
2.7 A Glance at the Mathematical Laboratory of Scattering 21
2.7.1 The Slice 22
2.7.2 The Projection 23
2.7.3 Fourier Slice Theorem 23
2.7.4 Fourier Derivative Theorem 23
2.7.5 Breadth Theorem 24
2.7.6 Dilation and Reciprocity 24
2.7.7 DIRAC's δ-Function 25
2.7.8 Convolution Theorem 25
2.7.9 Bandlimited Functions 25
2.8 How to Collect Complete Scattering Patterns 26
2.8.1 Isotropic Scattering 26
2.8.2 Anisotropic Scattering 26
2.8.2.1 Single Crystal Anisotropy 26
2.8.2.2 Fiber Symmetry 27
2.9 Application of Digital Image Processing (DI) 29
2.9.1 DI and the Analysis of Scattering Patterns 29
2.9.2 A Scattering Pattern Is a Matrix of Numbers, Not a Photo 30
2.9.3 How to Utilize DI 30
2.9.4 Concepts of DI that Ease the Analysis of Scattering Images 30
2.9.4.1 The Paradigm: Arithmetics with Matrices 30
2.9.4.2 Submatrix Ranking Operators 31
2.9.4.3 Primitive Operators: Erode, Median, and Dilate 31
2.9.4.4 Combined Operators: Opening \& Closing 32
3 Typical Problems for Analysis by X-Ray Scattering 33
3.1 Everyday Industrial Problems 33
3.2 At the Front of Innovation 34
3.2.1 Web Resources 34
3.2.2 Fields of Innovation 34
3.2.2.1 Visualize and Model Structure Automatically 34
3.2.2.2 Study Gradient Materials 35
3.2.2.3 Study Thin Films 35
3.2.2.4 Study Structure Evolution 35
4 Experimental Overview 37
4.1 The Shape of the Primary Beam 38
4.1.1 Point Focus Collimation 38
4.1.2 Slit Focus Collimation 39
4.1.2.1 Common Cameras and Properties 39
4.1.2.2 Infinite Slit Length 39
4.1.2.3 A Fiber in a Slit-Focus Camera 40
4.1.3 Desmearing of Slit-Focus Data 40
4.1.4 Smearing of Point-Focus Data 41
4.2 Setup of Point-Collimation Apparatus 41
4.2.1 The Radiation Source 42
4.2.1.1 Rotating Anode 42
4.2.1.2 Synchrotron Radiation 42
4.2.1.3 XFEL: The X-Ray Free Electron Laser 44
4.2.2 Beam Amplification by Insertion Devices 46
4.2.3 Beam Shaping by Optical Devices 46
4.2.3.1 The Göbel Mirror 46
4.2.3.2 Conventional Synchrotron Beamline Optics 47
4.2.3.3 Microbeam Optics (Wave-Guides, X-Ray Lenses) 47
4.2.3.4 Nanobeam Optics (Kirkpatrick-Baez Mirrors) 48
4.2.3.5 Beam-Position Monitoring 50
4.2.3.6 Shutters 50
4.2.3.7 Slits 50
4.2.3.8 Stabilizers 51
4.2.3.9 Absorbers 51
4.2.4 The Sample Recipient 51
4.2.4.1 Optical Bench vs. Dance Floor 52
4.2.4.2 Chambers for Sample Positioning 52
4.2.4.3 Recipients for Sample Processing 53
4.2.5 Detectors 53
4.2.5.1 Criteria for Detector Performance 53
4.2.5.2 CCD Detectors 54
4.2.5.3 Image Plates 55
4.2.5.4 Gas-Filled Detectors 56
4.2.5.5 Other X-Ray Detectors 57
4.2.5.6 Detector Operation Mode: Binning 58
4.2.6 Experiment Monitors 58
4.2.6.1 Monitoring, Journaling, Control 58
4.2.6.2 Beam Intensity Monitoring 59
4.3 Data Acquisition, Experiment Control and Its Principles 59
4.3.1 Voltage-to-Frequency Conversion (VFC) 59
4.3.2 Unix and the Communication Among Acquisition Modules 61
5 Acquisition of Synchrotron Beamtime 63
5.1 Test Measurements 63
5.2 Support or Collaboration 63
5.3 A Guide to Proposal Writing 64
6 It's Beamtime, Phil: A Guide to Collect a Complete Set of Data 67
6.1 Be Organized 67
6.2 Very Important: Data File Check 67
6.3 Never Store Test Snapshots from Detector Memory 68
6.4 To Be Collected Before the First Experiment 68
6.4.1 Measurement of the Sample-Detector Distance 69
6.4.2 Measurement of the Detector Response 69
6.4.3 Measurement of the Primary Beam Profile 69
6.5 To Be Collected for Each New Run 69
6.6 Adjustments with Each Experiment 70
6.7 Collect Good Data 70
6.8 To Be Collected with Each Scattering Pattern 71
7 Pre-evaluation of Scattering Data 73
7.1 Reading the Scattering Data Files 74
7.2 Assessment of SAXS Multiple Scattering 74
7.3 Normalization 75
7.4 Valid Area Masking 75
7.5 Alignment 76
7.6 Absorption and Background Correction 76
7.6.1 Absorption - the Principle 77
7.6.2 Absorption in Normal-Transmission Geometry 77
7.6.3 Absorption in Reflection Geometries 80
7.6.3.1 Thin Samples in Symmetrical-Reflection Geometry 81
7.6.3.2 Thin Samples in Asymmetrical-Reflection Geom- etry 82
7.6.4 Calculations: Absorption Factor, Optimum Sample Thickness 83
7.6.5 Refraction Correction 84
7.7 Reconstruction of Proper Constitution 85
7.8 Conversion to Reciprocal Space Units 85
7.8.1 Isotropic Scattering 85
7.8.2 Anisotropic Scattering 85
7.8.2.1 USAXS and SAXS 85
7.8.2.2 MAXS and WAXS with Fiber Symmetry 85
7.8.2.3 MAXS and WAXS Without Fiber Symmetry 85
7.9 Harmony 86
7.10 Calibration to Absolute Scattering Intensity 86
7.10.1 The Units of Absolute Scattering Intensity 86
7.10.2 Absolute Intensity in SAXS 87
7.10.2.1 The Idea of Direct Calibration 87
7.10.2.2 Direct Calibration for the Kratky Camera 88
7.10.2.3 Direct Calibration for a Synchrotron Beamline 90
7.10.2.4 Indirect Calibration Using a Polymer Sample 91
7.10.2.5 Indirect Calibration by Fluid Standards 92
7.10.3 A Link to Absolute Intensity in WAXS 92
8 Interpretation of Scattering Patterns 95
8.1 Shape of the Scattering Intensity at Very Small Angles 95
8.1.1 GUINIER's approximation 95
8.1.2 Usability for Data Extrapolation 96
8.1.3 Usability for Structure Parameter Determination 96
8.1.4 Determination of the Parameters of Guinier's law 96
8.1.5 Meaning of the Parameters of Guinier's Law 97
8.2 Peak Spotting: WAXS Reflections, Long Periods 99
8.2.1 Discrete and Diffuse Scattering 99
8.2.2 Peaks in Isotropic and Anisotropic Scattering Patterns 99
8.2.2.1 Isotropy and Anisotropy 99
8.2.2.2 Where to Search for Peaks of Fibers 100
8.2.3 WAXS Peaks and Peak Positions 100
8.2.4 Determination of WAXS Crystallinity 102
8.2.4.1 Phenomenon 102
8.2.4.2 Crystallinity Index 103
8.2.4.3 WAXS Crystallinity for Undistorted Crystals 103
8.2.4.4 WAXS Crystallinity Considering Distortions 104
8.2.5 WAXS Line Profile Analysis 104
8.2.5.1 Experimental Technique 104
8.2.5.2 Scientific Goals of Line Profile Analysis 104
8.2.5.3 Instrumental Broadening 106
8.2.5.4 Crystal Size and Lattice Distortion - Separability 106
8.2.5.5 Separation According to WArren-Averbach 107
8.2.5.6 Matching Lattice Distortions and Structural Models 10 109
8.2.5.7 Classical Warren-Averbach Separation 110
8.2.5.8 Separation After Peak Shape Modeling 114
8.2.6 Peaks in SAXS Patterns 117
8.3 No Peaks: The Interpretation of Diffuse Scattering 118
8.3.1 Intensity Level Between SAXS and WAXS: Electron Density Fluctuations 119
8.3.2 Intensity Decay Between SAXS and WAXS: Porod's Law 121
8.3.3 SAXS: Fractal Structure 127
8.4 General Evaluation by Integration of Scattering Data 129
8.4.1 Azimuthal Averaging of Isotropic Scattering Patterns 129
8.4.2 Isotropization of Anisotropic Scattering Patterns 130
8.4.3 SAXS Projections 132
8.4.3.1 Scattering Power (Invariant) 132
8.4.3.2 1D Projections 135
8.4.3.3 2D Projections 138
8.5 Visualization of Domain Topology from SAXS Data 138
8.5.1 Extraction of the Topological Information 139
8.5.2 1D Correlation Function Analysis 142
8.5.3 Isotropic Chord Length Distributions (CLD) 148
8.5.4 1D Interface Distribution Functions (IDF) 150
8.5.5 Anisotropic Chord Distribution Functions (CDF) 152
8.5.5.1 Definition 152
8.5.5.2 Computation of the CDF for Materials with Fiber Symmetry 153
8.5.5.3 Relation Between a CDF and IDFs 154
8.5.5.4 How to Interpret a CDF 155
8.5.5.5 Semi-quantitative CDF Analysis. An Example 157
8.6 Biopolymers: Isotropic Scattering of Identical Uncorrelated Particles 161
8.7 Quantitative Analysis of Multiphase Topology from SAXS Data 163
8.7.1 Models for Uncorrelated Polydisperse Particles 164
8.7.1.1 Polydisperse Layers and 1D Particles 164
8.7.1.2 Uncorrelated Particles in 2D: Fibril Diameters in Fibers 165
8.7.1.3 Uncorrelated Polydisperse Homogeneous Spheres 169
8.7.1.4 Inhomogeneous Spherical Particles 170
8.7.2 Stochastically Condensed Structure 171
8.7.3 Distorted Structure by Infinite 1D Arrangement 175
8.7.3.1 Construction of a 1D Paracrystal 175
8.7.3.2 Application 176
8.7.3.3 The Stacking Model 178
8.7.3.4 The Lattice Model 182
8.7.3.5 Model Fitting: Choice of Starting Values for the Model Parameters 184
8.8 Nanostructures - Soft Materials with Long Range Order 185
8.8.1 Required Corrections of the Scattering Intensity 185
8.8.2 $I_{1}(s)$ from a Nanostructured Layer System 186
8.8.3 Typical Results 187
8.9 Anomalous X-Ray Scattering 188
9 High but Imperfect Orientation 191
9.1 Basic Definitions Concerning Orientation 192
9.1.1 Pole Figures and Their Expansion 192
9.1.2 The Uniaxial Orientation Parameter $f_{o r}$ 194
9.1.3 Character of Fiber-Symmetrical Orientation Distributions 196
9.2 Observed Intensity and Oriented Intensity - The Relation 197
9.3 Desmearing by Use of a Master Orientation Distribution 197
9.4 F2: Double Fiber Symmetry - Simplified Integral Transform 198
9.5 F3: $g(\varphi)$ Shows Fiber Symmetry - Solution 200
9.6 Extraction of $g(\varphi)$ from Meridional or Equatorial Reflections 200
9.6.1 Unimodal Meridional Reflection Intensity 200
9.6.2 Unimodal Equatorial Reflection Intensity 201
9.7 The Ruland Streak Method 201
9.8 Analytical Functions Wrapped Around Spheres: Shape Change 205
10 Orientation Growing from the Isotropic State 209
10.1 RULAND's Theory of Affine Deformation 210
10.1.1 Overview 210
10.1.2 Application 211
10.2 The MGZ Technique of Elliptical Coordinates 213
11 Fitting Models to Data 217
11.1 Which Data Are Fitted? 217
11.2 Which Techniques Are Applied? 218
References 221
Subject Index 229

1 Polydispersity and Heterogeneity

The heterogeneity immanent to materials that show scattering but not diffraction patterns should not be ignored. An assessment concerning the significance of results can only be expected if the collected data are complete (cf. Sect. 8.4.2) and show low noise (exposure time long enough). Whenever a measured parameter value is discussed, heterogeneity results in fundamental questions to be answered: What kind of average does my method return? Is it possible to determine the width and skewness of the parameter value distribution? A brief review of such "probability distributions" and their moments is given for later reference.

1.1 Scattering, Polydispersity and Materials Properties

Except for biopolymers, most polymer materials are polydisperse and heterogeneous. This is already the case for the length distribution of the chain molecules (molecular mass distribution). It is continued in the polydispersity of crystalline domains (crystal size distribution), and in the heterogeneity of structural entities made from such domains (lamellar stacks, microfibrils). Although this fact is known for long time, its implications on the interpretation and analysis of scattering data are, in general, not adequately considered.

Debye \& Menke (1931) [1]: "It is futile to draw distinct conclusions if genuine scattering curves are not at hand. It is insufficient under any circumstances if authors state that an interference maximum or several of them exist at certain angular positions. Only a continuous scattering pattern can be the fundament of proper reasoning. Concerning the abundant reports on disordered materials it must unfortunately be stated that they are unsatisfactory in this respect. Although even in this way, by mere accumulation of data and comparison of

Figure 1.1. P. Debye (1884-1966) and his small-angle light-scattering device on a Dutch stamp data from materials with similar chemical composition, some valuable conclusion was drawn with a higher or a lower level of significance. This situation is the result of the fact that we are insufficiently informed on the theory of the arrangement of molecules in a fluid. Only if it were possible to theoretically describe this arrange-
ment in a similar manner as can be done for the arrangement of atoms in a crystal, it would be sufficient to report interference maxima."

Heterogeneity. In reality, structure is frequently heterogeneous. For example, if colloidal crystals have been produced by means of nanotechnology, it must be assumed that the material is not perfect. Thus it is of some importance to describe the deviation of the individual sample from the ideal material. For such purposes scattering methods are frequently employed and the scattering patterns are qualitatively interpreted. Nevertheless, the mechanisms of structure formation remain obscured as long as the amount of heterogeneity cannot be determined quantitatively during the structure formation process.

Different kinds of heterogeneity can be imagined. In the most simple case only a few differing structural entities are found to coexist without correlation inside the volume irradiated by the primary beam. In this case it is the task of the scientist to identify, to separate and to quantify the components of such a multimodal structure. In an extreme case heterogeneity may even result in a fractal structure that can no longer be analyzed by the classical methods of materials science.

Polydispersity. Quite frequently many different but similar structural entities can be found in a material. This is the common notion of polydispersity. Thus polydispersity means that every structural unit in the sample can be generated by compression or expansion (dilation) from a template. This building principle is mathematically governed by the Mellin convolution [2], which generates the observed structure from the template structure and its size distribution. The determination of the latter is a major goal in the field of materials science. Considering the simple case of pure particle scattering, the searched size distribution is the particle dimension distribution [3]. If, for example, the studied particles are spheres, the number distribution of sphere diameters would be of interest, and the material would advantageously be characterized by the mean diameter and the variance of the sphere diameters. Moreover, even a value describing the skewness of the sphere diameter distribution may become important in order to understand property variations of different materials.

1.2 Distribution Functions and Physical Parameters

A general principle is governing the relation between physical parameters and underlying distribution functions. Its paramount importance in the field of soft condensed matter originates from the importance of polydispersity in this field. Let us recall the principle by resorting to a very basic example: molecular mass distributions of polymers and the related characteristic parameters.

1.2.1 The Number Molecular Mass Distribution

In the basic molecular mass distribution, $N(M)$, the number N of molecules in a sample is plotted vs. their molecular mass, M. Figure 1.2 presents a sketch of a

Figure 1.2. A number molecular mass distribution $N(M)$ of an ideal chain polymer. $N(M)$ is defined for integer multiples of M_{m}, the monomer mass. The integer factor, P, is called the degree of polymerization
molecular mass distribution. For ideal chains the distribution is a discrete function which is only defined for integer multiples of the monomer mass, M_{m}. The function is called the number molecular mass distribution, because it exhibits the number of molecules with a certain molecular weight M.

The function $N(M)$ can be considered a continuous function, if the average molecular weight of the chains is high enough. In this case we draw a continuous line through the points in Fig. 1.2.

It is reasonable to normalize $N(M)$ with respect to the total number of molecules in the sample

$$
\begin{equation*}
n(M)=N(M) / \int_{0}^{\infty} N(M) d M \tag{1.1}
\end{equation*}
$$

Now the function displays the number fraction of molecules with a certain molecular mass. Its integral is 1 by definition. Nevertheless, we still call it the number molecular weight distribution because the factor $\int N(M) d M$ is nothing but a constant.

1.2.2 The Number Average Molecular Mass

The obvious definition of the number average, M_{n}, of the distribution is the position on the M-axis that divides the area under the $n(M)$-curve in equal parts (cf. Fig. 1.3). Because of the fact that $n(M)$ is normalized to 1 , each of the subareas is equal to 0.5 . As 50% of all the molecules are shorter than M_{n}, the other 50% are longer than M_{n}. Bearing in mind the normalization, the number average molecular mass is

$$
\begin{equation*}
M_{n}=\int_{0}^{\infty} M n(M) d M \tag{1.2}
\end{equation*}
$$

This equation is, as well, the definition of the mean (cf. Abramowitz [4] chap. 26) - the first moment of the distribution $n(M)$ about origin. In fact, with respect to a

Figure 1.3. The number average molecular mass, M_{n}, is the position that divides the area under the corresponding distribution in equal parts
normalized distribution $\left(\int n(M) d M=1\right)$ the mean is the center of gravity of the distribution.

In order to describe the discussed distribution function, three characteristic parameters are used in polymer science. They are named number average ${ }^{1}$, weight average $\left(M_{w}\right)$, and centrifuge average $\left(M_{z}\right)$

$$
\begin{align*}
M_{n} & =\frac{\int M^{1} n(M) d M}{\int M^{0} n(M) d M} \tag{1.3}\\
M_{w} & =\frac{\int M^{2} n(M) d M}{\int M^{1} n(M) d M} \tag{1.4}\\
M_{z} & =\frac{\int M^{3} n(M) d M}{\int M^{2} n(M) d M} \tag{1.5}
\end{align*}
$$

This series of equations demonstrates a general principle in physics, namely how measurable materials parameters are generated from moments of the related distribution function.

1.3 Moments

The i-th moment (about origin) of a distribution $h(x)$ is defined by

$$
\begin{equation*}
\mu_{i}^{\prime}(h)=\int x^{i} h(x) d x \tag{1.6}
\end{equation*}
$$

(Abramowitz [4] chap. 26). We have demonstrated that the structure parameters of a polydisperse structure are closely related to these moments. $\mu_{0}^{\prime}(h)$ is the norm

[^1]and $m(h):=\mu_{1}^{\prime}(h)$ the mean of the distribution on which the definition of central moments
\[

$$
\begin{equation*}
\mu_{i}(h):=\int(x-m(h))^{i} d x \tag{1.7}
\end{equation*}
$$

\]

is based. As a measure of distribution width it is common to report the variance

$$
\begin{equation*}
\sigma^{2}(h):=\mu_{2}(h) \tag{1.8}
\end{equation*}
$$

or the standard deviation, $\sigma(h) . \mu_{3}(h) / \sigma^{3}(h)$ is known as skewness of the distribution (Abramowitz [4] chap. 26).

Application in the Field of Scattering. Let us consider two important distribution functions, $h_{c}(x)$ and $h_{L}(x)$. These functions shall describe the thicknesses of crystalline layers and the distances (long periods) between them, respectively. In this case we take into account polydispersity of the crystalline layers, if (at least) the two parameters \bar{d}_{c} and σ_{c} / \bar{d}_{c} are determined which are defined as the average thickness of the crystalline layers,

$$
\bar{d}_{c}=\frac{\mu_{1}^{\prime}\left(h_{c}\right)}{\mu_{0}^{\prime}\left(h_{c}\right)}
$$

and the relative standard deviation of the crystalline layer distribution,

$$
\frac{\sigma_{c}}{\bar{d}_{c}}=\frac{\sigma\left(h_{c}\right)}{\bar{d}_{c}} .
$$

In the classical treatment of the paracrystal, Hosemann [5] refers to the quantity σ_{c} / \bar{d}_{c} as "g-factor".

If we knew that the long periods are varying from stack to stack, but not within one and the same stack, the quantities

$$
\bar{L}=\frac{\mu_{1}^{\prime}\left(h_{L}\right)}{\mu_{0}^{\prime}\left(h_{L}\right)}
$$

(average long period) and

$$
\frac{\sigma_{L}}{\bar{L}}=\frac{\sigma\left(h_{L}\right)}{\bar{L}}
$$

(relative standard deviation of the long periods, which is another Hosemann g-factor) describe the polydispersity of this material.

2 General Background

Interpretation of scattering data requires understanding of the general dimensions of the field and a general background of scattering theory which is reviewed in this chapter. Reference is given to textbooks and original work, where detailed discussion would extend beyond the scope of this book.

2.1 The Subareas of X-Ray Scattering

Scattering experiments are carried out in four different angular regions which will be frequently addressed in this book. In Table 2.1
the subareas are identified by the typical distance R between the sample and the detector. The wavelength selected for the example is close to the historical wavelength of an X-ray tube equipped with a copper anode $\left(\mathrm{CuK}_{\alpha}\right.$ radiation with $\lambda=0.15418 \mathrm{~nm}$).

Classical X-ray diffraction and scattering is carried out in the subarea of wideangle X-ray scattering (WAXS). The corresponding scattering patterns yield information on the arrangement of polymer-chain segments (e.g., orientation of the amorphous phase, crystalline structure, size of crystals, crystal distortions, WAXS crystallinity).

The subarea of middle-angle X-ray scattering (MAXS) covers the characteristic scattering of liquid-crystalline structure and rigid-rod polymers.

In the small-angle X-ray scattering (SAXS) regime the typical nanostructures (in semicrystalline materials, thermoplastic elastomers) are observed. Because of the long distance between sample and detector time-resolved measurements can only be carried out at synchrotron radiation sources (Sect. 4.2.1.2).

Table 2.1. Subareas of scattering as a function of the sample-detector distance R assuming an X-ray wavelength of $\lambda \approx 0.15 \mathrm{~nm}$

Subarea	$R[\mathrm{~m}]$	Focus
WAXS	$0.05-0.2$	arrangement of chain segments
MAXS	$0.2-1$	liquid-crystalline structure
SAXS	$1-3$	nanostructure $3 \mathrm{~nm}-50 \mathrm{~nm}$
USAXS	$6-15$	nanostructure $15 \mathrm{~nm}-2 \mu \mathrm{~m}$

The ultra small-angle X-ray scattering (USAXS) extends the accessible structure towards the micrometer range. Time-resolved measurements require a synchrotron beam that is intensified by an insertion device (Sect. 4.2.2).

2.2 X-Rays and Matter

2.2.1 General

X-rays are electromagnetic radiation with short wavelengths of about 0.01 to 10 nm . $\lambda \approx 0.15 \mathrm{~nm}$ is the typical wavelength for the study of soft condensed matter. Whenever X-rays are interacting with matter, their main partners are the electrons in the studied sample. Thus X-ray scattering is probing the distribution of electron density, $\rho(\mathbf{r})$, inside the material.

As scattering intensity is computed from $\rho(\mathbf{r})$ in this book, the symbol $\rho(\mathbf{r})$ has two different meanings. Only in the field of WAXS it is identical to the plain electron density. However, in the area of SAXS it indicates the electron density difference ${ }^{1}$, i.e., the deviation of the local electron density from the average electron density $\langle\rho(\mathbf{r})\rangle_{V}$ in the irradiated volume V.

Electron Density Computation. The average ${ }^{2}$ electron density of a material or of a specific phase within a material,

$$
\begin{equation*}
\rho=Z_{m} \rho_{m}=N_{A} \frac{Z_{M}}{M_{M}} \rho_{m}, \tag{2.1}
\end{equation*}
$$

is computed from the respective average mass density, ρ_{m}, by multiplication with the "number of electrons per gram", Z_{m}, given by Avogadro's number, $N_{A}=6.022 \times$ $10^{23} \mathrm{~mol}^{-1}$, the number of electrons per molecule or monomer unit, Z_{M}, and the molecular weight of molecule or monomer unit, M_{M}.

For polybutadiene with the chemical composition $\mathrm{C}_{4} \mathrm{H}_{6}$ we have a molecular weight of $M_{M}=54.092 \mathrm{~g} / \mathrm{mol}$ and $Z_{M}=30 \mathrm{e} . \mathrm{u}$. (electrons in "electron units"). If the mass density is $\rho_{m}=0.90 \mathrm{~g} / \mathrm{cm}^{3}$, the electron density becomes $\rho=300.6$ e.u. $/ \mathrm{nm}^{3}$.

2.2.2 Polarization

Polarization is a relevant issue, because we are dealing with transversal waves (Guinier [6], p. 10-11). Polarization correction should be carried out for MAXS and WAXS data. It is less important for SAXS and USAXS patterns. In particular, if synchrotron radiation is used, the polarization correction is quite involved and based on the degree of polarization. For the purpose of reliable correction it is thus recommended to let a polarization monitor measure the actual degree of synchrotron beam polarization.

[^2]
[^0]: ${ }^{1}$ An example is the chapter entitled "It's Beamtime, Phil". It is written in the hope that in particular the practical work of students will benefit from it.

[^1]: ${ }^{1}$ This is the center of gravity of the distribution $n(M)$.

[^2]: ${ }^{1}$ In many publications the electron density difference is addressed as $\Delta \rho(\mathbf{r})=\rho(\mathbf{r})-\langle\rho(\mathbf{r})\rangle_{V}$.
 ${ }^{2}$ Exercise: Compute the average electron density $\langle\rho\rangle_{V}$ of a sample from pure poly(ethylene terephthalate) (PET) with a mass density of $1.38 \mathrm{~g} / \mathrm{cm}^{3}$. The chemical formula of PET is $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}$. Because PET is most probably in the semicrystalline state, it makes sense to stress that the computed electron density is a volume average $\left\rangle_{V}\right.$.

