Advances in Soft Computing

Editor-in-Chief: J. Kacprzyk

39

Advances in Soft Computing

Editor-in-Chief

Prof. Janusz Kacprzyk

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk @ibspan.waw.pl

Further volumes of this series can be found on our homepage: springer.com

Marek Kurzynski, Edward Puchala,
Michal Wozniak, Andrzej Zolnierek (Eds.)
Computer Recognition Systems, 2005
ISBN 978-3-540-25054-8

Abraham Ajith, Yasuhiko Dote,

Takeshi Furuhashi, Mario Koppen,

Azuma Ohuchi, Yukio Ohsawa (Eds.)

Soft Computing as Transdisciplinary Science
and Technology, 2005

ISBN 978-3-540-25055-5

Barbara Dunin-Keplicz, Andrzej
Jankowski, Andrzej Skowron,

Marcin Szczuka (Eds.)

Monitoring, Security, and Rescue
Techniques in Multiagent Systems, 2005
ISBN 978-3-540-23245-2

Frank Hoffmann, Mario Koppen,
Frank Klawonn, Rajkumar Roy (Eds.)
Soft Computing Methodologies and
Applications, 2005

ISBN 978-3-540-25726-4

Mieczyslaw A. Klopotek, Slawomir T.
Wierzchon, Kryzysztof Trojanowski
(Eds.)

Intelligent Information Processing and
Web Mining, 2005

ISBN 978-3-540-25056-2

Abraham Ajith, Bernard de Bacts,

Mario Koppen, Bertram Nickolay (Eds.)
Applied Soft Computing Technologies: The
Challenge of Complexity, 2006

ISBN 978-3-540-31649-7

Mieczyslaw A. Klopotek, Slawomir T.
Wierzchon, Kryzysztof Trojanowski
(Eds.)

Intelligent Information Processing and
Web Mining, 2006

ISBN 978-3-540-33520-7

Ashutosh Tiwari, Joshua Knowles,
Erel Avineri, Keshav Dahal,

Rajkumar Roy (Eds.)

Applications and Soft Computing, 2006
ISBN 978-3-540-29123-7

Bernd Reusch, (Ed.)

Computational Intelligence, Theory and
Applications, 2006

ISBN 978-3-540-34780-4

Miguel Lépez-Diaz, Marfa ¢. Gil,
Przemystaw Grzegorzewski, Olgierd
Hryniewicz, Jonathan Lawry

Soft Methodology and Random Information
Systems, 2006

ISBN 978-3-540-34776-7

Ashraf Saad, Erel Avineri, Keshav Dahal,
Muhammad Sarfraz, Rajkumar Roy (Eds.)
Soft Computing in Industrial Applications,
2007

ISBN 978-3-540-70704-2

Ashraf Saad, Erel Avineri, Keshav Dahal,
Muhammad Sarfraz, Rajkumar Roy (Eds.)

Soft Computing in Industrial
Applications

Recent and Emerging Methods and Techniques

@ Springer

Editors

Dr. Ashraf Saad

Department of Computer Science
Armstrong Atlantic State University
11935 Abercorn Street

Savannah, Georgia 31419-1997
USA

E-mail: ashraf @cs.armstrong.edu

Dr. Erel Avineri

Centre for Transport & Society
Faculty of the Built Environment
University of the West of England
Frenchay Campus

Coldharbour Lane

Bristol BS16 1QY

UK

E-mail: Erel. Avineri @uwe.ac.uk

Dr. Keshav Dahal

MOSAIC Research Group
University of Bradford

Department of Computing
Bradford BD7 1DP

UK

E-mail: K.P.Dahal @Bradford.ac.uk

Dr. Muhammad Sarfraz

Information & Computer Science Department

King Fahd University of Petroleum & Minerals

KFUPM #1510

Dhahran 31261

Saudi Arabia

E-mail: sarfraz@ccse.kfupm.edu.sa,
sarfraz@kfupm.edu.sa

Prof. Rajkumar Roy
Decision Engineering Centre
Manufacturing Department
Cranfield University

Bedford MK43 OAL

UK

E-mail: r.roy @cranfield.ac.uk

Library of Congress Control Number: 2007923718

ISSN print edition: 1615-3871

ISSN electronic edition: 1860-0794
ISBN-10 3-540-70704-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70704-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con-
cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, re-
production on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting: by the authors and SPS using a Springer IATEX macro package
Printed on acid-free paper SPIN: 11585275 89/SPS 543210

Preface

On behalf of all members of the International Technical Program Committee of the
11th Online World Conference on Soft Computing in Industrial Applications
(WSC11), we would like to extend our sincere welcome to you. The conference con-
tinues a tradition started over a decade ago by the World Federation of Soft Comput-
ing (WFSC) to bring together researchers interested in advancing state of the art in the
field. Continuous technological improvements since then continue to make this online
forum a viable gathering format for a world class conference.

The program committee received a total of 63 submissions, of which 61 papers
qualified for peer review by the International Program Committee. Each paper was
then reviewed by at least three referees, culminating in the acceptance of 30 papers for
publication. Authors of all accepted papers were then notified to prepare and submit
their final manuscripts and conference presentations. This resulted in a total of 28 final
submissions by 73 authors that comprise the six sessions of the conference program.
Based on the reviewers’ reports, the authors provided revised versions of the papers —
all of them are featured in this book. Also featured is an invited paper based on a key-
note presentation. The authors of several outstanding papers have been invited to
submit significantly revised and extended versions of their papers to the Applied Soft
Computing Journal.

We extend our sincere thanks to all authors and to all members of the International
Program Committee for their clear and unwavering commitment to the success of
WSCI11. Reflecting the worldwide nature of WSC11, authors, members of the pro-
gram committee and the conference organizers are from over 20 countries and five
continents. We also extend our thanks to our keynote speaker, Dr. Pieter Mosterman
of the MathWorks for his contributed talk.

November 29, 2006 Ashraf Saad
General Chair of WSC11
Savannah, Georgia, USA

Erel Avineri
Program Chair of WSCI11
Bristol, UK

Message from the WSC11 General Chair and Program
Chair

It is our pleasure to officially announce the start of the conference. The official
WSCI11 web site has been relocated since August to the following URL:
http://www.cs.armstrong.edu/wsc11/. Please make the necessary changes to any web
pages that you maintain with reference to the conference. That will increase the
chances of search engines pointing to the correct WSC11 web site.

An opening note has been posted to the conference web site along with the final pdf
version of all accepted papers. With regard to the presentation of papers and the key-
note, we will be able to support (for the first time in WSC’s history) real-time presen-
tations via audio conferencing. This is made possible through a kind three-week trial
offer (for the duration of the conference) of Elluminate (http://www.Elluminate.com),
a Java-based (http://java.sun.com/products/javawebstart/) webinar environment.
In return, we will provide feedback about the use of this web-based conferencing
tool in support of our worldwide conference. In order to get an idea of the use
of this tool, please visit the following URL: https://sas.elluminate.com/m.
jnlp?sid=1125&password=M.161974A26FAAF9SDB6C50F2C6CFF05 where an
image version of the opening note is currently posted for testing purposes.

Therefore, we request from each correspondence author to email us back by Friday,
September 22, with his/her availability to make a 25-30 minutes presentation during
the upcoming two weeks (Sep 25-Oct 6). Please provide us with 2-3 possible times,
and indicate your local time zone as it relate to GMT (e.g., EST in the US is GMT-5,
while Brazil should be GMT-4). A presenter will need a Java-enabled computer, with
a reasonable high quality connection to the Internet, and which is also equipped with a
speaker and a microphone (or a headset). We will schedule all presentations and up-
load into Elluminate the presentation slides that have been submitted in August. A
final schedule of presentations will be posted and emailed to all by Monday, Septem-
ber 25. All interested participants will then be able to connect to a presentation at the
scheduled time, up to a maximum of 30 seats per session. We will expect session
chairs to attend as many of the presentations of their sessions as possible.

It is indeed an exciting development for us to be able to support a synchronous mode
of interaction for WSC11 given our global community. We also hope to witness a strong
level of participation in the sessions by researchers from all four corners of the globe.

September 18, 2006 Ashraf Saad
General Chair of WSC11
Savannah, Georgia, USA

Erel Avineri
Program Chair of WSC11
Bristol, UK

WSC11 Organization and International Program
Committee

General Chair

Ashraf Saad, Armstrong Atlantic State University**, USA
** Formerly with the Georgia Institute of Technology

Program Chair

Erel Avineri, University of the West of England, Bristol, UK

Adyvisory Board

Hisao Ishibuchi, Osaka Prefecture University, Japan
Rajkumar Roy, Cranfield University, UK

Ajith Abraham, Chung-Ang University, Korea
Mario Koppen, Fraunhofer IPK, Berlin, Germany

International Co-chairs

Lakhmi Jain, University of South Australia, Australia

Serge Popov, Kharkiv University of Radio Electronics, Ukraine

Muhammad Sarfraz, King Fahd University of Petroleum and Minerals, Saudi Arabia
Ashitosh Tiwari, Cranfield University, UK

Publicity Chair

Keshav Dahal, University of Bradford, UK

International Technical Program Committee

Janos Abonyi, University of Veszprem Folyamatmérnoki Tanszék, Hungary
Bart Baesens, Catholic University of Leuven, Belgium

Valeriu Beiu, United Arab Emirates University, UAE

Sugato Bagchi, IBM Research, USA

Soumya Banerjee, BITS Mesra, India

Christian Blum, Universitat Politecnica de Catalunya, Spain

Ulrich Bodenhofer, Software Competence Center, Austria

Andrea Bonarini, Politecnico de Milano, Italy

X Organization

Oscar Castillo, Instituto Tecnolégico de Tijuana, Mexico

Siam Charoenseang, King Mongkut’s University of Technology, Thailand
Leandro Coelho, Pontifical Catholic University of Parana, Brazil
Carlos A. Coelho, CINVESTAYV, Mexico

Oscar Cordon, University of Granada, Spain

Gaspar Cunha, University of Minho, Potugal

Suash Deb, National Institute of Science & Technology, India
Guy De Tré, Ghent University, Belgium

Mauro Dell'Orco, University of Bari, Italy

Giuseppe Di Fatta, University of Konstanz, Germany

Katrin Franke, Fraunhofer IPK, Germany

Aureli Soria Frisch, Universitat Pompeu Fabra, Spain

Xiao-Zhi Gao, Helsinki University of Technology, Finland
Takeshi Furuhashi, Nagoya University, Japan

Crina Grosan, Babes-Bolyai University, Romania

Roderich Gross, Universite Libre de Bruxelles, Belgium

Hani Hagras, University of Essex, UK

Ioannis Hatzilygeroudis, University of Patras, Greece

Ayanna Howard, Georgia Institute of Technology, USA

Yaochu Jin, Honda Research Institute Europe, Germany

Uri Kartoun, Ben Gurion University of the Negev, Israel

Okyay Kaynak, Bogazici University, Turkey

Frank Klawonn, University of Applied Sciences, Germany
Joshua Knowles, University of Manchester, UK

Andreas Konig, Technische Universitat Kaiserslautern, Germany
Renato Krohling, University of Dortmund, Germany

Reza Langari, Texas A&M, USA

Luis Magdalena, Universidad Politecnica de Madrid, Spain

Max Manfrin, Universite Libre de Bruxelles, Belgium
Christophe Marsala, Universite P. et M. Currie, France

Patricia Melin, Instituto Tecnolégico de Tijuana, Mexico

Sanaz Mostaghim, ETH-Zurich, Switzerland

Mehmet K Muezzinoglu, University of Louisville, USA
Lakshmi Narasimhan, The University of Newcastle, Australia
Detlef D Nauck, British Telecom, UK

Nadia Nedjah, State University of Rio de Janeiro, Brazil
Andreas Nuernberger, Universitit Magdeburg, Germany

Jae C. Oh, Syracuse University, USA

Sankar K. Pal, Indian Statistical Institute, India

Vasile Palade, Oxford University, UK

Gerardo Rossel, Universidad Abierta Interamericana, Argentina
Yos Sunitiyoso, University of the West of England, Bristol, UK
Vicenc Torra, Al Research Institute, CSIC, Spain

Edward Tunstel, Jet Propulsion Lab/NASA, USA

Marley Vellasco, Pontifical Catholic University of Rio de Janeiro, Brazil
Christian Woehler, DaimlerChrysler AG, Germany

Berend Jan van der Zwaag, University of Twente, The Netherlands

Contents

Invited Keynote

Hybrid Dynamic Systems in an Industry Design Application

Pieter J. Mosterman, Elisabeth M. O’Brien

Part I: Soft Computing in Computer Graphics, Imaging and Vision

Object Recognition Using Particle Swarm Optimization on
Fourier Descriptors

Muhammad Sarfraz, Ali Taleb Ali Al-Awami

Gestix: A Doctor-Computer Sterile Gesture Interface for
Dynamic Environments
Juan Wachs, Helman Stern, Yael Edan, Michael Gillam, Craig Feied,

Mark Smith, Jon Handler i

Differential Evolution for the Registration of Remotely Sensed
Images

1. De Falco, A. Della Cioppa, D. Maisto, E. Tarantino.................

Geodesic Distance Based Fuzzy Clustering

Balazs Feil, Janos ADONYio

Part II: Control Systems

Stability Analysis of the Simplest Takagi-Sugeno Fuzzy
Control System Using Popov Criterion

Xiaojun Ban, X.Z. Gao, Xianlin Huang, Hang Yin....................

XII Contents

Identification of an Experimental Process by B-Spline Neural
Network Using Improved Differential Evolution Training
Leandro dos Santos Coelho, Fabio A. Guerra

Applying Particle Swarm Optimization to Adaptive Controller
Leandro dos Santos Coelho, Fabio A. Guerra

B-Spline Neural Network Using an Artificial Immune Network
Applied to Identification of a Ball-and-Tube Prototype
Leandro dos Santos Coelho, Rodrigo ASsun¢a@o

Part III: Pattern Recognition

Pattern Recognition for Industrial Security Using the Fuzzy
Sugeno Integral and Modular Neural Networks

Patricia Melin, Alejandra Mancilla, Miguel Lopez, Daniel Solano,
Miguel Soto, Oscar Castillo0

Application of a GA/Bayesian Filter-Wrapper Feature
Selection Method to Classification of Clinical Depression from
Speech Data

Juan Torres, Ashraf Saad, Elliot Moore............ i,

Comparison of PSO-Based Optimized Feature Computation
for Automated Configuration of Multi-sensor Systems
Kuncup Iswandy, Andreas Koenigu i,

Evaluation of Objective Features for Classification of Clinical
Depression in Speech by Genetic Programming
Juan Torres, Ashraf Saad, Elliot Moore............,

A Computationally Efficient SUPANOVA: Spline Kernel
Based Machine Learning Tool

Boleslaw K. Szymanski, Lijuan Zhu, Long Han, Mark Embrechts,
Alexander Ross, Karsten Sternickel.

Part IV: Classification

Multiobjective Genetic Programming Feature Extraction with
Optimized Dimensionality
Yang Zhang, Peter I Rockett

A Cooperative Learning Model for the Fuzzy ARTMAP-
Dynamic Decay Adjustment Network with the Genetic
Algorithm

Shing Chiang Tan, M.V.C. Rao, Chee Peng Lim

Contents XIIT

A Modified Fuzzy Min-Max Neural Network and Its
Application to Fault Classification
Anas M. Quteishat, Chee Peng Lim, 179

AFC-ECG: An Adaptive Fuzzy ECG Classifier
Wai Kei Lei, Bing Nan Li, Ming Chui Dong, Mang I Vai 189

A Self-organizing Fuzzy Neural Networks
Haisheng Lin, X.Z. Gao, Xianlin Huang, Zhuoyue Song................ 200

Part V: Soft Computing for Modeling, Optimization and Information
Processing

A Particle Swarm Approach to Quadratic Assignment
Problems
Hongbo Liu, Ajith Abraham, Jianying Zhang, 213

Population-Based Incremental Learning for Multiobjective
Optimisation
Sugin Bureerat, Krit STiworamas i i 223

Combining of Differential Evolution and Implicit Filtering
Algorithm Applied to Electromagnetic Design Optimization
Leandro dos Santos Coelho, Viviana Cocco Mariani 233

A Layered Matrix Cascade Genetic Algorithm and Particle

Swarm Optimization Approach to Thermal Power Generation
Scheduling

Siew Chin Neoh, Norhashimah Morad, Chee Peng Lim,

Zalina Abdul Aziz oo 241

Differential Evolution for Binary Encoding
Tao Gong, Andrew L. Tusono e 251

Part VI: Soft Computing in Civil Engineering and Other Applications

Prioritization of Pavement Stretches Using Fuzzy MCDM
Approach — A Case Study
A.K. Sandra, V.R. Vinayaka Rao, K.S. Raju, A.K. Sarkar 265

A Memetic Algorithm for Water Distribution Network Design
R. Banos, C. Gil, J.I. Agulleiro, J. Reca, 279

Neural Network Models for Air Quality Prediction:
A Comparative Study
S.V. Barai, A.K. Dikshit, Sameer Sharma.......... 290

X1V Contents

Recessive Trait Cross over Approach of GAs Population
Inheritance for Evolutionary Optimization
Amr Madkour, Alamgir Hossain, Keshav Dahal 306

Automated Prediction of Solar Flares Using Neural Networks
and Sunspots Associations
T. Colak, R. Qahwagi., 316

Keyword Index 325

Author Index 327

Hybrid Dynamic Systems in an Industry Design
Application

Pieter J. Mosterman and Elisabeth M. O’Brien

The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760, USA

{pieter j mosterman,elisabeth.obrien}@mathworks.com

Abstract. The term hybrid dynamic system is a term for a mathematical system that
combines behavior of a continuous nature with discontinuous changes. Such systems
are often formed by the underlying computational representation of models used in
the design of control and signal processing applications, for example in the automotive
and aerospace industries. This paper outlines the benefits of Model-Based Design and
illustrates how many different formalisms may be essential in model elaboration, such
as time-based block diagrams, state transition diagrams, entity-flow networks, and
multi-body diagrams. The basic elements of the underlying hybrid dynamic system
computational representation are presented and it is shown how these elements combine
to form different classes of behaviors that need to be handled for simulation.

Keywords: Model-Based Design; Hybrid Dynamic Systems; Hybrid Systems; Multi-
Formalism Modeling; Embedded Control Systems; Networked Embedded Systems.

1 Introduction

Model-Based Design improves the design workflow of engineered sytems by em-
ploying computational models. In the embedded control systems realm, these
models often are designed using Simulink® [20]. An embedded control system
typically consists of a controller and a plant, where the plant is a physical system
that is controlled to operate according to desired behavior.

The elements of Model-Based Design, illustrated in Fig.[Il can be summarized
as:

e [Executable specifications from models allow immediate feedback on the be-
havior of a specification, as opposed to documented behavior that often is
misinterpreted.

e Design with simulation supports a faster exploration of the design space as
opposed to constructing physical prototypes.

e Automatic code generation reduces the tedious and error-prone process of
translating a design into a specification for the software engineers and man-
ually writing the corresponding computer code.

e Test and verification can be performed in a much earlier stage in the design
as a computational model is available with access to all internal variables,
including those that may be difficult to obtain on a physical prototype.

A. Saad et al. (Eds.): Soft Computing in Industrial Applications, ASC 39, pp. 1 2007.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2007

2 P.J. Mosterman and E.M. O’Brien

> 2
Executable Specifications
from Models

* (ontinuous

S Simulink Design with

Verification Models Simulation
/phmemnﬁon with
Automatic Code Generation

Fig. 1. Model-Based Design elements leverage Simulink® models

The adoption of Model-Based Design has enterprise-wide implications [I]. For
example, the extensive use of models throughout the design process has created
the desire to facilitate model reuse. This reuse, in turn, requires design tools
that support the exchange of models between engineering teams. For example,
to obtain a high-fidelity plant model, a SolidWorks [2I] computer-aided design
(CAD) model of the geometry can be exported into a SimMechanics [I8, [25]
multibody model of the dynamics. Thus, modeling effort is reused as models are
shared across teams.

A controller model may initially be a discrete state based model that is then
extended to include implementation effects such the validation of input data.
This approach implies that an execution engine for a supporting tool set such
as Simulink and Stateflow® [22] has to efficiently handle both a data driven
approach as well as an event driven approach. Because of the widely differing
execution semantics that different models may employ, execution engines are
required to be versatile and powerful such that efficient algorithms, tailored to
the needs of a specific model, can be invoked.

An important distinction in execution semantics can be made between those
that require continuity of variables, possibly in higher derivatives, and those
that allow discrete changes. Combining those two execution semantics results in
hybrid dynamic systems, or hybrid systems for short (e.g., [2 [10, 23]).

The modeling formalisms that capture the discrete part of a hybrid system
often are state transition diagrams [9], for example, a high-level language such as
statecharts [7] may be employed. Statecharts are state transition diagrams that
include language features such as hierarchy, parallelism, and event broadcasting.

The modeling formalisms that capture the continuous part of a hybrid system
often are designed for plant modeling, i.e., the modeling of physics [5] [§], and
they typically rely on differential equations, possibly combined with algebraic
constraints.

The combination of state transition diagrams and differential and algebraic
equations may be desired if, for example, there are widelydiffering time scales

Hybrid Dynamic Systems in an Industry Design Application 3

at which physical phenomena occur. In such a situation, it may be beneficial to
abstract fast continuous behavior into a discrete change. The slower continuous
behavior is then modeled by differential equations, while the discrete behavior
may be modeled by a state transition diagram [12].

For example, a nonelastic collision between two bodies can be modeled in
detail by accounting for dissipation effects that occur from when the bodies
initiate contact to when they achieve the same velocity. Alternatively, detailed
behavior from the dissipative effects can be disregarded, and the velocities can
be instantaneously set to be equal.

This paper provides the elements that constitute a hybrid dynamic sys-
tem. Complications and idiosyncrasies in the behavior of such hybrid dynamic
systems and an ontology of mode transition behavior are presented. It is illus-
trated how instantaneous changes in variables, in combination with the inequal-
ities that define mode switching, can lead to rich and complex mode transition
behavior [13].

Section] provides a more detailed introduction to Model-Based Design.
Section [illustrates the use of Model-Based Design for a power window con-
trol system, which concretely shows a number of different modeling formalisms
that are employed throughout the design. Section Ml introduces the underlying
computational representation across different modeling formalisms as a hybrid
dynamic system and discusses the characteristics of such a system. Section
presents the conclusions of this work.

2 Model-Based Design

The benefits of Model-Based Design are manifold and mostly stem from the
use of computational technologies. In addition, rather than isolated usages of
computational models, it is important that a tool infrastructure is available to
move a model through the design stages while elaborating it along the way.

2.1 Why Model-Based Design?

Model-Based Design uses an executable specification, which facilitates commu-
nication across engineering groups and enables rapid design iterations which
greatly decreases development time. This approach contrasts with a more tradi-
tional approach in which the specification typically consists of a paper document.
The document needs to be shared among many engineers or groups of engineers,
and is often miscommunicated or distributed copies are not kept up to date.

The model that results from an executable specification is not only the repos-
itory for all of the information about the concept and design but also the design
implementation. Once the specification has been made executable, Model-Based
Design enables the exploitation of simulation so that the design space can be
searched for an optimal design efficiently. Moreover, this search may now be
automated.

Following simulation, implementation is achieved through automatic code
generation. Transforming a paper specification of a design into software such

4 P.J. Mosterman and E.M. O’Brien

as C-code is an error-prone process. Automatic code generation can reduce both
design and hand-coding errors while substantially alleviating the tediousness of
the coding task.

Model-Based Design further enables unambiguous communication between
everyone involved in the overall design, within one company and across compa-
nies, such as between suppliers and the original equipment manufacturer (OEM).
When everyone works off the same model, or at least an elaborated form of a core
model, they can speak the same language and communicate more effectively.

Another key benefit of Model-Based Design is early test and verification. If a
model is available early on in the design process, and it is executable, it is possible
to design the tests to ensure that the final product complies with the original
requirements based on the model. Therefore, design testing can be performed
early on in the design process, as opposed to having to wait until the physical
product has become available.

As a result, Model-Based Design eliminates the need for physical prototypes
in the early design phases. Their use can be deferred much longer than in a tra-
ditional design approach, which decreases the reworking of a prototype because
it has already been tested in much greater detail in a computational setting.

2.2 Practicing Model-Based Design

Model-Based Design relies heavily on model elaboration, as shown in Fig.[2l On
the left of the diagram is the core control algorithm, which is often designed
using synthesis techniques based on simplified plant models, such as low-order
linear versions of more complex plant models.

Model elaboration ———
Fewer # of

\\ Issues

/Execurob/e Executable Automated:
SDeC’fICOf/O SDeC’fICOf/O - code
':> - testing
O - documentation Q

*Research engineers *System engineers «Software engii *Test eng
_ *Analysts «Architects «System integrators
*Algorithm designers *Calibrators

Fig. 2. Model elaboration

Once the core control algorithm has been derived, it is handed to the system
engineers who embed it into an overall system. At this point, data validation,
input/output (I/O) functionality, redundancy management, and testing func-
tionality will be included.

The next step is implementation, in which the control algorithm needs to
be coded in C, Ada, or any other desired target language, to embed the con-
trol algorithm into a physical environment as software that executes on a hard-
ware target. This step is typically done by software engineers. Operating system

Hybrid Dynamic Systems in an Industry Design Application 5

issues may arise here; for example, computations that have been designed for
the algorithm as well as for the system must fit into the computational resources
available. The algorithm may need to fit onto a number of microprocessors; there
may be high priority tasks, low priority tasks, and different sample rates, which
are all coded into tasks or multiple tasks; and it is necessary to verify and validate
that the system still operates according to specification.

Finally, the system must be integrated with other systems that have been
built. This requirement leads to the notion of “systems of systems.” Using an
automobile power window as an example, it may be necessary to validate that the
window operates properly in concert with the electrical system by not drawing
electrical power when the engine is started. This is achieved by combining and
integrating the system of systems, as well as calibrating it to make sure that it
operates properly.

Model elaboration, then, is the process of moving the model through a number
of phases where increasing detail is included. This facilitates communication
between the engineering teams responsible for the separate phases. As mentioned
previously, data validation and analysis need to be performed, I/O and interfaces
need to be established, and redundancy management all need to be included in
the design. With Model-Based Design—and its use of executable models—testing
happens every time a model is simulated, and thus is an integrated aspect of the
design process. This integration enables continuous testing and validation that
the model satisfies the requirements and is working according to specifications.

3 A Power Window

To provide a concrete example of the use of Model-Based Design, the design
of a power window (see Fig. [B) is outlined. The power window is an example
of Model-Based Design for embedded control system development from concept
through to implementation. It illustrates the use of different modeling formalisms
that have different models of computation, the combination of which results in
a hybrid dynamic system.

3.1 System Requirements

Electronics are used in automobiles to control various functions such as the open-
ing and closing of windows and sun-roof, adjusting the mirrors/headlights, and
locking and unlocking the doors. These systems are subject to stringent operating
constraints, as failure may result in dangerous and possibly life-threatening sit-
uations. Therefore, careful design and analysis is mandatory before deployment.

Some quantitative requirements for the control of a power window may be as
follows:

e The window must be fully opened and closed within 4 s.
e If the down or up command is issued for at least 200 ms and at most 1 s the
window has to be fully opened or closed, respectively (auto-up/auto-down).

6 P.J. Mosterman and E.M. O’Brien

Fig. 3. An automobile power window

After a command is issued, the window must start moving within 200 ms.
The force exerted in the presence of an object should be less than 100 N.
When an object is present, the window should be lowered by approximately
10 cm.

3.2 Discrete Event Control

The core control algorithm is of a discrete event nature and best modeled by
using a statechart. The statechart contains the basic states of the power window
system: up, auto-up, down, auto-down, rest, and emergency. It models the state
transitions between these states and accounts for the precedence of driver com-
mands over the passenger commands. It also includes emergency behavior that
is to be activated when an object is detected to be present between the window
and the door frame while moving up. In the emergency state, the window is
moved down by 10 cm.

While in the state in which the driver command is neutral, the passenger is
in control and can command the window up or down. Figure @l shows part of
the Stateflow chart that switches between neutral, up, and down states, as com-
manded by the passenger, passengerNeutral, passengerUp, and passengerDown,

passengerNeutral },
2,[[up]

[down] [neutral] [neutral]
[endstop]i‘ !
& T [up] = =
passengerDown : 7 passengerUp
[down]

Fig. 4. A state transition diagram

[endstop]

Hybrid Dynamic Systems in an Industry Design Application 7

respectively. The transitions between states are based on conditions down, up,
neutral, and endstop. The statechart is executed periodically at a 10 ms rate and
the conditions are evaluated at this rate. If one of them is true, the correspond-
ing transition is taken, where the order of evaluation is explicitly shown by the
numbers on the state transition arrows.

The passengerDown and passengerUp states contain subcharts that implement
the auto-up and auto-down state transition logic.

Simulink enables testing the design with a variety of test vectors as inputs to
the state machine. A model coverage report permits verification that the design
is completely excited with the test vectors that have been employed, thereby
showing that the design is void of hidden functionality. The generated report
documents which transitions have been excited and which have not.

3.3 The Emergency Rollback

Further fulfillment of the requirements results in increased design complexity.
Once the discrete event control has been designed and verified, it can be cou-
pled to the continuous time plant model shown in Fig. Bl to ensure the window
is retracted 10 cm upon detecting an object. The plant model contains two in-
tegrators. One computes velocity from the acceleration that results from the
actuation force. The other computes the window position from its velocity. Vis-
cous friction is modeled by the gain block that feeds back a friction force to be
subtracted from the actuation force.

friction

1
s
command - - measurement
arm rotational window
velocity position

Fig. 5. A second-order plant model

Implementing additional functionality by embedding the statechart in a con-
tinuous time simulator converts the design from an untimed formalism to a timed
formalism. By simulating the system, commanding the window up by switching
the switch embedded in the driver switch block, the position signal can be ana-
lyzed to verify that the 10 cm requirement is satisfied.

3.4 Verifying the 100 N Force Limit

After an initial analysis of the discrete event control and continuous dynamics,
a detailed plant model can be used to evaluate performance in a more real-
istic implementation. Models at such a level of detail are best designed in the
power domain, i.e., as energy flow. This approach is facilitated by several domain
specific blocksets.

8 P.J. Mosterman and E.M. O’Brien

Using a tool for modeling physical systems such as SimMechanics allows iner-
tias, joints, and bodies to be used as basic elements of the modeling formalism.
For example, Fig. [0l shows a SimMechanics model of the scissor-type lift mecha-
nism that is used to move the window up and down and that is shown in Fig.
On the one end, a DC motor drives one of the two levers that constitute the
scissor-like mechanism. Driving torque provided by the DC motor causes the
worm part of a worm gear to rotate which, in turn, causes the lever to rotate.

The SimMechanics model shows the torque coming from the DC motor as an
inport block on the left. This torque is used to actuate a rotational joint, which
represents the worm part with inertia modeled by the worm rigid body block.
The worm connects to the main gear through a gear ratio as modeled by the
worm gear block. Both the worm and the main lever rotate with one degree of
freedom relative to the door. The main gear lever body attaches to the bottom
of the window by a rotate & slide joint, to ensure the attachment can move to
the left or right as the window moves up and down. The angle of the main lever
is measured, in this case for visualization purposes.

csaMy css—————@B %) F
worm worm gear
cs3
M cs3 ycs[F—e
ce

cs1p B(‘T"F P
Uco

door gear

B%F._@

angle
measurement

torque

torque
actuation

Fig. 6. A multibody diagram of the lift mechanism

Note that there is no direction associated with the connection of joints and
bodies. Instead, a joint carries two variables: force and velocity. The modeler does
not have to determine if the main gear block computes the force or the velocity.
This is automatically derived by the compiler. Similarly, the DC motor model
is designed using SimPowerSystems [19], and contains undirected connections in
the electrical domain.

At this point in the design it becomes clear that the armature current drawn
by the DC motor is the only available measurement. The control system as
derived earlier now has to be modified to accommodate an input different from
the window position. Instead, when the armature current is more than 1.7 A, an
object is detected.

In Fig. [0 the force exerted by the window during a simulation of the window
moving up is shown. At approximately 2.7 s, an obstacle is detected and the window
is retracted by 10 cm. As shown in Fig.[] the force, indeed, remains below 100 N,
as per the requirement. An assertion check can be inserted so that if the window
exerts a force above 100 N the simulation will stop. This step is done by way of

Hybrid Dynamic Systems in an Industry Design Application 9

adding a check static bound block. Note that the force does fall below -100 N when
the direction of motion is reversed, which does not violate the requirement and is
safe because it is irrelevant how forcefully the window is being pulled down.

100

50 ~ 1

force [N]
o

50

-100 +

-150 : ; : :
0 05 1 time [s] 25 3 35

Fig. 7. Simulation of the force exerted by the window

3.5 Further Model Elaboration

Further model elaboration may include architectural elements such as the use of
a controller area network (CAN) [] bus to communicate the user command as in-
put using some switch hardware to the hardware that controls the window move-
ment. Communication is achieved by packaging the commands entered through
the window control switches into a network frame that is sent to the window con-
troller, which unpacks the frame to retrieve the command value. The CAN bus is
modeled as an entity-flow network using SimEvents™ [T7]. Part of this model is
depicted in Fig. B It shows a write port that sends a prepared frame to a trans-
mit buffer. A flow controller connects to a gating block to release frames for actual
transmission. Once released, a frame is copied so as to make it available on the
communication channel and to queue it so the channel state can be determined.

Network traffic is often best modeled as irregularly spaced in time. To effi-
ciently simulate such behavior, a discrete event simulator typically employs an
event calendar that captures the times when an event occurs [3]. Simulation then
progresses in time by simply updating the current time with the time at which
the earliest event on the calendar occurs. In some applications, this update may
take place in the order of a hundred thousand times over the course of one simu-
lation run. Numerical integration schemes are not required, which enhances the
efficiency of the simulation significantly and allows handling a large number of
discrete events.

10 P.J. Mosterman and E.M. O’Brien

Channel State

gr ts 4—1
b
en usy (& ouh.l"Tin T J

Flow Controller Signal Latch (O-free, 1-busy)
#n
en T B— N
2z + ouT N ours>-e 1 >
e out NG out2py P —— #TX
N Current Tx
Write Release Frames Copy To
Tx Buffer Channel F
IN—ouTHe 3 >
T

Frame to Channel

Fig. 8. An entity-flow network

Using SimEvents for the design of event driven systems allows convenient
modeling of how packets of information on the network move and how other
network traffic may affect the performance of the system. Because the CAN bus
is shared and driver commands are put on the bus, the speed at which commands
are retrieved by the control system, which moves the window, is affected by other
network traffic.

Additional communication effects can be added until a sufficient level of detail
is achieved. Controller code can then be automatically generated for any specific
target platform, and coverage analysis tools can be used to ensure that the model
is generating the desired output.

4 Hybrid Dynamic Systems

As illustrated by the power window design example in Section B many differ-
ent modeling formalisms are typically employed in the design of an engineered
system. In the case of the power window design, these formalisms include state
transition diagrams (Fig.), time-based block diagrams (Fig. Bl), multibody di-
agrams (Fig. [, and entity-flow networks (Fig. [|]).

4.1 Elements of a Hybrid Dynamic System

The semantics of the formalisms used are rather different from each other, vary-
ing from mechanical primitives to discrete states and transition elements, and
are based on widely differing models of computation. For example, whereas time-
based block diagrams may be used to model ordinary differential equation be-
havior, state transition diagrams may be used to capture finite state machine
behavior. Similarly, multibody diagrams may be based on differential and alge-
braic equations, while entity-flow networks may rely on discrete-event models of
computation.

An important aspect of these different models of computation is whether state
behavior is allowed to exhibit discontinuous changes or whether state behavior
must be continuous, possibly with further constraints on higher order derivatives.

Hybrid Dynamic Systems in an Industry Design Application 11

A mathematical system that contains both classes of behavior is often referred
to as a hybrid dynamic system, or a hybrid system for short. In this paper, state
variable behavior with continuity constraints corresponds to differential equa-
tion behavior as captured by, for example, time-based block diagrams (Fig. B
and multibody diagrams (Fig. [l); state behavior that may be discontinuous cor-
responds to discrete event behavior as captured by, for example, state transition
diagrams (Fig. @) and entity-flow networks (Fig.).

To illustrate a hybrid dynamic system, consider a model of the dynamics of
the power window in Fig. Bl presented in Fig. @ Here, the window is modeled
as a rigid body that moves in the vertical direction. When the window moves
between the bottom and the top of the door frame, the window movement is
determined by the net force acting on it, which derives from the actuator force
combined with the frictional force and gravity.

1

Fig. 9. A power window system model

As illustrated in Fig. [@ the top of the door frame can be modeled as a stiff
spring-damper system. This system acts as an additional force when the window
reaches the top of the door frame. The force is composed of a viscous (damping)
force and a displacement (spring) force. The spring-damper force builds up very
quickly to balance the combination of the actuator force, the frictional force,
and gravity. When a balance of forces is achieved, the window stops movingﬂ

The window behavior can now be schematically captured by the state spaces
in Fig. The two state spaces correspond to the two modes of operation of
the window. In Fig. the behavior of the window when it is between the

! Note that typically the actuator force will be turned off when the window reaches
the top of the door frame. Such feedback aspects are not considered here to avoid
unnecessary complexity in the illustrative behavior.

12 P.J. Mosterman and E.M. O’Brien

bottom and the top of the door frame is shown, which is called the free mode.
In this mode, the actuator force causes a positive velocity, v, according to which
the window starts to move up and increase its position, z. In Fig. the
behavior of the window when it is moving against the top of the door frame is
shown, which is called the stuck mode. In this mode, the door frame, modeled by
the spring-damper system, exerts a rapidly increasing force to bring the window
movement to a halt.

(a) Free (b) Endstop

Fig. 10. Modes of behavior for a power window

The state space behavior in Fig. shows a number of important elements
that are present in hybrid dynamic systems [14 [15]:

e Differential equations determine the window behavior in continuous time.
For example, for the power window, Fjei = Muyindow?, 1.€., the net force,
Flet, acting on the window with mass myindow corresponds to the window
acceleration v, where the dot operator is used to express differentiation with
respect to time.

e Inequality constraints determine where the differential equations are opera-
tional. This is called the operational area (or patch [6]). For the power window,
the differential equations for the free mode are operational when x > Zpottom
and < o, with x being the window position and Zpottom and o, the
values corresponding to the bottom and top of the door frame.

e A mode transition function determines which mode is active. For the power
window, the mode transition function captures the change from free to stuck
when z > x4,,. The mode transition function is often provided as a state
transition diagram.

4.2 Further Model Abstraction

For many analysis and synthesis tasks, abstractions are applied to the model to
obtain a simplified representation. The abstractions applied determine the level
of detail to capture versus the level of computational complexity suited for the
algorithms employed.

For example, the state space behavior in Fig. [0l may be simplified, as shown
in Fig.[IIl Here, the differential equation behavior that couples velocity and posi-
tion in the free mode is partitioned into two piecewise linear modes of operation,

Hybrid Dynamic Systems in an Industry Design Application 13

shown in Fig.[11(a)land Fig.[L1(b)l Though this may reduce the complexity of the
mathematics involved in computing the up movement, it requires the derivation

of inequalities to properly define the operational areas.

X X
y v ‘ v
(a) Low-free (b) High-free
X
 E—) X —
v V.
(c) Low-stuck (d) High-stuck

Fig. 11. Simplified continuous-time model of the power window behavior

The model can be further simplified by removing the stiff behavior caused
by the spring-damper system in order to quickly reduce the window velocity
to 0, shown in Fig. and Fig. for the low and high velocity parti-
tioning. Instead, the window velocity may be immediately set to 0, resulting in
a nonelastic collision model. This instantaneous change in velocity is shown in
Fig.[[2 as a line with a double arrow head. An important observation is that the
instantaneous change covers two modes: it is initiated in the high-stuck mode
and terminates in the low-stuck mode. This exemplifies that the instantaneous
change may exit the operational area. In general, the point in the state space
where an instantaneous change leaves the operational area indicated by the open
circle in Fig. [12(b)] is difficult to determine.

The simplification in Fig. illustrates another important element of hybrid
dynamic systems, the admissible space. Note that, in general, a system of differen-
tial and algebraic equations may contain variables that are operated on by a time
differentation, but that are not state variables. These variables are sometimes
referred to as generalized state variables [24]. Referring to Fig. of the power
window example, even though the window position and velocity are two gener-
alized state variables, the window velocity is required to be 0, leaving only one
degree of freedom, or state, for the dynamic behavior, i.e., the window position.

The space that represents the degree of freedom is called the admissible space. In
Fig.M2it is the line at which the velocity is 0, indicated by the thick line. In Fig.[T],
the admissible space is the entire state space, indicated by the thick border.

14 P.J. Mosterman and E.M. O’Brien

(a) Low-stuck (b) High-stuck

Fig. 12. Abstraction classes for endstop models

4.3 Mode Transition Sequences

In Fig. the admissible space lies outside of the operational area, and thus
this mode has to be departed immediately when it is reached. In general, an im-
portant characteristic of hybrid dynamic systems is that one mode change may
immediately be followed by another mode change without any continuously evolv-
ing behavior in between. This is illustrated by the scenario in Fig. Once the
window reaches the top of the door frame, it changes from the high-free mode to
the high-stuck mode. Before another mode of continuously evolving behavior is
arrived at, a consecutive mode change moves the hybrid dynamic system into the
low-stuck mode.

X X ‘ X
/ x= Xiop] V< Viggs
v } v v
T

Fig. 13. A sequence of mode transitions at one point in time

In previous work [I3,[T6] an ontology of state space transition behavior has been
developed. In this ontology, an intermediate mode that is only active at a given
point in time is either called:

e A pinnacle, which causes a change in the state. This situation happens when
the admissible space is outside of the operational area, and the mode is entered
with a state outside of the admissible space.

e A mythical mode, which has no effect on the state. This situation happens when
the mode is entered with a state outside of the operational area and within the
admissible space.

To support computational simulation, these different classes of behavior have to
be properly handled. Details on approaches and algorithms are discussed else-

where [1T], [14].

Hybrid Dynamic Systems in an Industry Design Application 15

5 Conclusions

Model-Based Design is increasingly adopted in industry to aid in the design of en-
gineered systems. The use of computational models offers a variety of advantages
over the use of paper documents and physical prototypes. An important aspect of
computational models is that they typically can be executed so the behavior of a
design can be studied by means of simulation.

This paper has given an overview of Model-Based Design and introduced some
of the benefits that can be derived from it. A concrete example has been given by il-
lustrating elements of the design of a power window control system. This example
motivated the need to support widely differing formalisms such as state transi-
tion diagrams, time-based block diagrams, entity-flow networks, and multibody
diagrams.

The execution semantics of each of these formalisms are very different and re-
quire different technology for simulation. A general classification can be made in
terms of behavior that is continuous in time and behavior that may be discontinu-
ous. Combining formalisms with elements in both classes leads to hybrid dynamic
systems.

The basic elements of a hybrid system and an overview of hybrid dynamic sys-
tem behavior in geometrical terms was given.

Acknowledgments

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC
TargetBox are registered trademarks and SimBiology, SimEvents, and SimHy-
draulics are trademarks of The MathWorks, Inc. Other product or brand names
are trademarks or registered trademarks of their respective holders.

All copyright for this paper remains with the original publisher of this work.
Copyright (©) The MathWorks, Inc., 2007.

References

[1] Paul Barnard. Graphical techniques for aircraft dynamic model development. In
AIAA Modeling and Simulation Technologies Conference and Exhibit. Providence,
Rhode Island, August 2004. CD-ROM.

[2] Maria Domenica Di Benedetto and Alberto L. Sangiovanni- Vincentelli, editors.
Hybrid Systems: Computation and Control, volume 2034 of Lecture Notes in Com-
puter Science. Springer- Verlag, March 2001.

[3] Randy Brown. Calendar queues: A fast 0(1) priority queue im- plementation for
the simulation event set problem. Communi- cations of the ACM, 31(10):12201227,
1988.

[4] CAN specification. Technical Report, 1991. Robert Bosch GmbH.

[5] F.E. Cellier, H. Elmqvist, and M. Otter. Modelling from physical principles. In W.S.
Levine, editor, The Control Handbook, pages 99107. CRC Press, Boca Raton, FL,
1996.

16

[6]

[7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

P.J. Mosterman and E.M. O’Brien

John Guckenheimer and Stewart Johnson. Planar hybrid sys- tems. In Panos
Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry, editors, Hybrid Systems
II, volume 999, pages 202225. Springer-Verlag, 1995. Lecture Notes in Computer
Science.

David Harel. Statecharts: A visual formalism for complex sys- tems. Science of
Computer Programming, 8:231274, 1987.

D.C. Karnopp, D.L. Margolis, and R.C. Rosenberg. Systems Dynamics: A Unified
Approach. John Wiley and Sons, New York, 2 edition, 1990.

Zvi Kohavi. Switching and Finite Automata Theory. McGraw- Hill, Inc., New York,
1978.

Nancy Lynch and Bruce Krogh, editors. Hybrid Systems: Com- putation and Con-
trol, volume 1790 of Lecture Notes in Com- puter Science. Springer-Verlag, March
2000.

Pieter J. Mosterman. An overview of hybrid simulation phe- nomena and their sup-
port by simulation packages. In Frits W. Vaandrager and Jan H. van Schuppen,
editors, Hybrid Systems: Computation and Control, volume 1569, pages 164177.
Lecture Notes in Computer Science; Springer-Verlag, March 1999.

Pieter J. Mosterman. HyBrSim a modeling and simulation environment for hybrid
bond graphs. Journal of Systems and Control Engineering, 216:3546, 2002. special
issue paper.

Pieter J. Mosterman. Mode transition behavior in hybrid dy- namic systems. In
Proceedings of the 2003 Winter Simulation Conference, pages 623631, New Orleans,
LA, December 2003. invited paper.

Pieter J. Mosterman. Hybrid dynamic systems: Modeling and execution. In Paul
A. Fishwick, editor, Handbook of Dynamic System Modeling, chapter 15, pages
15-115-23. CRC Press LL.C, Boca Raton, FL, 2007.

Pieter J. Mosterman and Gautam Biswas. A hybrid modeling and simulation
methodology for dynamic physical systems. SIM- ULATION: Transactions of The
Society for Modeling and Sim- ulation International, 178(1):517, January 2002.
Pieter J. Mosterman, Feng Zhao, and Gautam Biswas. An on- tology for transitions
in physical dynamic systems. In AAAI98, pages 219224, July 1998.

SimEvents. SimEvents Users Guide. The MathWorks, Natick, MA, March 2006.
SimMechanics. SimMechanics Users Guide. The MathWorks, Natick, MA, March
2006.

SimPowerSystems. SimPowerSystems Users Guide. The Math- Works, Natick, MA,
March 2006.

Simulink. Using Simulink. The MathWorks, Inc., Natick, MA, March 2006.
SolidWorks. Introducing Solid Works. Solid Works Corporation, Concord, MA, 2002.
Stateflow. Stateflow Users Guide. The MathWorks, Natick, MA, March 2006.
Frits W. Vaandrager and Jan H. van Schuppen, editors. Hy- brid Systems: Compu-
tation and Control, volume 1569 of Lecture Notes in Computer Science. Springer-
Verlag, March 1999.

George C. Verghese, Bernard C. Levy, and Thomas Kailath. A generalized
state-space for singular systems. IEEE Transactions on Automatic Control,
26(4):811831, August 1981.

Giles D. Wood and Dallas C. Kennedy. Simulating mechani- cal systems in simulink
with simmechanics. Technical Report 91124v00, The MathWorks, Inc., Natick,
MA, 2003.

Part 1

Soft Computing in Computer Graphics,
Imaging and Vision

Object Recognition Using Particle Swarm Optimization
on Fourier Descriptors

Muhammad Sarfraz and Ali Taleb Ali AlI-Awami

: Department of Information and Computer Science, King Fahd University of Petroleum and
Minerals, Dhahran 31261, Saudi Arabia
sarfraz@kfupm.edu.sa
: Department of Electrical Engineering, King Fahd University of Petroleum and
Minerals, Dhahran, 31261 Saudi Arabia
aliawami@kfupm.edu.sa

Abstract. This work presents study and experimentation for object recognition when isolated
objects are under discussion. The circumstances of similarity transformations, presence of
noise, and occlusion have been included as the part of the study. For simplicity, instead of ob-
jects, outlines of the objects have been used for the whole process of the recognition. Fourier
Descriptors have been used as features of the objects. From the analysis and results using Fou-
rier Descriptors, the following questions arise: What is the optimum number of descriptors to
be used? Are these descriptors of equal importance? To answer these questions, the problem of
selecting the best descriptors has been formulated as an optimization problem. Particle Swarm
Optimization technique has been mapped and used successfully to have an object recognition
system using minimal number of Fourier Descriptors. The proposed method assigns, for each of
these descriptors, a weighting factor that reflects the relative importance of that descriptor.

Keywords: curve fitting, NURBS, approximation, simulated evolution, algorithm.

1 Introduction

Fourier descriptors [1, 2, 14], like Moment descriptors [9], have been frequently used
as features for image processing, remote sensing, shape recognition and classification.
Fourier Descriptors can provide characteristics of an object that uniquely represent its
shape. Several techniques have been developed that derive invariant features from
Fourier Descriptors for object recognition and representation [1-5, 14]. These tech-
niques are distinguished by their definition, such as the type of data exploited and the
method for deriving invariant values from the image Fourier Descriptors.

Granlund [1] introduced Fourier descriptors using complex representation in 1972.
This method ensures that a closed curve will correspond to any set of descriptors. The
Fourier descriptors have useful properties [3, 4]. They are invariant under similarity
transformations like translation, scaling and rotation. The objects having these kind of
transformations can be easily recognized using some recognition algorithms with
Fourier descriptors as invariant features. For example, the Fourier descriptors, of the
boundary [11-13], for recognizing closed contours is proposed in [5]. However,

A. Saad et al. (Eds.): Soft Computing in Industrial Applications, ASC 39, pp. 19 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007

