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Preface 

The principal theme of this book is ' ' the existence and differentiability 
of the solutions of variational problems involving multiple integrals/ ' 
We shall discuss the corresponding questions for single integrals only 
very briefly since these have been discussed adequately in every other 
book on the calculus of variations. Moreover, applications to engineer-
ing, physics, etc., are not discussed at all; however, we do discuss 
mathematical applications to such subjects as the theory of harmonic 
integrals and the so-called ' '^^Neumann" problem (see Chapters 7 and 8). 
Since the plan of the book is described in Section 1.2 below we shall 
merely make a few observations here. 

In order to study the questions mentioned above it is necessary to 
use some very elementary theorems about convex functions and opera-
tors on Banach and Hilbert spaces and some special function spaces, 
now known as ' 'SOBOLEV spaces". However, most of the facts which we 
use concerning these spaces were known before the war when a different 
terminology was used (see CALKIN and MORREY [5]); but we have in-
cluded some powerful new results due to CALDERON in our exposition 
in Chapter 3. The definitions of these spaces and some of the proofs 
have been made simpler by using the most elementary ideas of distribu-
tion theory; however, almost no other use has been made of that theory 
and no knowledge of that theory is required in order to read this book. 
Of course we have found it necessary to develop the theory of linear 
elliptic systems at some length in order to present our desired differenti-
ability results. We found it particularly essential to consider ' 'weak 
solutions'' of such systems in which we were often forced to allow dis-
continuous coefficients; in this connection, we include an exposition of 
the D E GIORGI—NASH—MOSER results. And we include in Chapter 6 
a proof of the analyticity of the solutions (on the interior and at the 
boundary) of the most general non-linear analytic elliptic system with 
general regular (as in AGMON, DOUGLIS, and NIRENBERG) boundary con-
ditions. But we confine ourselves to functions which are analytic, of 
class C"^, of class C^ or C^ (see § 1.2), or in some Sobolev space H^ with 
m an integer > 0 (except in Chapter 9). These latter spaces have been 
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defined for all real w in a domain (or manifold) or on its boundary and 
have been used by many authors in their studies of linear systems. We 
have not included a study of these spaces since (i) this book is already 
sufficiently long, (ii) we took no part in this development, and (iii) these 
spaces are adequately discussed in other hooks (see A. FRIEDMAN [2]» 
HoRMANDER [1], LiONS [2]) as wcU as in many papers (see § 1.8 and 
papers by LIONS and MAGENES). 

The research of the author which is reported on in this book has 
been partially supported for several years by the Office of Naval Research 
under contract Nonr 222(62) and was partially supported during the 
year 1961—62, while the author was in France, by the National Science 
Foundation under the grant G—19782. 

Berkeley, August I966 

CHARLES B . MORREY, JR. 
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Chapter 1 

Introduction 

1.1. Introductory remarks 
The principal theme of these lectures is ' ' the existence and differenti-

ability of the solutions of variational problems involving multiple in-
tegrals/ ' I shall discuss the corresponding questions for single integrals 
only very briefly since these have been adequately discussed in every 
book on the calculus of variations (see, for instance, AKHIEZER [1], 
BLISS [1], BOLZA [1], CARATHEODORY [2], F U N K [1], PARS [1]. Moreover, 

I shall not discuss applications to engineering, physics, etc., at all, 
although I shall mention some mathematical applications. 

In general, I shall consider integrals of the form 

(1.1.1) I [^,G-) = ff[^,z{x), V z{x)]dx 
G 

where G is a domain, 

(1.1.2) X = (A;1, . . ., x"), z = (^1, . . ., z^), dx = dx^ . . . dx\ 

z{x) is a vector function, V^ denotes its gradient which is the set of func-
tions {zioc}, where z^^ denotes dz'^ldx°', and f{x, z, p) [p = {pi}) is 
generally assumed continuous in all its arguments. The integrals 

b 

f l/l + {dzldx)^ dx and j y [ ( ^ ) ' + ( ^ , ) ' ] dxidx^ 
a G 

are familiar examples of integrals of the form (1.1.1.) in which iV = 1 in 
both cases, i' = 1 in the first case, î  = 2 in the second case and the 
corresponding functions / are defined respectively by 

f{x,z,p) = yi +p^, f{^,z,p) =pi+pi 
where we have omitted the superscripts on z and p since N =^ \, The 
second integral is a special case of the Dirichlet integral which is defined 
in general by 

(1.1.3) D{z,G) = j\\Jz\^dx,f{x,z,p) ^\p\^ = 2[pi)'^. 
G i,(x 

Another example is the area integral 

<• < * ' i'-<^^ =Mimj+[m,j+m^p-''" 
G 

Morrey, Multiple Integrals 



2 Introduction 

which gives the area of the surface 

(1 .1 .5) z^ == z^x'^.x^), {x^,x^)^G, / = 1 , 2 , 3. 

I t is to be noticed that the area integral has the special property that it 
is invariant under diffeomorphisms (1 — 1 differentiable mappings, etc.) 
of the domain G onto other domains. This is the first example of an in-
tegral in parametric form. I shall discuss such integrals later (in Chapters 
9 and 10). 

I shall also discuss briefly integrals like that in (1.1.1) but involving 
derivatives of higher order. And, of course, the variational method has 
been used in problems which involve a ''functional'' not at all like the 
integral in (1.1.1); as for example in proving the Riemann mapping 
theorem where one minimizes sup \f{z) \ among all schlicht functions/(^) 
defined on the given simply connected region G for which f{zQ) = 0 and 
f'(zo) = 1 at some given point ZQ in G. 

We shall consider only problems in which the domain G is fixed; 
variations in G may be taken care of by transformations of coordinates. 
We shall usually consider problems involving fixed boundary values; 
we shall discuss other problems but will not derive the transversality 
conditions for such problems. 

1.2. The plan of the book: notation 

In this chapter we at tempt to present an overall view of the principal 
theme of the book as stated at the beginning of the preceding section. 
However, we do not include a discussion of integrals in parametric form; 
these are discussed at some length in Chapters 9 and 10. The material in 
this book is not presented in its logical order. A possible logical order 
would be §1.1 — 1.5, Chapter 2, Chapter 3, §§ 5.1 — 5-8, § 5.12, Chapter 6, 
§§ 1.6—1.9, §§4.1, 4.3> 4.4. Then the reader must skip back and forth as 
required among the material of § 1.10, 1.11, 4.2, 5-9, 5-10 and 5-11. Then 
the remainder of the book may be read substantially in order. Actually, 
Chapters 7 and 8 could be read immediately after § 5-8. 

We begin by presenting background material including derivations, 
under restrictive hypotheses, of Euler's equations and the classical 
necessary conditions of Legendre and Weierstrass. Next, we include a 
brief and incomplete presentation of the classical so-called ''sufficiency" 
conditions, including references to other works where a more complete 
presentation may be found. 

The second half of this chapter presents a reasonably complete out-
line of the existence and differentiability theory for the solutions of 
variational problems. This begins with a brief discussion of the develop-
ment of the direct methods and of the successively more general classes 
of "admissible" functions, culminating in the so-called "Sobolev spaces". 
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These are then defined and discussed briefly after which two theorems 
on lower-semicontinuity are presented. These are not the most general 
theorems possible but are selected for the simplicity of their proofs 
which, however, assume that the reader is willing to grant the t ruth of 
some well-known theorems on the Sobolev spaces. The relevant theorems 
about these spaces are proved in Chapter 3 and more general lower-
semicontinuity and existence theorems are presented in Chapter 4. 

In Section 1.10 the differentiability results are stated and some preli-
minary results are proved. In Section 1.11, an outline of the differenti-
ability theory is presented. I t is first shown that the solutions are ' 'weak 
solutions" of the Euler equations. The theory of these non-linear equa-
tions is reduced to that of linear equations which, initially, may have 
discontinuous coefficients. The theory of these general linear equations 
is discussed in detail in Chapter 5 • However, the higher order differenti-
ability for the solutions of systems of Euler equations required the same 
methods as are used in studying systems of equations of higher order. 
Accordingly, we present in Chapter 6 many of the results in the two 
recent papers of AGMON, DOUGLIS, and NIRENBERG ([1], [2]) concerning 

the solutions and weak solutions of such systems. Both the L^^-estimates 
and the ScHAUDER-type estimates (concerning HOLDER continuity) are 
presented. We have included sections in both Chapters 5 und 6 proving 
the analyticity, including analyticity at the boundary, of the solutions of 
both linear and non-linear analytic elliptic equations and systems; the 
most general ' 'properly elliptic" systems with "complementing boundary 
conditions" (see § 6.1) are treated. The proof of analyticity in this genera-
lity is new. In Chapter 2 we present well-known facts about harmonic 
functions and generalized potentials and conclude with proofs of the 
CALDERON-ZYGMUND inequalities and of the maximum principle for the 
solutions of second order equations. 

In Chapters 7 and 8, we present applications of the variational method 
to the HODGE theory of harmonic integrals and to the so-called 5 - N E U -

MANN problem for exterior differential forms on strongly pseudo-convex 
complex analytic manifolds with boundary. In Chapter 9, we present a 
brief discussion of ^^-dimensional parametric problems in general and 
then discuss the two dimensional Plateau problem in Euclidean space 
and on a Riemannian manifold. The chapter concludes with the author's 
simplified proof of the existence theorem of CESARI [4], DANSKIN, and 

SiGALOV [2] for the general two dimensional parametric problem and 
some incomplete results concerning the differentiability of the solutions 
of such problems. In Chapter 10, we present the author's simplification 
of the very important resent work of REIFENBERG [1], [2], and [3] con-
cerning the higher dimensional PLATEAU problem and the author's ex-
tension of these results to varieties on a Riemannian manifold. 
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Notations. For the most part, we use standard notations. G and D 
will denote domains which are bounded unless otherwise specified. We 
denote the boundary oiDby dD and its closure by D. We shall often use 
the notation D C C G to mean that D is compact and D C G. B{xo, R) 
denotes the ball with center at XQ and radius R. y^ and Fv denote the v-
measure and [v — 1)-measure of 5(0,1) and ^5(0,1), respectively. We 
often denote dB{0,\) by Z. Most of the time (unless otherwise specified) 
we let Rq be ^-dimensional number space with the usual metric and ab-
breviate B{0,R) to BR, denote by a the {v — 1)-plane x" = 0, and define 

R^ ={x\x''>0}, R~={x\x'' < 0} 

(1.2.1) GR^BnORi^, ER^^dBnC^.R^, OR^BROa 

G^^BRHR-, Z^ = dBRnRv^ 

If S is a set in Rq, \S\ denotes its Lebesgue ^-measure; if ;t; is a point, 
d{x, S) denotes the distance of x from S. We define 

[a^b] = {x\a'' < x°'<,b°', ^ = 1 , . . . , v, x^Rv}. 

In the case of boundary integrals, we often use dx'^ to denote nxdS 
where dS is the surface area and nx is the ̂ - th component of the exterior 
normal. We say that a function u^ C'^{G) iff (if and only if) u and its 
partial derivatives of order < ^ are continuous on G and u^ C'^{G) iff 
u^ C'^{G) and each of its derivatives of order < ^ can be extended to be 
continuous on G. If 0 < /i < 1, ̂ ^ Q(G) (or Q (G)) <^ (i.e. iff) u^ C^{G) 
(or C^{G)) and all the derivatives of order <n satisfy a HOLDER ( L I P -
SCHITZ ii /J, = 1) condition on each compact subset of G (or on the whole 
of G as extended). If u^ C^ (G), then Â  {u, G) = sup \x2 — xi\-^. 
\u(x2) — u(xi) I for xi and X2^G and Xi ̂  x^. A domain G is said to be 
of class C^ (or Q , 0 < /̂  < 1) iff G is bounded and each point PQ oi dG 
is in a neighborhood n on G which can be mapped by a 1 — 1 mapping 
of class C^ (or CJJ), together with its inverse, onto GR U GR for some R 
in such a way that PQ corresponds to the origin and n U dG corresponds 
to OR. li U^ ^'^{G)> we denote its derivatives duldx^" by u ,«. If ^ ^ C2(G), 
then V^u denotes the tensor u ,oc^ where oc and /5 run independently from 
t o r . Likewise V ^ ^ = {^,a/Sy}, etc., and \\/^u\^ — 2^\u,ocp\^, etc. If G is 

also of class C^, then Green's theorem becomes (in our notations) 

f u ,oc(x) dx = J uUocdS = f udx'^. 
G dG dG 

Sometimes when we wish to consider u as a function of some single x'^, 
we write x = (%*, x^) and u(x) = u(x^, x^) where x'^ denotes the remain-
ing x^. One dimensional or {v — 1)-dimensional integrals are then in-
dicated as might be expected. We often let oc denote a ' 'multi-index'\ 
i.e. a vector [oci, . . .,av) in which each oct is a non-negative integer. We 
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then define 
d l«i u 

Using this notation 

(^,!),c« = ^ , f - = (fir-. .( i^j^ 

|a|=m 

We shall denote constants by C or Z with or without subscripts. These 
constants will, perhaps depend on other constants; in this case we may 
write C = C{h, jbt) if C depends only on h and //, for example. However, 
even though we may distinguish between different constants in some 
discussion by inserting subscripts, there is no guarantee that C2, for 
example, will always denote the same constant. We sometimes denote 
the support of u by spt w. We denote by C^iG), Q(G), and C^, {G) the 
sets of functions in C°°(G), C^(G), or CJJ(G), respectively, which have 
support in G (i.e. which vanish on and near dG). But it is handy to say 
that u has support in GR \J GR <^ U vanishes on and near ER (see 1.2.1); 
we allow u{x) to be 9̂  0 on GR. 

1.3. Very brief historical remarks 

Problems in the calculus of variations which involve only single 
integrals (1; = 1) have been discussed at least since the time of the B E R -
NOULLI'S. Although there was some early consideration of double inte-
grals, it was RiEMANN who aroused great interest in them by proving 
many interesting results in function theory by assuming DIRICHLET'S 
principle which may be stated as follows: There is a unique function which 
minimizes the DIRICHLET integral among all functions of class C^ on a 
domain G and continuous on G which takes on given values on the boundary 
dG and, moreover, that function is harmonic on G. 

RIEMANN'S work was criticized on the grounds that just because the 
integral was bounded below among the competing functions it didn't 
follow that the greatest lower bound was taken on in the class of compet-
ing functions. In fact an example was given of a (1-dimensional) integral 
of the type (1.1.1) for which there is no minimizing function and another 
was given of continuous boundary values on the unit circle such that 
D[z, G) = + 0 0 for every z as above having those boundary values. 

The first example is the integral (see COURANT [3]) 
1 

(I.3.I) I{z,G) = | [ l + (g ) ' J "^^ . G = (0,1), 
0 

the admissible functions z being those ^ C^ on [0,1] with 

^(0) = 0 and ^(1) =- 1. 



6 Introduction 

Obviously I[z, G) > 1 for every such z, I{z,G) has no upper bound and 
if we define 

Zr{x) = | _ ^ 
+ [1 + 3 (A; — r)^l[\ — r)2]i/2, r<.x<.\ 

we see that I{zr, G) -> 1 as r -> 1-. 
The second example is the following (see COURANT [3]): I t is now 

known that Dirichlet^s principle holds for a circle and that each func-
tion harmonic on the unit circle has the form 

oo 

(1.3.2) w{r,0) = ^ + 2 r'^{ancosn0 + bnSinnO), (Un, bn const), 

in polar coordinates and that the Dirichlet integral is 

(1.3-3) D{w,G)=jzZn(al + bl) 
n=l 

provided this sum converges. But if we define 
a^ = ^-2 if ^ == ̂ 1 ^ an = bn = 0 otherwise, 

we see that the series in (1.3.2) converges uniformly but that in (1.3-3) 
reduces to 

^ 2 / A4 
which diverges. 

DIRICHLET'S principle was established rigorously in certain important 
cases by HILBERT, LEBESGUE [2] and others shorly after I9OO. That was 
the beginning of the so-called ''direct methods" of the calculus of varia-
tions of which we shall say more later. 

There was renewed interest in one dimensional problems with the 
advent of the MORSE theory of the critical points of functional in which 
M. MORSE generalized his theory of critical points of functions defined 
on finite-dimensional manifolds [1] to certain functionals defined on in-
finite-dimensional spaces [2], [3]. He was able to obtain the MORSE 
inequalities between the numbers of possibly ' 'unstable' ' (i.e. critical 
but not minimizing) geodesies (and unstable minmal surfaces) having 
various indices (see also MORSE and TOMPKINS, [1] —[4]). Except for the 
latter (which could be reduced to the case of curves), MORSE'S theory 
was applied mainly to one-dimensional problems. However, within the 
last two years, SMALE and PALAIS and SMALE have found a modification 

of MORSE'S theory which is applicable to a wide class of multiple inte-
gral problems. 

Variational methods are beginning to be used in differential geometry. 
For example, the author and Eells (see MORREY and E E L S , MORREY, 
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[11] and Chapter 7) developed the HODGE theory ([1], [2]) by variational 
methods (HODGE'S original idea [1]). HORMANDER [2], KOHN [1], S P E N -

CER (KoHN and SPENCER), and the author (MORREY [19], [20]) have 

applied variational techniques to the study of the 5-Neumann problem 
for exterior differential forms on complex analytic manifolds (see Chap-
ter 8; the author encountered this problem in his work on the analytic 
embedding of real-analytic manifolds (MORREY [13])- Very recently, 
EELLS and SAMPSON have proved the existence of "harmonic" mappings 
(i.e. mappings which minimize an intrinsic Dirichlet integral) from one 
compact manifold into a manifold having negative curvature. Since the 
inf. of this integral is zero if the dimension of the compact manifold 
> 2 , they found it necessary to use a gradient line method which 
led to a non-linear system of parabolic equations which they then 
solved; the curvature restriction was essential in their work. 

1.4. The Euler equations 

After a number of special problems had been solved, E U L E R deduced 
in 1744 the first general necessary condition, now known as EULER'S 
equation, which must be satisfied by a minimizing or maximizing arc. 
His derivation, given for the case N = v = 1, proceeds as follows: Sup-
pose that the function z is of class C^ on [a, b] (= G) minimizes (for 
example) the integral I{z, G) among all similar functions having the 
same values at a and h. Then, if C is any function of class C^ on [^, h] 
which vanishes at a and h, the function 2: + AC is, for every A, of class 
C^ on [a, h] and has the same values as ̂  at a and h. Thus, if we define 

6 
(1.4.1) w[X)=I[z+Xl:,G)=jf[x,z{x) +Xl:{x)^z'[x)+XC[x)]dx 

a 

(p must take on its minimum for A = 0. If we assume t h a t / i s of class C^ 
in its arguments, we find by differentiating (I.4.I) and setting X = 0 tha t 

h 
(1.4.2) /{C'(^) 'U[x,z{x),z'{x)] + (:{x)f,[x,z{x),z'{x)]]dx = 0 

(fv = 

The integral in (1.4.2) is called the first variation of the integral / ; it is 
supposed to vanish for every f of class C^ on [a, 6] which vanishes at a 
and h. If we now assume that f and z are of class C^ on [a, H] (EULER 
had no compunctions about this) we can integrate (1.4.2) by parts to 
obtain 

h 
(1.4.3) jC{x)-{fz-~h]dx = 0, U=U[x,z[x),\/z{x)],etc. 
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Since (1.4-3) holds for all C as above, it follows that the equation 

(1.4.4) y,=h 

must hold. This is Euler's equation for the integral / in this simple case. 
If we write out (1.4.4) in full, we obtain 

(1.4.5) fvv'^" +fvz^' +fpx=fz 

which shows that Euler's equation is non-linear and of the second order. 
I t is, however, linear in z"; equations which are linear in the derivatives of 
highest order are frequently called q^iasi-linear. The equation evidently 
becomes singular whenever/^^ = 0. Hence regular variational problems 
are those for which fpp never vanishes; in that case, it is assumed that 
fpp > 0 which turns out to make minimum problems more natural than 
maximum problems. 

I t is clear that this derivation generalizes to the most general integral 
(1.1.1) provided t h a t / a n d the minimizing (or maximizing, etc.) function 
z is of class C2 on the closed domain G which has a sufficiently smooth 
boundary. Then, if z minimizes / among all (vector) functions of class C^ 
with the same boundary values and C is any such vector which vanishes 
on the boundary or G, it follows that 2: + AC is a "competing'' or ' 'ad-
missible" function for each A so that if 99 is defined by 

(1.4.6) (p{^) =I{z + U,G) 

then (p'{0) = 0. This leads to the condition that 

(1-4.7) ll\^C:Jpi + C'fz^dx=0 
Q i=-l l a = l J 

for all C as indicated. The integral in (1.4.7) is the first variation of the 
general integral (1.1.1). Integrating (1.4-7) by parts leads to 

Since this is zero for all vectors C, it follows that 

(^•4-8) 2i^M=f^'' '-'' .N 

which is a quasi-linear system of partial differential equations of the 
second order. In the case Â  = 1, it reduces to 

(1.4.9) "-i 
V V 
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The equation (1.4-9) is evidently singular whenever the quadratic form 

(1-4.10) 2 '^a2 . , (^ ,^>^)^a^^* 

in A is degenerate. 
We notice from (1.4-5) that ii N = v = \ and / depends only on p 

and the problem is regular, then Euler's equation reduces to 

/ ' = 0. 

In general, if / depends only onp(== pi), Euler's equation has the form 

and every linear vector function is a solution. In particular, if Â  = 1 
a n d / = 1^12, Euler's equation is just Laplaces equation 

a 

In c a s e / = (1 + |_/>|2)i/4 as in the first example in § 1.3, we see that 

4fvP = {2-p^){^ +^2)-7/4 

which is not always > 0. On the other hand fpp > 0 if | ^ | < ]/2 so 
classical results which we shall discuss later (see § 1.6) show that the 
linear function z{x) = x minimizes the integral among all arcs having 
\z-(x)\<^. 

We now revert to equation (1.4-9)- If we take, for instance, Â  = 1, 
V =^ 2,f = pl — pl, then (1.4-9) becomes 

which is of hyperbolic type. Moreover, the integral (1.1.1) with this / 
obviously has no minimum or maximum, whatever boundary values are 
given for z. Anyhow, it is well known that boundary value problems are 
not natural for equations of hyperbolic type, li v "> 2 s, greater variety 
of types may occur, depending on the signature of the quadratic form 
(1.4.10). A similar objection occurs in all cases except those in which the 
form (1.4-10) is positive definite or negative definite; we shall restrict 
ourselves to the case where it is positive definite. In this case Euler's 
equation is of elliptic type. The choice of this condition o n / is re-enforced 
by analogy with the case r = 1; in that case fpp > 0 implies the con-
vexity (see § 1.8) of f as a function of p for each {x, z) and the non-negative 
definiteness of the form (1.4-10) is equivalent to the convexity o f / a s a 
function of ^ i , . . .,pv for each set [x'^, . . ., x"^, z). Our choice is re-enforced 
further by the classical derivation given in the next section. 

* Greek indices are summed from 1 to i; and Latin indices are summed from 
1 to N. Hereafter we shall usually employ the summation convention in which 
repeated indices are summed and summation signs omitted. 
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1.5. Other classical necessary conditions 

Suppose that / is of class C^ in its arguments, tha t Â  = 1, that z is 
of class Ci on the closure of G, and that z minimizes I(z, G) among all 
functions Z of the same class which coincide with z on the boundary and 
are sufficiently close to z in the C^ norm, i.e. 

\Z[x) — z[x)\ < (3 , |VZ(%) - Vz[x)\ <(5 , xon G. 

In classical terminology, we say tha t z furnishes a le^eak relative minimum 
to I[z, G). We shall show that this implies the non-negative definiteness 
of the form (1.4.10) when z = z{x) and p = \/ z(x). We note that our 
hypotheses imply that for each C of the type above, vanishing on the 
boundary, the function 99(A), defined by (1.4-6) is of class C^ for |A| < 
Ao(>0) and has a relative minimum at 2 =: 0. This implies that 

^"(0) = f \Za-^{x) C,«C,^ + 2 2:b-{x) a , . + c{x) m dx^O 
(1.5.1) G ^^'^ ^ J 

a^^[x)=^f^^j,^[x,z{x),Vz{x)], b°^=fj,^^, c=f^^, 

for all ^ as described. The integral in (1.5.1) is called the second variation 
of the integral (1.1.1). By approximations, it follows that (1.5-1) holds 
for all LiPSCHiTZ functions C which vanish on the boundary. Now let us 
select a point xo(^G and a unit vector A, and let us choose new coordina-
tes y related to :̂  by a transformation 

(1.5.2) yy = i;dy{x^-x^), x^-x^^^z^ly''^ ^oc^di 
oc y 

where d is a. constant orthogonal matrix so tha t A is the unit vector in 
the yi direction, and define 

co{y)=-a^{y)], 'ay'{y)^a^^[x(y)-]dld$, 

^ ^ ^ ^ 'hy{y) = b^[x{y)]dy, 'c{y) =^-c[x{y)]. 

Then if G' denotes the image of G, 

(p"[0) = / [ ^ ^ V*5(y)cL>,y ca,5 + 2'hy co'(D,y + 'c(jo^]dy > 0. 

Now, choose 0 <C h <. H so small tha t the support of a> G G\ where 

X f ( A - | y i | ) ( 1 - r / i f ) , if |y i | < / ^ , 0 < r < / f \ 
1.5.4) co(y^,...,y'') =y '-̂  '̂ ^ ' ^ J . r 

^ ^ ^ -̂̂  -̂  ^ lo , otherwise J 
r2 :== (^2)2 + . . . + (y»')2. 

Then if we divide 99''(0) by the measure of the support of co and then let 
h and H -> 0 so that hlH -> 0, we conclude tha t 

'a l l (0) = ^a^ (^^) ^1 ̂ 1 ^ a''^{xo) >̂a Â  > 0 

which is the stated result. This is called the Legendre condition. 
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If we repeat this derivation for the case of the general integral (1.1.1), 
a s s u m i n g / ^ C^ of course, we obtain 

^"(0) =I{ZI<CUC$ + 2 2-bf,C'C\ + CijC'en dx > 0 

< f (^) == hi 4 [̂ > ^ (^), V ^ [x)], 6?,. = /g^ pi^, ĉ  J- = /^i 2?. 

Making the change of variables (1.5-2) and (1.5-3) and setting 

co^(yi, . . ., y") = f^a)(yi, . . ., y"), {i= i, . . .,N) 

where f is an arbitrary constant vector and co is defined by (1.5-4), and 
letting h and ^ -> 0 as above, we obtain 

(^•5.5) 2 fp^ paxo.z{xo),Vz(xo)]Ao:Apii&'^0 for a l U , f , 

which is known as the Legendre-Hadamard condition (HADAMARD [1]). In 
this case, we say that the integral (1.1.1) or the i n t e g r a n d / i s regular if 
the inequality holds in (1.5.5) for all A 9̂  0 and f 9̂  0. I t turns out that 
the system (1.4-8) of Euler's equations is strongly elliptic in the sense 
defined by NIRENBERG [2]. 

Let us suppose, now, t h a t / ^ C^ everywhere and that ^ ^ C^ on G 
and minimizes I[z, G), as given by (1.1.1), among all such functions with 
the same boundary values. A simple approximation argument shows 
that z minimizes / among all LIPSCHITZ functions with the same boun-
dary values. Let us choose XQ^G and a unit vector X, and let us intro-
duce the y coordinates as in (1.5-2) and let us define (using part of the 
notation of (1.5.4) 

I (y^ + h)(p(rh-^l^) , —h<y^<0 , 0<.r<h^l^, 

/^i/2(/ji/2 _ yi) .(p{rh-^l^), 0 < y i < Ai/2, 0 < ^̂  < /?i/2, 
0 , otherwise 

(1.5.6) 
where 99$ C^ on [0,1] with (p{0) = 1 and 99(̂ ) = 0 for Q near 1. Since 
the first variation vanishes, we have 

/ [/(^, ^ + C/., V ^ + V u ) - fix, z,Vz)~ Cifz^ - ClJpl] dx->0, 
G 

(1.5.7) fz^ ^ fz^(x, ^, V ^), fpi = fpi{x, z,Vz). 
We notice first that the integrand is 0(h) (since f̂  and \7 Ch are both 
small) for x^R^ where 0 < yi < 1̂̂ 2̂  0 < r < Ai/2, g y setting yi 
= hrj^,r = Ai/2 ̂  in Rl{—h < yi < 0, 0 < r < h'^^^), dividing by (̂»'+i)/2 
and letting A -> 0, we obtain 

/ | [ / (^0 ,^0 , i5 )^a+ '^^a l*X^)] -f{X0,Z0,p0) " 

— Z^-<^ ^^ (p{Q)fpi{^o,zo,po)\drj[ > 0 . 
i. a J 

Q^l 
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We may now choose a sequence {cpn} so q^niQ) -> 1 boundedly. This leads 
to 

(1.5.8) f{xo,zo,pio+^-^') -f{^o,zo,po) -Ao.i^fpi{xo,zo,po) > 0 

which is the Weierstrass condition (see GRAVES). In case N = 1, (1.5-8) 
yields the following more familiar form of this condition: 

E{x,z,Vz,P) ==f(x,z,P) —f{x,z,Vz) — [Poc — z,^)f^^[x,z,\Jz)^0 
(1.5.9) 

for all P and all x. The function E(x, z,p,P) here defined is known as 
the Weierstrass E-function. 

HESTENES and MACSHANE studied these general integrals in cases 
where v — 2. HESTENES and E. HOLDER studied the second variation of 

these integrals. DEDECKER studied the first variation of very general 
problems on manifolds. 

1.6. Classical sufficient conditions 

A detailed account of classical and recent work in this field is given 
in the recent book by F U N K , pp. 410—433) where other references are 
given. I shall give only a brief introduction to this subject. 

I t is clear that the positiveness of the second variation along a func-
tion z guarantees that z furnishes a relative minimum to I[Z, G) among 
all Z ( = z on dG) in any finite dimensional space. However, if TV = 1, a 
great deal more can be concluded, namely that z furnishes a strong 
relative minimum to / , i.e. minimizes I[Z, G) among all Z^ C^{G-) with 
Z = z on dG ior which \Z{x) — z(x)\ <. d for some ^ > 0 regardless of 
the values of the derivatives. WEIERSTRASS was the first to prove such 
a theorem but his proof was greatly simplified by the use of HILBERT'S 
invariant integral. Of course, the original proof was for the case N = v 
= 1; we present briefly an extension to the case N = \, v arbitrary. 

Suppose G is of class Q , z^ C^ (G), a n d / and fp are of class C^ in 
their arguments, 0 < ju < i (see § 1.2), and suppose that the second 
variation, as defined in (1.5.1), > 0 for each C$ Q(G) (compact support). 
By a straightforward approximation, it follows that the second varia-
tion is defined for all f ^ Hl^ (G) (see § 1.8). If we call the integral (I.5.I) 
h{z\^]G) we see from the theorems of § 1.8 below that 7-2 is lower-semi-
continuous with respect to weak convergence in H\Q {G) . Moreover, from 
the assumed positive definiteness of the form (1.4.10), it follows from the 
continuity of the a'^P {x) (they ^ Q {G) in fact) that there exist wi > 0 
and Ml such that 

(1.6.1) ^«^ {x)?ioc?i^ > mi |A|2, J [^'"^ W]^ ̂  ^ 1 • 
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Then, from the SCHWARZ and CAUCHY inequahties, we conclude that 
there is a i^ such that 

(1.6.2) h{z\l:\G)>'^ j\\/^\^dx ~ K j l:^dx. 
G G 

Since weak convergence in HIQ{G) imphes strong convergence in L2{G) 
(RELLICH'S theorem, Theorem 3-4.4), it follows that there is a fo in 
H\Q{G) (actually C^ (G)) which minimizes 12 among all I^^H\Q[G) for 

which f C^ dx = 1. Since we have assumed /2 > 0 for every f 9̂  0, it 
G 

follows that 

(1.6.3) l2(z;C]G) ^AijC^dx^Ai > 0 . 
G 

From the theory of §§ 5-2—5.6, it follows that there is a unique solution 
f of Jacohi's equation 

(1.6.4) ^^^i^(«"^f - ) + iK -o)C = 0 

with given smooth boundary values. I t is to be noted that JACOBI'S 
equation is just the Euler equation (z fixed) corresponding to 12. I t is 
also the equation of variation of the Euler equation for the original / , 
i.e. 

(1.6.5) ^ f = ^ { ̂ Jpc. [^.^ + eC, Vz + QVCl-fz [same] }^^^. 

I t follows from Theorems 6.8.5 and 6.S.6 that there is a unique solu-
tion of the Euler equation for all sufficiently near (in C^ (dG)) boundary 
values, in particular for the boundary values z -{- Q, and that z = z (Q) 
satisfies an ordinary differential equation 

(1.6.6) p^^Fiz) 

in theBanach space (Ĉ ^ [G)), where F{z) denotes the solution f of Jacobi's 
equation (1.6.4) with z = Z{Q) for which C = 1 on dG. We shall show 
below that this solution f cannot vanish on G for Q sufficiently small; it 
is sufficient to do this for ̂  = 0, when Z{Q) = our solution z, on account 
of the continuity. 

So, let fi be this solution. If Ci(^) < 0 anywhere, then the set where 
this holds is an open set D and fi = 0 on ^D( C G). Since Ci is a solution 
on D, I(Ci, D) ^0 since Ci is minimizing on D. {D may not be smooth, 
but see Chapters 3 — 5)- But if we set ̂  = ^i on D and C = ^, otherwise, 
f ^ HIQ {G) SO (1.6.3) holds and we must have C = 0. Hence Ci{^) > 0 
everywhere. Now, suppose Ci(^o) = 0. From Theorem 6.8.7, it follows 
that we may choose R so small that B(xo, R) G G and there is a non-
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vanishing solution co of (1.6.4) on B(xo,R). Letting fi = coy, we see 
that V satisfies the equation 

and v(xo) = 0. But from the maximum principle as proved by E. H O P F 
[1] (see § 2.8), it follows that v^ cannot have a minimum interior to G. 
Accordingly Ci ^ 0 anywhere in G. 

Therefore it is possible to embed our solution z in s. field of extremals. 
That is, there is a 1 parameter family Z{X,Q) of solutions of Euler's equa-
tion where Z{x, 0) == z{x), our given solution. Z(X,Q)^ C^{GX [—^O>^O]) 
and ^ C^ (G) as a function of x for each Q with ^̂  > 0. Consequently 
there are functions Po: {x, z) on the set F, where 

(\.6.7) F: x^ G, Z{x, ~QO) < ^ < Z{x, go), 

which act as slope-functions for the field, i.e. 

(1.6.8) Z,oc{x, Q) = Pa [x, Z{x, Q)]. 

By virtue of the facts that Z[x, q) satisfies Euler's equation for each Q, 
tha t (1.6.8) holds, and that if {x, z) $ F, then z = Z(x, Q) for a unique Q 
on [—^0, ^o], we find that 

^ ' ' ^ f,=fz\x^ z, P{x, z)l etc., (^, z) ̂  F. 
Let us define 

/*(^, G) = ff*{x,z,Vz)dx, 
(1.6.10) G' 

/ * {x. z,p) =f^, [X, z, P [x, z)]' \_p. - P« [x, z)\ + / [ ^ , z, P {X, z)\. 

We observe that 

Sl = [P- - Poc {X, Z)] ' {fp^^ + / p ^ p^ Ppz } - Poczfvu 

^^''^^^ +fz+fv,Po.z; f;^=fvJ^>z,P(x,z)]. 
Thus, ii z^ Gi(G) and {x, z{x)) ^F for x^G, we see that 

(1.6.12) / : [X, z (x), Vz(x)] - ^j;^ [X, z {x), Vz{x)] = 0. 

Accordingly the integral I*(z, G) has the same value for all such z which 
have the same boundary values. Moreover, if z{x) = Z[x, q) for some q, 
then 

^ ' I*{z,G)=I{z.G). 

This integral 7 * ( ,̂ G) is known as Hilbert's invariant integral. Therefore, 
if z^ Ci(G) and [x, z{x)) ^ F for all x^ G, and z{x) = zo[x) on dG, then 

(1.6.14) I{z, G) - I(zo, G) = I(z, G) - I*{zo, G) = I(z, G) - I*{z, G) 

= f E[x, z{x), P{x, z{x)}, Vz{x)] dx 
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where E(x, z, P, p) is the Weierstrass £^-function defined in (1.5-9). 
Thus ZQ minimizes I{z, G) among all such z, and hence furnishes a strong 
relative minimum to / , provided that 

(1.6.15) E[x, z, P{x, z),p] > 0, [x, z)^r,p arbitrary. 

This same proof shows that if (1.6.15) holds for all {x, z, p) in some domain 
Ry where all the (x, z) involved ^ F, then I(zo, G) < I{z, G) for all z for 
which [x, z[x), \7 z{x)'] ^Rfor all x^G. 

In the cases v = \, the Jacobi condition is frequently stated in terms 
of ' 'conjugate points". A corresponding condition for )̂  > 1 is that the 
JACOBI equation has no non-zero solution which vanishes on the bound-
ary dD oi any sub-domain D G G; D may coincide with G or may not be 
smooth, in which case we say u vanishes ondD <^u^ H\Q [D). The most 
interesting condition is that there exist a non-vanishing solution a> on G; 
we have seen above that this is implied by the positivity of the second 
variation. If we then set ^ = cou, where u = 0 on dG, then the reader 
may easily verify that 

I2{^',^',G) = J[w^a°'^u,ocU,p — u^a)L(o]dx > 0 
G 

for all u(^ H\Q (G), since Leo = 0. 
In cases where v > 1 and Â  > 1 it is still true (if we continue to 

assume the same differentiabihty for G, / , and z) tha t (1.6.2) holds with 
I2 defined by (1.5.1') even in the general regular case where (1.5-5) holds 
with the inequality for A 7̂  0 and f 7̂  0. This is proved in § 5.2. So it is 
still true that if /2 > 0 for all f, the Euler equations have a unique 
solution for sufficiently nearby boundary values. I t is more difficult 
(but possible) to show that there is an A^-parameter field of extremals 
and then it turns out that such a field does not lead so easily to an in-
variant integral. By allowing slope functions P* {x, z) which are not 
"integrable" (i.e. there may not be zs such that ẑ ^ = P^ {x, z)), W E Y L 
[1] (see also D E BONDER) developed a comparatively simple field theory 
and showed the existence of his types of fields under certain conditions. 
His theory is succesful i f / i s convex in all the p'l. To treat more general 
cases, CARATHEODORY [1], BOERNER, and L E PAGE have introduced more 
general field theories. The latter two noticed that exterior differential 
forms were a natural tool to use in forming the analog of Hilbert's 
invariant integral. However, the sufficient conditions developed so far 
are rather far from the necessary conditions and many questions remain 
to be answered. 

1.7. The direct methods 

The necessary and sufficient conditions which we have just dis-
cussed have presupposed the existence and differentiability of an ex-
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tremal. In the cases v = i, this was often proved using the existence 
theorems for ordinary differential equations. However, until recently, 
corresponding theorems for partial differential equations were not avail-
able so the direct methods were developed to handle this problem and 
to obtain results in the large for one dimensional problems. 

As has already been said, HILBERT [1] and LEBESGUE [2] had solved 

the Dirichlet problem by essentially direct methods. These methods 
were exploited and popularized by TONELLI in a series of papers and a 
book ([1], [2], [3], [4], [5], [7], [8]), and have been and still are being 
used by many others. The idea of the direct methods is to show (i) that 
the integral to be minimized is lower-semicontinuous with respect to 
some kind of convergence, (ii) that it is bounded below in the class of 
''admissible functions," and (iii) that there is a minimizing sequence (i.e. 
a sequence {zn] of admissible functions for which I[zny G) tends to its 
infimum in the class) which converges in the sense required to some 
admissible function. 

Tonelli applied these methods to many single integral problems and 
some double integral problems. In doing this he found it expedient to 
use uniform convergence (at least on interior domains) and to allow 
absolutely continuous functions (satisfying the given boundary con-
ditions) as admissible for one dimensional problems; and he defined what 
he called absolutely continuous functions of two variables ([6]) to handle 
certain double integral problems (see the next section). In the double 
integral problems (iV == 1, r = 2), he found it expedient to require that 
f[x, z, p) satisfy conditions such as 

(1.7.1) m\p\^ — K <f{x, z,p), k>2, m>0, where 

(1.7.2) f{x, z,p)'>0 and f{x, ^, 0) = 0 if k = 2, 

in order to obtain equicontinuous minimizing sequences. However, 
Tonelli was not able to get a general theorem to cover the case where / 
satisfies (1.7-1) with 1 < ^ < 2. Moreover, if one considers integrals in 
which r > 2, one soon finds that one would have to require ^ > î  in 
order to ensure that the functions in any minimizing sequence would be 
equicontinuous, at least on interior domains (see Theorem 3.5-2). To see 
this, one needs only to notice that the functions 

loglog(1 + 1/|:v|), 1/|A;|^ 0 < | A ; | < 1 

are limits of C^ functions Zn in which 

j\SJZnYdx djnd j \\/Zn\^ dx for k<vl{h+\) 

are uniformly bounded over the unit ball G. In the ''borderline case" 
k = V, it is possible, in case / satisfies the supplementary condition 
(1.7.2), to replace an arbitrary minimizing sequence of continuous func-
tions by a minimizing sequence each member of which is monotone in the 
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sense of Lebesgue (i.e. takes on its max. and min. values on the boundary 
of each compact sub-domain); the new sequence is equicontinuous on 
interior domains (see e 4.3)-

However, even this Lebesgue smoothing process does not work in 
general for 1 < ^ < r. In order to get a more complete existence theory, 
the writer and CALKIN (MORREY [5], [6], [7]) found it expedient to allow 

as admissible, functions which are still more general than Tonelli's 
functions and to allow correspondingly more general types of convergence. 
The new spaces of functions can now be identified with the Banach 
spaces HJ (G) (see the next section) (or the Sobolev spaces Wl{G)) which 
have been and still are being used by many writers in many different 
connections (see § 1.8). In this way, the writer was able to obtain very 
general existence theorems. Unfortunately the solution shown to exist 
was known only to be in one of these general spaces and hence wasn't 
even known to be continuous, let alone of class C^! So these existence 
theorems in themselves have only minor interest. However, at the same 
time,i the writer was able to show in the case v = 2 {N arbitrary) that 
these very general solutions were, in fact, of class C^ after all provided 
that / satisfied the conditions (1.10.8) below with ^ = r = 2. A greatly 
simplified presentation of this old work is to be found in the author's 
paper [15]; recent developments have permitted further simplifications 
and extensions which we shall discuss later. 

In general, it is still not known that the solutions are continuous if / 
satisfies (1-7.1) with 1 < ^ < r. In the case v = 2, N — \ TONELLI [8] 
showed that the solutions in this case are continuous if / is such that 
there is a unique minimizing function in the small. More recently, 
SiGALOV ([1], [3]) showed that the solution surfaces always posess con-
formal maps (possibly with vertical segments) in the case v = 2, N = i. 
In the case v == 2, N = \, f == f{p) it was proved a long time ago by 
A. HAAR (see also RADO [2]) that there is a unique minimizing function 
z which is defined on a strictly convex domain G and which satisfies a 
Lipschitz condition with constant L, provided that any linear function 
which coincides with the given boundary values at three different points 
on the boundary has slope < Z . This result has recently been generalized 
(not quite completely) by GILBARG and STAMPACCHIA [3]. The author 

has completed the extension of HAAR'S results and has extended those 

1 This work was completed during the year 1937 — 38 and the author lectured 
on it in the seminar of Marston Morse during the spring of 1938 and also reported 
on this work in an invited lecture to the American Mathematical Society at its 
meeting in Pasadena, California, on December 2, 1939 [6]. The necessary theorems 
about the H^ spaces (called ^ ^ at that time) (see § 1.8) were published in the papers 
referred to above by CALKIN and the author [5]. The remainder of the work was 
first published in a paper (MORREY (7]) which was released in December 1943," the 
manuscript had been approved for publication in 1939-

Morrey, Multiple Integrals 2 



18 Introduction 

of STAMPACCHIA and GILBARG. These results are presented and proved 
in § 4-2. The results include GILBARG'S existence theorem for equations 
of the form (I.IO.I3) with N = i, Bi = 0, A"- = A"" {p). The advantages 
of these theorems are that one can restrict one's self to LIPSCHITZ func-
tions z and no assumption has to be made about how f{x, z, p) behaves 
as 1̂ 1 ->oo . The convexity assumption for all (x, z,p) is suggested by 
the conditions in §§ 1.4—1.6. 

In the existence theorems mentioned above, the author considered 
integrals of the form (1.1.1) in which v and N are arbitrary but in wh ich / 
is convex in all the pl^; with this convexity assumption, no difficulties 
were introduced in the proofs by allowing AT > 1. The results have been 
extended and the old proofs greatly simplified by SERRIN ([1], [2]); we 
shall present (in § 1.8) a simple lower-semicontinuity proof based on 
some of his ideas and on some ideas of TONELLI. However, for iV > 1, 
the proper condition would be to assume that (1.5-8) and/or (1.5-5) held 
for all (x, z, p, A, f). The author has studied these general integrals ([9]) 
and found that if / satisfies the conditions 

mV^ - K <.f{x, z,p) <MV^, \fp{x, z,p)\<. M F ^ - i , k > 1 

\M,\M<MVK m>0, F = (1 + 1^12)1/2 

then a necessary and sufficient condition that I[z, G) be lower semicon-
tinuous on the space H\ (G) with respect to uniform convergence is that 
/ be quasi-convex as a function oi p. A function/(^) , p = {pl^} is quasi-
convex if and only if it is continuous and 

jflPo + VC(«)] dx >f{po) • \G\, C€ Q(G) ; 
G 

that is, linear vectors give the absolute minimum to I{z, G) among all z 
with such boundary values (note that linear functions always satisfy 
EULER'S equation if f^C^). A necessary condition for quasi-convexity is 
just (1.5.5)- The author showed that (1.5-5) is sufficient for quasi-con-
vexity if f{p) is of one of the two following forms 

Wm = <fP'pf K f ) const. 

{2)f{p)=F{Di,...,D^^,). N = v+i 

where F is homogeneous of degree 1 in the Di and Di is the determinant 
of the submatrix obtained by omitting the ^-th column of the pi_ matrix; 
or if for each p, there exist alternating constant tensors Af, Aff, . . ., 
such that 

fiP + 71) > / ( / ) ) + AtK + ^IKA + ••• + AX\\\\7il\.. .7^:;; 

for all 71. Under some additional conditions the integral is lower-semi-
continuous with respect to weak convergence in H\ (G), We discuss these 
integrals in § 4.4- Recently Norman MEYERS has extended the author's 


