MATLAB Guide to Finite Elements

Peter I. Kattan

MATLAB Guide
to Finite Elements

An Interactive Approach

Second Edition
With 108 Figures and 25 Tables

@ Springer

Peter 1. Kattan, PhD
P.O. BOX 1392
Amman 11118

Jordan

pkattan @tedata.net.jo
pkattan@Isu.edu

Library of Congress Control Number: 2007920902
ISBN-13 978-3-540-70697-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
(© Springer-Verlag Berlin Heidelberg 2008

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws

and regulations and therefore free for general use.

Typesetting: Integra Software Services Pvt. Ltd., Pondicherry, India
Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper SPIN: 11301950 42/3100/Integra 5 4 3 2 1 0

Dedicated to My Professor, George Z. Voyiadjis

Preface to the Second Edition

Soon after the first edition of this book was published at the end of 2002, it was
realized that a new edition of the book was needed. I received positive feedback
from my readers who requested that I provide additional finite elements in other
areas like fluid flow and heat transfer. However, I did not want to lengthen the book
considerably. Therefore, I decided to add two new chapters thus adding new material
while keeping the size of the book reasonable.

The second edition of the book continues with the same successful format that
characterized the first edition — which was sold out in less than four years. I continue
to emphasize the important features of interactivity of using MATLAB! coupled with
the simplicity and consistency of presentation of finite elements. One of the most
important features also is bypassing the use of numerical integration in favor of exact
analytical integration with the use of the MATLAB Symbolic Math Toolbox?. The
use of this toolbox is emphasized in Chaps. 12, 13, 14, and 16.

In the new edition, two important changes are immediately noted. First, I corrected
the handful of typing errors that appeared in the first edition. Second, I added two
new chapters. Chap. 16 includes another solid three-dimensional element (the eight-
noded brick element) in great detail. The final chapter (Chap. 17) provides a review
of the applications of finite elements in other areas like fluid flow, heat transfer,
geotechnical engineering, electro-magnetics, structural dynamics, plasticity, etc. In
this chapter, I show how the same consistent strategy that was followed in the first
sixteen chapters can be used to write MATLAB functions in these areas by providing
the MATLAB code for a one-dimensional fluid flow element.

One minor drawback of the first edition as I see it is the absence of a concluding
chapter. Therefore, I decided to remedy the situation by adding Chap. 17 as a real
concluding chapter to the book. It is clear that this chapter is different from the first
sixteen chapters and thus may well provide a well written conclusion to the book.

The second edition still comes with an accompanying CD-ROM that contains the
full set of M-files written specifically to be used with this book. These MATLAB
functions have been tested with version 7 of MATLAB and should work with any

! MATLAB is a registered trademark of The MathWorks, Inc.
2 The MATLAB Symbolic Math Toolbox is a registered trademark of The MathWorks, Inc.

VIII Preface to the Second Edition

later versions. In addition, the CD-ROM contains a complete solutions manual that
includes detailed solutions to all the problems in the book. If the reader does not wish
to consult these solutions, then a brief list of answers is provided in printed form at
the end of the book.

I'would like to thank my family members for their help and continued support with-
out which this book would not have been possible. I would also like to acknowledge
the help of the editior at Springer-Verlag (Dr. Thomas Ditzinger) for his assistance in
bringing this book out in its present form. Finally, I would like to thank my brother,
Nicola, for preparing most of the line drawings in both editions. In this edition, I am
providing two email addresses for my readers to contact me (pkattan @tedata.net.jo
and pkattan@lsu.edu). The old email address that appeared in the first edition was
cancelled in 2004.

December 2006 Peter I. Kattan

Preface to the First Edition

This is a book for people who love finite elements and MATLAB?. We will use the
popular computer package MATLAB as a matrix calculator for doing finite element
analysis. Problems will be solved mainly using MATLAB to carry out the tedious
and lengthy matrix calculations in addition to some manual manipulations especially
when applying the boundary conditions. In particular the steps of the finite element
method are emphasized in this book. The reader will not find ready-made MATLAB
programs for use as black boxes. Instead step-by-step solutions of finite element prob-
lems are examined in detail using MATLAB. Problems from linear elastic structural
mechanics are used throughout the book. The emphasis is not on mass computation
or programming, but rather on learning the finite element method computations and
understanding of the underlying concepts. In addition to MATLAB, the MATLAB
Symbolic Math Toolbox* is used in Chaps. 12, 13, and 14.

Many types of finite elements are studied in this book including the spring element,
the bar element, two-dimensional and three-dimensional truss elements, plane and
space beam and frame elements, two-dimensional elasticity elements for plane stress
and plane strain problems, and one three-dimensional solid element. Each chapter
deals with only one type of element. Also each chapter starts with a summary of the
basic equations for the element followed by a number of examples demonstrating
the use of the element using the provided MATLAB functions. Special MATLAB
functions for finite elements are provided as M-files on the accompanying CD-ROM to
be used in the examples. These functions have been tested successfully with MATLAB
versions 5.0, 5.3, and 6.1. They should work with other later versions. Each chapter
also ends with a number of problems to be used as practice for students.

This book is written primarily for students studying finite element analysis for the
first time. It is intended as a supplementary text to be used with a main textbook for
an introductory course on the finite element method. Since the computations of finite
elements usually involve matrices and matrix manipulations, it is only natural that
students use a matrix-based software package like MATLAB to do the calculations.

3 MATLARB is a registered trademark of The MathWorks, Inc.
4 The MATLAB Symbolic Math Toolbox is a registered trademark of The MathWorks, Inc.

X Preface to the First Edition

In fact the word MATLAB stands for MATrix LABoratory. The main features of the
book are:

1. The book is divided into fifteen chapters that are well defined ad correlated.
. The books includes a short tutorial on using MATLAB in Chap. 1.

3. The CD-ROM that accompanies the book includes 75 MATLAB functions (M-
files) that are specifically written to be used with this book. These functions
comprise what may be called the MATLAB Finite Element Toolbox. It is used
mainly for problems in structural mechanics. The provided MATLAB functions
are designed to be simple and easy to use.

4. Asequence of six steps is outlined in the first chapter for the finite element method.
These six steps are then used systematically in each chapter throughout the book.

5. The book stresses the interactive use of MATLAB. Each example is solved in an
interactive session with MATLAB. No ready-made subroutines are provided to
be used as black boxes.

6. Answers to the all problems are provided at the end of the book.

7. Asolutions manual is also provided on the accompanying CD-ROM. The solutions
manual includes detailed solutions to all the problems in the book. It is over 300
pages in length.

The author wishes to thank the editors at Springer-Verlag (especially Dr. Thomas
Ditzinger) for their cooperation and assistance during the writing of this book. Special
thanks are also given to my family members without whose support and encourage-
ment this book would not have been possible. In particular, I would like to thank
Nicola Kattan for preparing most of the figures that appear in the book.

February 2002 Peter 1. Kattan

Table of Contents

1. Imtroduction......... i 1
1.1 Steps of the Finite Element Method 1
1.2 MATLAB Functions for Finite Element Analysis 2
1.3 MATLAB Tutorialttt 4
2. TheSpringElement 11
2.1 BasicEqQUAtiONSvvti et 11
2.2 MATLABFunctionsUsedc.ciiiiiiiiinennnn .. 12
3. TheLinear BarElement .. 27
3.1 BasicEquations................iiiiiiiiii 27
3.2 MATLAB Functions Usedooo ... 28
4. The QuadraticBarElement 45
4.1 BasicEquations.............ooiiiiiii i 45
4.2 MATLAB Functions Usedccoiiiiiiiiinnnnn... 46
S. ThePlane TrussElement............. 61
5.1 BasicEquations...............ooiiiiiiiiiiii 61
5.2 MATLAB Functions Usedo ... 62
6. The Space TrussElement 91
6.1 Basic EqQUAtionsouuiiiiiiiin it 91
6.2 MATLABFunctions Usedcoiiiiiiiininenn... 92
7. TheBeamElement 109
7.1 BasicEquations................ i i 109
7.2 MATLAB Functions Usedo ... 110
8. ThePlane FrameElement............ 137
8.1 BasicEquations............ ..t 137

82 MATLABFunctionsUsed, 139

XII

Table of Contents

9. TheGridElement i iiiiiiiiinnannnan 175
9.1 BasicEqQuationsoiiiiiiiiiiiiiiii i 175
9.2 MATLABFunctions Usedcooviiiiiiiiniiinaenn.. 176
10. The Space Frame Element 193
10.1 Basic Equationsttt 193
10.2 MATLAB Functions Usedcoo i, 195
11. The Linear Triangular Element 217
11.1 Basic EQUationsttt 217
11.2 MATLAB Functions Usediiiiiniiiiiiineenn.. 219
12. The Quadratic Triangular Element. 249
12.1 BasicEquationsoo it 249
12.2 MATLAB Functions Usedcooviiiniiineiinnnnnnnn. 251
13. The Bilinear Quadrilateral Element 275
13.1 Basic EQuationsttt 275
13.2 MATLAB Functions Usedoiiiiiniiinniiineenn.. 278
14. The Quadratic Quadrilateral Element 311
14.1 BasicEquationst 311
14.2 MATLAB Functions Usedcooiiiiniiineinnnnnnnn. 314
15. The Linear Tetrahedral (Solid) Element 337
15.1 Basic EQUationsttt 337
15.2 MATLAB Functions Used, 340
16. The Linear Brick (Solid) Element 367
16.1 BasicEquationsot 367
16.2 MATLAB Functions Usedc.cuiiiiiiineiinnennn.n. 371
17. OtherElements ittt 397
17.1 Applications of Finite Elements in Other Areas 397
17.2 Basic Equations of the Fluid Flow 1D Element 398
17.3 MATLAB Functions Used in the Fluid Flow 1D Element 400
References. 403
Answerto Problems 405
Contents of the Accompanying CD-ROM 425

1 Introduction

This short introductory chapter is divided into two parts. In the first part there is a
summary of the steps of the finite element method. The second part includes a short
tutorial on MATLAB.

1.1
Steps of the Finite Element Method

There are many excellent textbooks available on finite element analysis like those in
[1-18]. Therefore this book will not present any theoretical formulations or deriva-
tions of finite element equations. Only the main equations are summarized for each
chapter followed by examples. In addition only problems from linear elastic structural
mechanics are used throughout the book.

The finite element method is a numerical procedure for solving engineering prob-
lems. Linear elastic behavior is assumed throughout this book. The problems in this
book are taken from structural engineering but the method can be applied to other
fields of engineering as well. In this book six steps are used to solve each problem
using finite elements. The six steps of finite element analysis are summarized as
follows:

1. Discretizing the domain — this step involves subdividing the domain into
elements and nodes. For discrete systems like trusses and frames the system
is already discretized and this step is unnecessary. In this case the answers
obtained are exact. However, for continuous systems like plates and shells this
step becomes very important and the answers obtained are only approximate.
In this case, the accuracy of the solution depends on the discretization used. In
this book this step will be performed manually (for continuous systems).

2. Writing the element stiffness matrices — the element stiffness equations need
to be written for each element in the domain. In this book this step will be
performed using MATLAB.

3. Assembling the global stiffness matrix — this will be done using the direct
stiffness approach. In this book this step will be performed using MATLAB.

2 1. Introduction

4. Applying the boundary conditions — like supports and applied loads and dis-
placements. In this book this step will be performed manually.

5. Solving the equations — this will be done by partitioning the global stiffness
matrix and then solving the resulting equations using Gaussian elimination.
In this book the partitioning process will be performed manually while the
solution part will be performed using MATLAB with Gaussian elimination.

6. Post-processing — to obtain additional information like the reactions and el-
ement forces and stresses. In this book this step will be performed using
MATLAB.

It is seen from the above steps that the solution process involves using a com-
bination of MATLAB and some limited manual operations. The manual operations
employed are very simple dealing only with discretization (step 1), applying bound-
ary conditions (step 4) and partitioning the global stiffness matrix (part of step 5). It
can be seen that all the tedious, lengthy and repetitive calculations will be performed
using MATLAB.

1.2
MATLAB Functions for Finite Element Analysis

The CD-ROM accompanying this book includes 84 MATLAB functions (M-files)
specifically written by the author to be used for finite element analysis with this book.
They comprise what may be called the MATLAB Finite Element Toolbox. These
functions have been tested with version 7 of MATLAB and should work with any
later versions. The following is a listing of all the functions available on the CD-ROM.
The reader can refer to each chapter for specific usage details.

SpringElementStiffness(k)
SpringAssemble(K, k, i, j)
SpringElementForces(k, u)

LinearBarElementStiffness(E, A, L)
LinearBarAssemble(K , k, 1, j)
LinearBarElementForces(k, u)
LinearBarElementStresses(k, u, A)

QuadraticBarElementStiffness(E, A, L)
QuadraticBarAssemble(K , k, i, j, m)
QuadraticBarElementForces(k, u)
QuadraticBarElementStresses(k, u, A)

PlaneTrussElementLength(x1, y1, X2, Y2)
PlaneTrussElementStiffness(E, A, L, theta)
PlaneTrussAssemble(K, k, i, j)
PlaneTrussElementForce(E, A, L, theta, u)

1.2 MATLAB Functions for Finite Element Analysis

PlaneTrussElementStress(E, L, theta, u)
PlaneTrussInclinedSupport(T, i, alpha)

SpaceTrussElementLength(x1, Y1, 21, T2, Y2, 22)
SpaceTrussElementStiffness(E, A, L, thetax, thetay, thetaz)
SpaceTrussAssemble(K, k, 1, j)
SpaceTrussElementForce(E, A, L, thetax, thetay, thetaz, u)
SpaceTrussElementStress(E, L, thetax, thetay, thetaz, u)

BeamElementStiffness(E, 1, L)
BeamAssemble(K, k, i, j)
BeamElementForces(k, u)
BeamElementShearDiagram(f, L)
BeamElementMomentDiagram(f, L)

PlaneFrameElementLength(x, y1, T2, Y2)
PlaneFrameElementStiffness(E, A, I, L, theta)
PlaneFrameAssemble(K, k, 1, j)
PlaneFrameElementForces(E, A, I, L, theta, u)
PlaneFrameElementAxialDiagram(f, L)
PlaneFrameElementShearDiagram(f, L)
PlaneFrameElementMomentDiagram(f, L)
PlaneFramelnclinedSupport(T, i, alpha)

GridElementLength(x1, Y1, T2, Y2)
GridElementStiffness(E, G, I, J, L, theta)
GridAssemble(K , k, i, j)
GridElementForces(E, G, I, J, L, theta, u)

SpaceFrameElementLength(z1, y1, 21, T2, Y2, 22)
SpaceFrameElementStiffness(E, G, A, Iy, I, J, x1, y1, 21, T2, Y2, 22)
SpaceFrameAssemble(K, k, i, 7)

SpaceFrameElementForces(E, G, A, I;, I, J, x1, y1, 21, T2, Y2, 22, W)
SpaceFrameElementAxialDiagram(f, L)
SpaceFrameElementShearZDiagram(f, L)
SpaceFrameElementShearYDiagram(f, L)
SpaceFrameElementTorsionDiagram(f, L)
SpaceFrameElementMomentZDiagram(f, L)
SpaceFrameElementMomentYDiagram(f, L)

LinearTriangleElementArea(x;, ¥, T3, ¥j» Tms Ym)
LinearTriangleElementStiffness(E, NU, t, xi, yi, Tj, ¥j» Tm> Ym> P)
LinearTriangleAssemble(K, k, i, j, m)
LinearTriangleElementStresses(E, NU, t, xi, Yi, Tj, Yj» Tm> Ym, D> U)
LinearTriangleElementPStresses(sigma)

4 1. Introduction

QuadTriangleElementArea(z1, Y1, T2, Y2, T3, Y3)
QuadTriangleElementStiffness(E, NU, t, x1, Y1, T2, Y2, T3, Y3, D)
QuadTriangleAssemble(K, k, i, j, m, p, q, 1)
QuadTriangleElementStresses(E, NU, t, x1, Y1, T2, Y2, T3, Y3, P, U)
QuadTriangleElementPStresses(sigma)

BilinearQuadElementArea(x1, Y1, T2, Y2, T3, Y3, Td, Ys)
BilinearQuadElementStiffness(E, NU, t, x1, Y1, T2, Y2, T3, Y3, T4, Y4, D)
BilinearQuadElementStiffness2(E, NU, t, 1, Y1, T2, Y2, T3, Y3, T4, Y4, D)
BilinearQuadAssemble(K, k, i, j, m, n)
BilinearQuadElementStresses(E, NU, x1, y1, T2, Y2, T3, Y3, T4, Y4, P, U)
BilinearQuadElementPStresses(sigma)

QuadraticQuadElementArea(x1, Y1, T2, Y2, T3, Y3, T4, Ya)
QuadraticQuadElementStiffness(E, NU, t, 1, Y1, T2, Y2, T3, Y3, T4, Y4, D)
QuadraticQuadAssemble(K , k, i, j, m, p, q, T, S, t)
QuadraticQuadElementStresses(F, NU, x1, y1, T2, Y2, T3, Y3, T4, Y4, D> U)
QuadraticQuadElementPStresses(sigma)

TetrahedronElementVolume(x1, Y1, 21, T2, Y2, 22, T3> Y3» 23, T4, Y4, 24)
TetrahedronElementStiffness(E, NU, x1, Y1, 21, T2, Y2, 22, T3, Y3, 23, T4, Y4, 24)
TetrahedronAssemble(K, k, i, 7, m, n)

TetrahedronElementStresses(E, NU, x1, Y1, 21, T2, Y2, 22, L3, Y3, 23, T4, Y4, 24, U)
TetrahedronElementPStresses(sigma)

LinearBrickElementVolume(x1, Y1, 21, T2, Y2, 22, T3, Y3, 23, T4, Yd» 24> T55 Y5, 25,
T6> Y65 265 T75 Y7> 27> T85> Y85 28)

LinearBrickElementStiffness(E, NU, x1, Y1, 21, T2, Y2, 22, T3, Y3, 23, T4, Y4, 24, L5,
Ys, 255 L6y Y65 265 L7, Y7, 275 T8, Y8, 28)

LinearBrickAssemble(K, k, i, j, m, n, p, q, T, S)

LinearBrickElementStresses(E, NU, x1, Y1, 21, T2, Y2, 22, T3, Y3, 23, T4, Y4, 24, T5,
Y55 25> L65 Y6 265 7> Y75 27, T8, Y8, 28, U)

LinearBrickElementPStresses(sigma)

FluidFlowlDElementStiffness(K .., A, L)
FluidFlowlDAssemble(K, k, i, j)
FluidFlowlDElementVelocities(K .., L, p)
FluidFlowlDElementVFR(K ., L, p, A)

1.3
MATLAB Tutorial

In this section a very short MATLAB tutorial is provided. For more details consult
the excellent books listed in [19-27] or the numerous freely available tutorials on
the internet — see [28—35]. This tutorial is not comprehensive but describes the basic
MATLAB commands that are used in this book.

1.3 MATLAB Tutorial 5

In this tutorial it is assumed that you have started MATLAB on your system
successfully and you are ready to type the commands at the MATLAB prompt (which
is denoted by double arrows “>>"). Entering scalars and simple operations is easy
as is shown in the examples below:

» 3%4+45
ans =
17
» cos (30*pi/180)
ans =

0.8660

» 2/sqgrt (3+x)
ans =

0.7559

To suppress the output in MATLAB use a semicolon to end the command line as
in the following examples. If the semicolon is not used then the output will be shown
by MATLAB:

» y=32;

» z=5;

» X=2%y-2Z;
» W=3*y+4*z

116

MATLAB is case-sensitive, i.e. variables with lowercase letters are different than
variables with uppercase letters. Consider the following examples using the variables
x and X.

6 1. Introduction

1

Use the help command to obtain help on any particular MATLAB command. The
following example demonstrates the use of he1p to obtain help on the inv command.

» help inv

INV Matrix inverse.
INV(X) is the inverse of the square matrix X.
A warning message is printed if X is badly scaled or
nearly singular.

See also SLASH, PINV, COND, CONDEST, NNLS, LSCOV.

Overloaded methods
help sym/inv.m
help zpk/inv.m
help tf/inv.m
help ss/inv.m
help lti/inv.m
help frd/inv.m

The following examples show how to enter matrices and perform some simple
matrix operations:

» x=[1 23 ; 45 6 ; 7 8 9]

1.3 MATLAB Tutorial 7

y =
2
0
-3

» W=x*y

W =
-7
-10
-13

Let us now solve the following system of simultaneous algebraic equations:

2 -1 3 0 X1 3
1 5 =2 4| x|) 1
2 0 3 =2 z3 [) -2 (.1
1 2 3 4 Ty 2

We will use Gaussian elimination to solve the above system of equations. This is
performed in MATLAB by using the backslash operator “\” as follows:

» A=[2 -1 3 0 ; 1 5-24; 203 -2; 123 4]

A =

2 -1 3 0

1 5 -2 4

2 0 3 -2

1 2 3 4
» b=[3 ; 1 ; -2 ; 2]
b =

3

1

-2

8 1. Introduction

» X= A\b
X =
1.9259
-1.8148
-0.8889
1.5926

It is clear that the solution is 1 = 1.9259, x5 = —1.8148, x5 = —0.8889, and
x4 = 1.5926. Alternatively, one can use the inverse matrix of A to obtain the same
solution directly as follows:

» x=inv (A) *b

1.9259
-1.8148
-0.8889

1.5926

It should be noted that using the inverse method usually takes longer that using
Gaussian elimination especially for large systems. In this book we will use Gaussian
elimination (i.e. the backslash operator “\”).

Consider now the following 5 X 5 matrix D:

»D=[12345 ;24689 ;24624;1123-2;90231]

D =
1 2 3 4 5
2 4 6 8 9
2 4 6 2 4
1 1 2 3 -2
9 0 2 3 1

We can extract the submatrix in rows 2 to 4 and columns 3 to 5 as follows:

» E=D (2:4, 3:5)

1.3 MATLAB Tutorial 9

We can extract the third column of D as follows:

» F=D(1:5,3)

F =

NN OO W

We can also extract the second row of D as follows:

» G=D(2,1:5)
e =

2 4 6 8 9
We can extract the element in row 4 and column 3 as follows:

» H=D (4, 3)
H =

2

Finally in order to plot a graph of the function y = f(x), we use the MATLAB
command plot (x,y) after we have adequately defined both vectors = and y. The
following is a simple example.

» x=[1 23 456 7 8 9 10]

X =
1 2 3 4 5 6 7 8 9 10
» y=x."2
y =
1 4 9 16 25 36 49 64 81 100

» plot (x,Vy)

Figure 1.1 shows the plot obtained by MATLAB. It is usually shown in a separate
graphics window. In this figure no titles are given to the x and y-axes. These titles
may be easily added to the figure using the x-1abel and y-1label commands.

10 1. Introduction

100 T T T T

90

80

70

60

50

40t

30

20

10+

0 L 1 1 L
1 2 3 4 5

Fig. 1.1. Using the MATLAB Plot Command

10

2 The Spring Element

2.1
Basic Equations

The spring element is a one-dimensional finite element where the local and global
coordinates coincide. It should be noted that the spring element is the simplest finite
element available. Each spring element has two nodes as shown in Fig. 2.1. Let the
stiffness of the spring be denoted by k. In this case the element stiffness matrix is
given by (see [1], [8], and [18]).

k —k
=57 @)

Fig. 2.1. The Spring Element

Obviously the element stiffness matrix for the spring element is a 2 X 2 matrix since
the spring element has only two degrees of freedom — one at each node. Consequently
for a system of spring elements with n nodes, the size of the global stiffness matrix
K will be of size n x n (since we have one degree of freedom at each node). The
global stiffness matrix K is obtained by assembling the element stiffness matrices
ki(i =1,2,3,.....,n) using the direct stiffness approach. For example the element
stiffness matrix & for a spring connecting nodes 4 and 5 in a system will be assembled
into the global stiffness matrix K by adding its rows and columns to rows 4 and 5
and columns 4 and 5 of K. A special MATLAB function called SpringAssemble is
written specifically for this purpose. This process will be illustrated in detail in the
examples.

Once the global stiffness matrix K is obtained we have the following system
equation:

(KU} = {F} (2.2)

12 2. The Spring Element

where U is the global nodal displacement vector and F' is the global nodal force vector.
At this step the boundary conditions are applied manually to the vectors U and F'
Then the matrix (2.2) is solved by partitioning and Gaussian elimination. Finally once
the unknown displacements and reactions are found, the element forces are obtained
for each element as follows:

{7} = [F{u} (2.3)

where f is the 2 x 1 element force vector and u is the 2 x 1 element displacement
vector.

2.2
MATLAB Functions Used

The three MATLAB functions used for the spring element are:

“SpringElementStiffness(k) — This function calculates the element stiffness matrix for
each spring with stiffness k. It returns the 2 x 2 element stiffness matrix k.”

SpringAssemble(K, k, i, j) — This functions assembles the element stiffness matrix
k of the spring joining nodes i (at the left end) and j (at the right end) into the global
stiffness matrix K. Itreturns the n x n global stiffness matrix K every time an element
is assembled.

SpringElementForces(k, u) — This function calculates the element force vector using
the element stiffness matrix £ and the element displacement vector u. It returns the
2 x 1 element force vector f.

The following is a listing of the MATLAB source code for each function:

function y = SpringElementStiffness (k)

$SpringElementStiffness This function returns the element stiffness
% matrix for a spring with stiffness k.

The size of the element stiffness matrix

is 2 x 2.

o0 o

o°

y = [k -k; -k k];

function y = SpringAssemble(K,k,1i,7)

$SpringAssemble This function assembles the element stiffness
matrix k of the spring with nodes i and j into the
global stiffness matrix K.

This function returns the global stiffness matrix K
after the element stiffness matrix k is assembled.
K(i, i) + k(1,1);

K(i,j) = K(i,3) + k(1,2);

o° o o° o°

1
=
-
b

2.2 MATLAB Functions Used 13

K(j,i) = K(j,1) + k(2,1);
K(j,3) = K(3.,3) + k(2,2);
y = K;

function y = SpringElementForces (k,u)

$SpringElementForces This function returns the element nodal force
vector given the element stiffness matrix k
and the element nodal displacement vector

o°

o°

k * u;

NoEe
I

Example 2.1:

Consider the two-element spring system shown in Fig. 2.2. Given k; = 100 kN /m,
ko = 200 kN/m, and P = 15 kN, determine:

the global stiffness matrix for the system.
the displacements at nodes 2 and 3.

the reaction at node 1.

the force in each spring.

el

Fig. 2.2. Two-Element Spring System for Example 2.1

Solution:

Use the six steps outlined in Chap. 1 to solve this problem using the spring element.

Step 1 - Discretizing the Domain:

This problem is already discretized. The domain is subdivided into two elements and
three nodes. Table 2.1 shows the element connectivity for this example.

Table 2.1. Element Connectivity for Example 2.1

Element Number Node ¢ Node j

1 1 2
2 2 3

14 2. The Spring Element

Step 2 — Writing the Element Stiffness Matrices:

The two element stiffness matrices k1 and ko are obtained by making calls to the
MATLAB function SpringElementStiffness. Each matrix has size 2 x 2.

» kl=SpringElementStiffness (100)

k1l =

100 -100
-100 100

» k2=SpringElementStiffness (200)

k2 =

200 -200
-200 200

Step 3 — Assembling the Global Stiffness Matrix:

Since the spring system has three nodes, the size of the global stiffness matrix is 3 x 3.
Therefore to obtain K we first set up a zero matrix of size 3 x 3 then make two calls
to the MATLAB function SpringAssemble since we have two spring elements in the
system. Each call to the function will assemble one element. The following are the
MATLAB commands:

» K=zeros (3, 3)

K =
0 0 0
0 0 0
0 0 0

» K=SpringAssemble (K,kl,1,2)

100 -100 0
-100 100 0
0 0 0

2.2 MATLAB Functions Used 15

» K=SpringAssemble (K, k2,2, 3)

K =

100 -100 0
-100 300 -200
0 -200 200

Step 4 — Applying the Boundary Conditions:

The matrix (2.2) for this system is obtained as follows using the global stiffness matrix
obtained in the previous step:

100 —100 0 U, Fy
—100 300 —200 Uy p =¢ (2.4)
0 —200 200 Us E3

The boundary conditions for this problem are given as:

Uy =0,F, =0,F; = 15kN 2.5)

Inserting the above conditions into (2.4) we obtain:

100 —100 0 0 Fy
—100 300 —200 Uy p=4¢0 (2.6)
0 —200 200 Us 15

Step 5 — Solving the Equations:
Solving the system of equations in (2.6) will be performed by partitioning (manually)

and Gaussian elimination (with MATLAB). First we partition (2.6) by extracting the
submatrix in rows 2 and 3 and columns 2 and 3. Therefore we obtain:

300 —200] U2 _ [O
[—200 200]{%}‘{15} @7

The solution of the above system is obtained using MATLAB as follows. Note that
the backslash operator “\” is used for Gaussian elimination.

16 2. The Spring Element

» k=K (2:3,2:3)

F o=
0
15

» u=k\f

u =
0.1500
0.2250

It is now clear that the displacements at nodes 2 and 3 are 0.15m and 0.225m,
respectively.

Step 6 — Post-processing:

In this step, we obtain the reaction at node 1 and the force in each spring using
MATLAB as follows. First we set up the global nodal displacement vector U, then
we calculate the global nodal force vector F'.

» U=[0 ; ul

U =
0
0.1500
0.2250
» F=K*U
F =
-15
0

15

2.2 MATLAB Functions Used 17

Thus the reaction at node 1 is a force of 15 kN (directed to the left). Finally we setup
the element nodal displacement vectors u; and us, then we calculate the element force
vectors f and f> by making calls to the MATLAB function SpringElementForces.

» ul=[0 ; U(2)]
ul =

0
0.1500

» fl=SpringElementForces (k1l,ul)

f1 =

0.1500
0.2250

» f2=SpringElementForces (k2,u2)
f2 =

-15
15

Thus it is clear that the force in element 1 is 15kN (tensile) and the force in
element 2 is also 15 kN (tensile).

Example 2.2:

Consider the spring system composed of six springs as shown in Fig. 2.3. Given
k = 120kN/m and P = 20kN, determine:

the global stiffness matrix for the system.
the displacements at nodes 3, 4, and 5.
the reactions at nodes 1 and 2.

the force in each spring.

Ll S

18 2. The Spring Element

k
3 a4
1k k k
ﬁ P.
k
k 5

Fig. 2.3. Six-Element Spring System for Example 2.2

Solution:

Use the six steps outlined in Chap. 1 to solve this problem using the spring element.

Step 1 — Discretizing the Domain:

This problem is already discretized. The domain is subdivided into six elements and
five nodes. Table 2.2 shows the element connectivity for this example.

Table 2.2. Element Connectivity for Example 2.2

Element Number Node ¢ Node j
1 1 3
2 3 4
3 3 5
4 3 5
5 5 4
6 4 2

Step 2 — Writing the Element Stiffness Matrices:

The six element stiffness matrices k1, k2, k3, k4, k5, and kg are obtained by making
calls to the MATLAB function SpringElementStiffness. Each matrix has size 2 x 2.

» kl=SpringElementStiffness (120)
k1 =

120 -120
-120 120

2.2 MATLAB Functions Used 19

» k2=SpringElementStiffness(120)
k2 =

120 -120
-120 120

» k3=SpringElementStiffness(120)
k3 =

120 -120
-120 120

» k4=SpringElementStiffness (120)
k4 =

120 -120
-120 120

» k5=SpringElementStiffness(120)
k5 =

120 -120
-120 120

» k6=SpringElementStiffness(120)
k6 =

120 -120
-120 120

Step 3 — Assembling the Global Stiffness Matrix:

Since the spring system has five nodes, the size of the global stiffness matrix is 5 X 5.
Therefore to obtain K we first set up a zero matrix of size 5 x 5 then make six calls
to the MATLAB function SpringAssemble since we have six spring elements in the
system. Each call to the function will assemble one element. The following are the
MATLAB commands:

20 2. The Spring Element

» K=zeros(5,5)

K =

o O O O o
O O O O o
o O O O o
o O O O o
o O O O o

» K=SpringAssemble (K, k1,1, 3)

K =
120 0 -120 0 0
0 0 0 0 0
-120 0 120 0 0
0 0 0 0 0
0 0 0 0 0

» K=SpringAssemble (K, k2,3,4)

K =
120 0 -120 0 0
0 0 0 0 0
-120 0 240 -120 0
0 0 -120 120 0
0 0 0 0 0

» K=SpringAssemble (K, k3,3,5)

K =

120 0 -120 0 0
0 0 0 0
-120 0 360 -120 -120
0 -120 120 0
0 -120 0 120

