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Preface to the Series

The Niels Henrik Abel Memorial Fund was established by the Norwegian gov-
ernment on January 1, 2002. The main objective is to honor the great Norwe-
gian mathematician Niels Henrik Abel by awarding an international prize for
outstanding scientific work in the field of mathematics. The prize shall con-
tribute towards raising the status of mathematics in society and stimulate the
interest for science among school children and students. In keeping with this
objective the board of the Abel fund has decided to finance one or two Abel
Symposia each year. The topic may be selected broadly in the area of pure
and applied mathematics. The Symposia should be at the highest interna-
tional level, and serve to build bridges between the national and international
research communities. The Norwegian Mathematical Society is responsible for
the events. It has also been decided that the contributions from these Sym-
posia should be presented in a series of proceedings, and Springer Verlag has
enthusiastically agreed to publish the series. The board of the Niels Henrik
Abel Memorial Fund is confident that the series will be a valuable contribution
to the mathematical literature.

Ragnar Winther
Chairman of the board of the Niels Henrik Abel Memorial Fund
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Preface

Kiyosi Itô, the founder of stochastic calculus, is one of the few central figures
of the twentieth century mathematics who reshaped the mathematical world.
Today stochastic calculus, also called Itô calculus, is a central research field
in mathematics, with branches to several other mathematical disciplines and
with many areas of application, for example physics, engineering and biology.
Perhaps the most spectacular field of applications at present is economics and
finance. Indeed, the Nobel Prize in Economics in 1997 was awarded to Robert
Merton and Myron Scholes for their derivation of the celebrated Black–Scholes
option pricing formula using stochastic calculus.

The Abel Symposium 2005 took place in Oslo, July 29th – August 4th
2005, and was organized as a tribute to Kiyosi Itô and his works on the
occasion of his 90th birthday.

Distinguished researchers from all over the world were invited to present
the newest developments within the exciting and fast growing field of stochas-
tic calculus. We were happy that so many took part to this event. They were,
in alphabetical order,

• Luigi Accardi, Universita’ di Roma “Tor Vergata”, Italy
• Sergio Albeverio, University of Bonn, Germany
• Ole E. Barndorff-Nielsen, University of Aarhus, Denmark
• Giuseppe Da Prato, Scuola Normale Superiore di Pisa, Italy
• Eugene B. Dynkin, Cornell University, USA
• David Elworthy, University of Warwick, UK
• Hans Föllmer, Humboldt University, Germany
• Masatoshi Fukushima, Kansai University, Japan
• Takeyuki Hida, Meijo University, Nagoya, Japan
• Yaozhong Hu, University of Kansas, USA
• Ioannis Karatzas, Columbia University, USA
• Claudia Klüppelberg, Technical University of Munich, Germany
• Torbjörn Kolsrud, KTH, Sweden
• Paul Malliavin, University of Paris VI, France
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• Henry P. McKean, Courant Institute of Mathematical Science, New York,
USA

• Shige Peng, Shandong University, China
• Yuri A. Rozanov, CNR, Milano, Italy
• Paavo Salminen, Åbo Akademy University, Finland
• Marta Sanz-Solé, Univeristy of Barcelona, Spain
• Martin Schweizer, ETH Zürich, Switzerland
• Michael Sørensen, Univeristy of Copenhagen, Denmark
• Esko Valkeila, Helsinki University of Technology, Finland
• Srinivasa Varadhan, Courant Institute of Mathematical Science, New

York, USA
• Shinzo Watanabe, Ritsumeikan University, Japan
• Tusheng Zhang, University of Manchester, England
• Xianyin Zhou, Chinese University of Hong Kong

In addition there were many other international experts both attending
and presenting valuable contributions to the conference. We are grateful to
all for making this symposium so successful.

The present volume combines both papers from the invited speakers and
contributions by the presenting lecturers. We are happy that so many sent
their papers for publication in this proceedings, making it a valuable account
of the research frontiers in stochastic analysis. Our gratitude is also directed
to all the referees that put time and effort in reading the manuscripts.

A special feature of this volume is given by the Memoirs that Kiyosi Itô
himself wrote for this occasion. We all thank him for these valuable pages
which mean so much to both young and established researchers in the field.

We also thank the Abel Foundation, through the Norwegian Mathematical
Society, and the Centre of Mathematics for Applications (CMA) at the Univer-
sity of Oslo, for their financial support and for their help with the preparation
and organization of the symposium. Our special thanks go to Inga B̊ardshaug
Eide and Helge Galdal for their help with all practical matters before and
during the conference.

Last but not least we are indebted to Sergio Albeverio for his scientific
advice in the organization of the program.

Oslo, November 2006 Fred Espen Benth
Giulia Di Nunno
Tom Lindstrøm
Bernt Øksendal
Tusheng Zhang
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of Order Greater than 1/2
Yaozhong Hu, David Nualart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

On Asymptotics of Banach Space-valued
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Memoirs of My Research on Stochastic
Analysis

Kiyosi Itô

Professor Emeritus, Kyoto University, Kyoto, 606-8501 Japan

It is with great honor that I learned of the 2005 Oslo Symposium on Stochastic
Analysis and Applications, which is devoted to my work and its further
developments. I would like to thank the symposium organizers for their tireless
efforts in organizing this successful symposium and for providing me with the
opportunity to present some memoirs of my research on stochastic analysis,
which, I hope, will be of some interest to the participants.

My doctoral thesis published in 1942 [1] was on a decomposition of the
sample path of the continuous time stochastic process with independent in-
crements, now called the Lévy–Itô decomposition of the Lévy process. In the
1942 article written in Japanese [2] and the extended 1951 version that ap-
peared in the Memoirs of the American Mathematical Society [3], I succeeded
in unifying Lévy’s view on stochastic processes and Kolmogorov’s approach to
Markov processes and created the theory of stochastic differential equations
and the related stochastic calculus. As beautifully presented in a recent book
by Daniel Stroock [11], Markov Processes from K. Itô’s Perspective, my con-
ception behind those works was to take, in a certain sense, a Lévy process as
a tangent to the Markov process. The above mentioned papers are reprinted
in Kiyosi Itô Selected Papers edited by Stroock and Varadhan [8], where the
editors’ introduction and my own foreword explain in some detail the circum-
stances leading to their development.

From 1954 to 1956, I was a Fellow at the Institute for Advanced Study at
Princeton University, where Salomon Bochner and William Feller, both great
mathematicians, were among the faculty members. In the preceding year,
while still at Kyoto University, I had written a paper on stationary random
distributions [4], using a Laurent Schwartz’s extension of Bochner’s theorem to
a positive definite distribution representing it by a slowly increasing measure.
As I learned from Bochner in Princeton, this had essentially already been
obtained by Bochner himself by other means.

Feller had just finished his works on the most general one-dimensional
diffusion process, especially representing its local generator as
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G =
d

dm

d

ds

by means of a canonical scale function s and a speed measure m. I learned
about these from Henry McKean, a graduate student of Feller, while I ex-
plained my previous work to McKean. There was once an occasion when
McKean tried to explain to Feller my work on the stochastic differential equa-
tions along with the above mentioned idea of tangent. It seemed to me that
Feller did not fully understand its significance, but when I explained Lévy’s
local time to Feller, he immediately appreciated its relevance to the study of
the one-dimensional diffusion. Indeed, Feller later gave us a conjecture that
the Brownian motion on [0,∞) with an elastic boundary condition could be
constructed from the reflecting barrier Brownian motion by killing its local
time t(t, 0) at the origin by an independent exponentially distributed random
time, which was eventually substantiated in my joint paper with McKean [9]
published in 1963 in the Illinois Journal of Mathematics.

After my return to Kyoto from Princeton, McKean visited Kyoto in 1957–
1958, and our intensive collaboration continued until our joint book Diffusion
Processes and Their Sample Paths appeared from Springer in 1965 [10]. This
coincides with the period when Dynkin and Hunt formulated the general the-
ory of strong Markov processes along with their transformations by additive
functionals and the associated probabilistic potential theory. The Kyoto prob-
ability seminars attracted many young probabilists in Japan; S. Watanabe,
H. Kunita and M. Fukushima were among my graduate students. The primary
concern of the seminar participants including myself was to fully understand
the success of the study of one-dimensional diffusions and to look for its sig-
nificant extensions to more general Markov processes. Let me mention some
of the later developments of a different character that grew out of this exciting
seminar atmosphere.

A popular saying by Feller goes as follows: A one-dimensional diffusion
traveler Xt makes a trip in accordance with the road map indicated by the
scale function s and with the speed indicated by the measure m appearing in
the generator G of Xt. This was substantiated in my joint book with McKean
in the following fashion. Given a one-dimensional standard Brownian motion
Xt which corresponds to ds = dx, dm = 2dx, consider its local time t(t, x) at
x ∈ R1 and the additive functional defined by

At =
∫
R1

t(t, x)m(dx).

Then the time changed process Xτt
by means of the inverse τt of At turns out

to be the diffusion governed by the generator
d2

dmdx
.

Observe that the transition function of the one-dimensional diffusion is
symmetric with respect to the speed measure m and the associated Dirichlet
form
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E(u, v) = −
∫
R1

u · Gv(x)dm(x) =
∫
R1

du

ds

dv

ds
ds

is expressed only by the scale s, being separated from the symmetrizing mea-
sure m. Hence we are tempted to conjecture that the 0-order Dirichlet form
E indicates the road map for the associated Markov process Xt and is invari-
ant under the change of the symmetrizing measures m corresponding to the
random time changes by means of the positive continuous additive function-
als of Xt. The notion of the Dirichlet form was introduced by Beurling and
Deny as a function space framework of an axiomatic potential theory in 1959,
where already the road map was clearly indicated in analytical terms (the
Beurling–Deny formula of the form) but the role of the symmetrizing mea-
sure m was much less clear. Being led by the above-mentioned picture of the
one-dimensional diffusion path, the conjecture has been affirmatively resolved
in later works by Fukushima and others (see the 1994 book by Fukushima,
Takeda and Oshima Dirichlet Forms and Symmetric Markov Processes, [12]).

In 1965, M. Motoo and S. Watanabe wrote a paper [13] in which they
made a profound analysis of the structure of the space of square integrable
martingale additive functionals of a Hunt Markov process. In the meantime,
the Doob–Meyer decomposition theorem of submartingales was completed
by P.A. Meyer. These two works merged into a paper by H. Kunita and
S. Watanabe which appeared in the Nagoya Mathematical Journal in 1967 [14]
and a series of papers by P.A. Meyer in the Strasbourg Seminar Notes in 1967
[15], where the stochastic integral was defined for a general semi-martingale,
and the stochastic calculus I initiated in 1942 and 1951 was revived in a new
general context. Since then, various researchers including myself also became
more concerned about the stochastic calculus and stochastic differential
equations.

My joint paper [9] with McKean in 1963 gave a probabilistic construction
of the Brownian motion on [0,∞) subjected to the most general boundary
condition whose analytic study had been established by Feller under some
restrictions. Our methods involved the probabilistic idea originated in Lévy
about the local time and excursions away from 0. In 1970, the idea was
extended in my paper in the Proceedings of the Sixth Berkeley Symposium
[7], where I considered a general standard Markov process Xt for which a
specific one point a is regular for itself. A Poisson point process taking val-
ues in the space U of excursions around point a was then associated, and its
characteristic measure (a σ-finite measure on U) together with the stopped
process obtained from Xt by the hitting time of a was shown to uniquely
determine the law of the given process Xt. This approach may be considered
as an infinite dimensional analogue to a part of the decomposition of the Lévy
process I studied in 1942, and may have revealed a new aspect in the study
of Markov processes.

The one-dimensional diffusion theory is still important as a basic prototype
of Markov processes. Besides my joint book [10] with McKean, I also gave a
comprehensive account of the Feller generator as a generalized second order
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differential operator in Section 6 of my Lectures on Stochastic Processes at the
Tata Institute of Fundamental Research, Bombay, 1960 [6]. The second part
of my book Stochastic Processes [5] written in Japanese and published in 1957
contains a detailed description of the Feller generator and, in addition, of the
boundary behaviors of the solutions of the associated homogeneous equation

(λ− G)u = 0, λ > 0,

in an analytical way together with their probabilistic implications. I had sent
the Japanese original of [5] at the time of its publication to Eugene B. Dynkin
and it was translated into Russian by A.D. Wentzell in 1960 (Part I) and
in 1963 (Part II). In 1959 Shizuo Kakutani at Yale University, noting the
importance of my description of the one dimensional diffusions, advised Yuji
Itô, at that time one of his graduate students, to produce a translation of the
second part into English, which was then distributed among a limited circle of
mathematicians around Yale University as a typewritten mimeograph. I am
very glad to hear that a full English translation of the book [5] by Yuji Itô
is now being prepared for publication by the American Mathematical Society
under the title Essentials of Stochastic Processes.

Finally, let me extend my deepest gratitude to the symposium organizers
and participants for honoring my 90th birthday with your work on stochastic
analysis. I also wish to thank you again for allowing me to present these
memoirs to you here, and I very much look forward to studying all the papers
presented at this symposium.

References
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I, Lecture Notes in Math. 39, Springer-Verlag, 72–162 (1967)



Itô Calculus and Quantum White Noise
Calculus

Luigi Accardi1 and Andreas Boukas2

1 Centro Vito Volterra, Università di Roma Tor Vergata via Columbia, 2–00133
Roma, Italy. accardi@Volterra.mat.uniroma2.it,
http://volterra.mat.uniroma2.it

2 Department of Mathematics and Natural Sciences, American College of Greece,
Aghia Paraskevi, Athens 15342, Greece, andreasboukas@acgmail.gr

Summary. Itô calculus has been generalized in white noise analysis and in quantum
stochastic calculus. Quantum white noise calculus is a third generalization, unifying
the two above mentioned ones and bringing some unexpected insight into some old
problems studied in different fields, such as the renormalization problem in physics
and the representation theory of Lie algebras. The present paper is an attempt to
explain the motivations of these extensions with emphasis on open challenges.

The last section includes a result obtained after the Abel Symposium. Namely
that, after introducing a new renormalization technique, the RHPWN Lie algebra
includes (in fact we will prove elsewhere that this inclusion is an identification)
a second quantized version of the extended Virasoro algebra, i.e. the Virasoro–
Zamolodchikov ∗–Lie algebra w∞, which has been widely studied in string theory
and in conformal field theory.

1 Introduction

The year 2005 marks Kiyosi Itô’s 90th birthday and, with it, the 63th birthday
of stochastic calculus. The present Abel Symposium, devoted to the celebra-
tion of these events, offers to all mathematicians an important occasion to
meditate on this important development in their discipline whose influence is
going to follow the times of history, even in a period when the pace of scientific
development has reached a level in which most papers have a life time of less
than one year.

The applications of Itô’s work have been so many, ranging from physics to
biology, from logistics and operation research to engineering, from meteorology
to mathematical finance, . . ., that an exhaustive list is impossible.

From the mathematical point of view it is someteimes underestimated the
fact that Itô calculus, with its radical innovation of the two basic operations
of calculus – differentiation and integration – has been one of the few real con-
ceptual breakthroughs in the development of classical analysis after Newton.
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Itô laid down the foundations of stochastic calculus in his 1942 thesis
[Itô42a, Itô42b] and the first systematic exposition of these ideas in English
language appeared almost ten years later in [Itô51] and preceeded of about 15
years the now classical monograph [ItôMcKn65]. This gave rise to an impetu-
ous development which has seen as protagonists several of the participants to
the present conference and which will be reviewed by them.

My talk will take the move from one of the basic achievements of this
development, completed in the late 1960’s, and which led to the mathematical
substantiation of a limpid and intuitive picture of the structure of a classical
stochastic process indexed by the real line (interpreted as time) and with
values in R

d (interpreted as a generalized phase space).
The sample space of a generic process of this type is identified to a space

of R
d–valued functions, interpreted as trajectories of a dynamical system,

and each trajectory is canonically decomposed into a sum of two parts: a
regular (bounded variation) part, corresponding to the drift in the stochas-
tic equation and a pure fluctuation term, corresponding to the martingale
part in the stochastic equation. The former part is handled with classical,
Newtonian, calculus; the latter with Itô calculus. The picture is completed by
the Kunita–Watanabe martingale representation theorem [KunWat67], which
characterizes the generic martingales as stochastic integrals with respect to
some stationary, independent increment process and by the Lévy–Itô decom-
position of a stationary, independent increment process (Zt):

Zt = mt+ σBt +Xt

where m is a constant, Bt is a Brownian motion and Xt is a compound Poisson
process, i.e. an integral

XT =
∫ T

0

dt

∫
Pu,tdβ(u)

of independent Poisson processes Pu,t with intensity of jumps equal to u, with
respect to a measure dβ(u), called the Levy measure and with support in
R \ {0}.

The early generalizations of Itô calculus had gone in the direction of exten-
ding it to more general state spaces thus passing from R

d to manifolds or
to infinite dimensions or both. Another, less developed extension was from
vector valued to operator valued classical stochastic processes [Skor84]. How-
ever these extensions did not change the basic conceptual framework of the
theory.

The situation changed in the past 30 years when three qualitative inno-
vations appeared. This drastically enlarged not only the conceptual status of
Itô calculus, and more generally of stochastic analysis, but also its technical
apparatus. The traditional bridges between probability, classical analysis and
combinatorics became an intricate network including practically every field
of mathematics, from operator theory to graph theory, from Hopf algebras to
group representations, . . .
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The traditional applications to the classical world (physics, information,
communications, engineering, finance, . . .) have now been expanded to the
corresponding sectors in the quantum world thus bringing a remedy to the
historical paradox according to which the mathematical discipline, dealing
with the laws of chance, was not powerful enough to include into its frame-
work the most advanced physical theory, quantum mechanics, in which chance
enters in a much more intrinsic way than in any other physical theory.

These innovations begun with two, initially quite separated and indepen-
dent, lines of research: white noise analysis, (1975) and quantum stochastic
calculus (1982) and found their unification, starting from 1993, in quantum
white noise calculus.

The rate of progression of these events, as well as the merging of different
generalizations into a single, unified picture, has been so swift that, even for
those who actively participated in the construction of these developments, it
is quite hard to follow all the new ideas and to embrace the whole landscape
in a single eyesight.

It is precisely on this broad picture that the present paper will be focused.
Not only details, but also several important achievements, will be omitted
from the exposition, in the attempt to convey an idea of some of the exciting
new perspectives of quantum stochastic analysis.

The first attempts to go beyond the Itô calculus framework and to include
processes which, although much more singular, were frequently used in the
physics and engineering literature, was Hida white noise theory , first proposed
in his Carleton lectures of 1975 [Hida75, Hida92].

The second conceptual generalization of Itô calculus took place in 1982
when Hudson and Parthasarathy developed their quantum stochastic calculus
[HuPa82a, HuPa84c]. In it for the first time, the noises themselves (i.e.
the martingales driving the stochastic differential equations) were no longer
classical additive independent increment processes but quantum independent
increment processes. This was the first quantum generalization of Itô calculus
and opened the way to all subsequent ones. The culmination of the theory is
the determination of the structure of those stochastic equations which admit
a unitary solution. The reason why this result has fundamental implications
both for quantum mechanics and for classical probability, will be explained
starting from Section (7).

The Hudson–Parthasarathy theory inspired, directly or indirectly, most of
the developments of quantum probability for the decade after its appearance.
Its importance can be compared to the original Itô paper and the multiplicity
of investigations it motivated was surveyed in [Partha92].

But the story does not end here: a third conceptual generalization, moti-
vated by the stochastic limit of quantum theory, was developed between 1993
and 1995 and can be described as the unification of the white noise and the
quantum stochastic approach: the non triviality of this unification will be clear
starting from Section (12) of the present exposition. In particular this third
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step threw a new and unexpected light on the microscopic structure of quan-
tum, hence in particular classical, stochastic equations as a consequence of:

(i) the discovery of the Hamiltonian structure of the (classical and quantum)
stochastic differential equations

(ii) the discovery of the translation code between white noise and stochastic
differential equations. This required the development of the theory of
distributions on the standard simplex [AcLuVo99] which is the mathe-
matical counterpart of the time consecutive principle of the stochastic
limit of quantum theory.

However the main point of the new development was not so much the
deeper understanding of the structure of classical and quantum stochastic
calculus, but the possibilities it opened of further extensions, which cannot
be obtained with the traditional tools of stochastic analysis. In fact the white
noise extension of the Itô table opened the way to the nonlinear generalizations
of Itô calculus to which is devoted the second part of the present report.

The beautiful landscape emerging from the simplest of these extensions,
i.e. the one dealing with the second power of white noise, and the subse-
quent, totally unexpected unification of the five Meixner classes as classical
subprocesses (algebraically: Cartan ∗–sub algebras) respectively of the first
and second order white noise, rose strong hopes that this hierarchy could be
extended from the second powers of white noise to its higher powers. This
would lead to a new, interesting class of infinitely divisible processes (for a
short while there was even the hope to obtain a new parametrization of all
these processes).

This hope however collided with the wall of the no go theorems described
in the last part of the present paper. Although negative results, these theo-
rems are very interesting because they have revealed an hitherto unknown
phenomenon relating stochastic analysis to two different fields, each of which
has been the object of a huge literature outside probability theory namely:

(i) the representation theory of infinite dimensional Lie algebras
(ii) renormalization theory.

These two theories are at the core of contemporary theoretical physics
and the fact that some developments, motivated by quantum white noise
analysis, could bring new insight and new results in such a fundamental issue,
which resisted decades of efforts from the best minds of theoretical physics,
is an indication that this direction is deep and worth being pursued. For
this reason while the first part of the present paper consists in an exposition
of already established results, in the second part emphasis has been laid on the
formulation of the problems facing the construction of a satisfactory theory
of the higher powers of white noise. This has led to the introduction of some
new notions, such as Fock representation of a Lie algebra, which are going to
play an essential role in the development of the theory.
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All these developments show that Itô calculus shares, with the richest and
deepest mathematical theories, the germs of its radical innovation. Historical
experience shows that these innovations often occur in directions which are
quite unexpected for the experts of the field and this sometimes generates a
feeling of extraneousness.

An instructive example is given by the theory of elliptic functions, origi-
nated from a deep intuition of Abel and initially developed within a purely
analytical context, but now stably settled in a purely algebraic and geometrical
framework.

The story we are going to tell shows that Itô calculus gives another
important example in this direction.

2 Plan of the Present Paper

The goal of the present section is twofold: (i) to give a more analytical out-
line of the content of the present paper; (ii) to catch this occasion to say a
few words about the motivations and the inner logic underlying the develop-
ments described here as well as about their connections with other sectors of
quantum probability which could not be dealt with for reasons of space.

Section (3) defines the notion of quantum (Boson Fock) white noise and
illustrates, in this basic particular case, one of the main ideas of quantum
probability, i.e. the idea that algebra implies statistics. Let me just mention
here that also the converse statement, i.e. that statistics implies algebra (e.g.
commutation or anti commutation relations), is true and it lies at a deeper
level. The first result in this direction was proved by von Waldenfels in the
Bose and Fermi case [voWaGi78, voWa78] and about 20 years later, with the
introduction of the notion of interacting Fock space [AcLuVo97b], this prin-
ciple became a quite universal principle of probability theory and opened the
way to the program of a full algebraic classification of probability measures.
This is a quite interesting direction, and is also deeply related to the main
topic of the present paper, stochastic and white noise calculus, but we will
not discuss this connection and we refer the interested reader to [AcBo98,
AcKuSt02, AcKuSt05a].

Section (4) describes another important new idea of quantum probability,
i.e. the notion of quantum decomposition of a classical random variable (or sto-
chastic process). This idea is illustrated in the important particular case of
classical white noise and extended, in Section (6), to the Poisson noise.

The two above mentioned decompositions are at the root of Hudson–
Parthasarathy’s quantum extension of classical Itô calculus, briefly outlined
in Section (6).

Section (7) briefly describes the classical Schrödinger and Heisenberg equa-
tions as a preparation to their stochastic and white noise versions.

The algebraic form of a classical stochastic process is described in
Section (8). This leads to a reformulation, explained in Section (10), of classical
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stochastic differential equations, that makes quite transparent their equiv-
alence to stochastic versions of the classical Schrödinger or of Heisenberg
equations.

In Sections (9), (10) it is briefly outlined how this reformulation is nothing
but a stochastic analogue of Koopman’s algebraization of the theory of clas-
sical, deterministic dynamical systems.

Combining the content of Section (8) with the quantum decomposition of
classical white and Poisson noise, described in Sections (4), (6), one arrives,
in Section (11), to the full quantum versions of the stochastic Schrödinger and
Heisenberg equations, which are the main object of study of the Hudson–
Parthasarathy theory.

These equations are not of Hamiltonian type and they were developed by
Hudson and Parthasarathy on the basis of a purely mathematical analogy
with the classical Itô calculus. Hence their connection with the Hamiltonian
equations of quantum physics was obscure and the early applications of these
equations to physical problems, proposed by Barchielli [Barc88], Belavkin
[Bela86a], Gardiner and Collet [GaCo85], . . . , were built on a purely pheno-
menological basis. This led to some misgivings among physicists on the mean-
ing of these models and their relations to the fundamental laws of quantum
mechanics.

On the other hand, combining the main results of Hudson and
Parthasarathy (construction of unitary Markovian cocycles) with the quan-
tum Feynman–Kac formula of [Ac78b] we see that, by quantum conditioning
of a stochastic Heisenberg evolution X0 �→ UtX0U

∗
t on the time zero algebra,

one obtains a quantum Markov semigroup (P t):

E0] (UtX0U
∗
t ) = P t(X0) (2.1)

just as the analogue classical conditioning leads to a classical Markov semi-
group. It was also known, since the early results of Pauli and van Hove,
that quantum Markov semigroups (P t) (and the associated master equations,
which are the quantum analogue of the Chapman–Kolmogorov equations) can
arise as appropriate time–scaling limits of reduced Heisenberg evolutions. The
time–scaling being the same one used in classical stochastic homogenization
(i.e. t → t/λ2), and known in the physical literature as van Hove or 1/λ2–
scaling, and the limit being taken for λ→ 0. Since (in this particular context)
the physical operation of reducing an Heisenberg evolution to a subsystem,
used in these papers, is mathematically equivalent to conditioning on the
time zero algebra, the above statement can be rewritten as:

lim
λ→0

E0]

(
U

(λ)
t/λ2X0U

(λ)∗
t/λ2

)
= P t(X0) (2.2)

Comparing (2.1) with (2.2) it was therefore natural to conjecture that also
the unconditioned limits,

lim
λ→0

U
(λ)
t/λ2X0U

(λ)∗
t/λ2 = UtX0U

∗
t (2.3)
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lim
λ→0

U
(λ)
t/λ2 = Ut (2.4)

of the original Schrödinger and Heisenberg evolutions should exist, for some
(at those times unspecified) topology, and satisfy some quantum stochastic
Schrödinger and Heisenberg equations of Hudson–Parthasarathy type.

This conjecture was formulated by Frigerio and Gorini immediately after
the development of quantum stochastic calculus [FrGo82a] and was proved a
few years later by Accardi, Frigerio and Lu [AcFrLu87].

This result marked the beginning of the stochastic limit of quantum theory.
It proved that quantum stochastic differential equations arise as physically
meaningful scaling and limiting procedures from the fundamental laws of quan-
tum mechanics, expressed in terms of Hamiltonian equations. This produced,
among other things, a microscopic interpretation not only of the coefficients
of the stochastic equations, but also of the fine structure of the driving mar-
tingales (quantum noises).

Several years later Accardi, Lu and Volovich [AcLuVo93] realized that in
fact stochastic differential equations (both classical and quantum) are them-
selves Hamiltonian equations but not of usual type: they are white noise
Hamiltonian equations. The identification of these two classes of equations
required the development of new mathematical techniques such as the notion
of causal normal order and the strictly related time consecutive principle and
theory of distributions on the standard simplex (cf. [AcLuVo02] for a discussion
of these notions).

The inclusion: classical and quantum SDE ⊆ WN Hamiltonian equations
is a consequence of this development and is described in Sections (12), (13).
These few pages condensate a series of developments which took place in
several years and in several papers. The interested reader is referred to
[AcLuVo99] (the first attempt to systematize the impetuous development
of the previous years) and to the more recent expositions [Ayed05] (thesis
of Wided Ayed) and the papers [AcAyOu03, AcAyOu05a, AcAyOu05b]. The
last of this papers deals with another one of the several interesting deve-
lopments born from the stochastic limit of quantum theory which, for lack
of space, are not discussed in the present paper, namely the module genera-
lization of white noise calculus and the qualitatively new structure of the
quantum noises emerging from it (the reader, interested in the first and main
physical example of this new structure, is referred to [AcLuVo97b]).

Even more condensed is the description, in Sections (14), (15), (16), (17), of
the renormalized square of WN. This is because the survey paper [AcBou04c]
is specifically devoted to this subject and the interested reader can find there
the necessary information.

On the contrary, since most of the material in Sections from (18) to (22)
has not yet been published, we tried to give all the necessary definitions even
if proofs had to be omitted for reasons of space.

The general problem, concerning the renormalized higher powers of WN,
is formulated in Section (21) with the related no–go theorems. As explained in
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Section (22), this problem is also related with an old open problem of classical
probability, i.e. the infinite divisibility of the odd powers of a standard
Gaussian random variable.

Further investigations are needed to understand the effective impact of
these no–go theorems. Do they really close the hope of a general theory of
higher powers of white noise? Our feeling is that the answer to this question
is no! This hope is supported by the following considerations. The no–go
theorems heavily depend on:

(i) the choice of a renormalization procedure;
(ii) the fact that we restrict our attention to a very special representation,

i.e. the Fock one.

A way out of this conundrum has to be looked for in the relaxation of
one of these assumption, i.e. one has to look for either new renormalization
procedures or different representations. Both ways are now under investigation
and raise challenging but fascinating mathematical problems.

The last section of the present paper refers to a development that took
place after the end of the Abel Symposium and which shows that the idea to
look for different types of renormalization procedures turned out particularly
fruitful and brought to the fore a connection between the renormalized higher
powers of white noise and the Virasoro algebra which promises to be as rich
of developments as the connection between the renormalized square of white
noise and the Meixner classes.

3 Fock Scalar White Noise (WN)

Definition 1. The standard d–dimensional Fock scalar White Noise (WN) is
defined by a quadruple

{H, bt, b+t , Φ}; t ∈ R
d

where H is a Hilbert space, Φ ∈ H a unit vector called the (Fock) vacuum,
and bt, b+t are operator valued distributions (for an explanation of this notion
see the comment at the end of the present section and the discussion in
[AcLuVo02], Section (2.1)) with the following properties.

The vectors of the form
b+tn · · · b

+
t1Φ (3.1)

called the number vectors are well defined in the distribution sense and total
in H.

bt is the adjoint of b+t on the linear span of the number vectors

(b+t )+ = bt (3.2)

Weakly on the same domain and in the distribution sense:

[bs, b+t ] := bsb
+
t − b+t bs = δ(t− s) (3.3)
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where, here and in the following, the symbol [ · , · ] will denote the commutator:

[A,B] := AB −BA

Finally bt and Φ are related by the Fock property (always meant in the distri-
bution sense):

btΦ = 0 (3.4)

The unit vector Φ determines the expectation value

〈Φ,XΦ〉 =: 〈X〉 (3.5)

which is well defined for any operator X acting on H and with Φ in its domain.

Remark. In the Fock case algebra implies statistics in the sense that the alge-
braic rules (3.3), (3.2), (3.4) uniquely determine the restriction of the expec-
tation value (3.5) on the polynomial algebra generated by bt and b+t . This is
because, with the notation

Xε =

{
X , ε = −1
X∗ , ε = +1

(3.6)

the Fock prescription (3.4) implies that the expectation value

〈bεn
tn · · · b

ε1
t1 〉 (3.7)

of any monomial in bt and b+t is zero whenever either n is odd or bε1t1 = bt1
or bεn

tn = b+tn . If neither of these conditions is satisfied, then there is a k ∈
{2, . . . , n} such that the expectation value (3.7) is equal to

〈bεn
tn · · · b

ε1
t1 〉 = 〈bεn

tn · · · b
εk+1
tk+1

[btk , b
+
tk−1
· · · b+t1 ]〉 (3.8)

Using the derivation property of the commutator [btk , · ] (i.e. (7.4)) one then
reduces the expectation value (3.8) to a linear combination of expectation
values of monomials of order less or equal than n− 2. Iterating one sees that
only the scalar term can give a nonzero contribution.

Remark. The practical rule to deal with operator valued distributions
is the following: products of the form (3.7) are meant in the sense that, af-
ter multiplication by ϕ(tn) · . . . · ϕ(t1), where ϕ1, . . . , ϕn are elements of an
appropriate test function space (typically one chooses the space of smooth
functions decreasing at infinity faster than any polynomial), and integration
with respect to all variables dt1 · . . . · dtn (each of which runs over R

d) one
obtains a product of well defined operators whose products contain the vector
Φ in their domains. Here and in the following we will not repeat each time
when an identity has to be meant in the distribution sense.



16 L. Accardi and A. Boukas

4 Classical Real Valued White Noise

Lemma. Let bt, b+t be a Fock scalar white noise. Then

wt := bt + b+t (4.1)

is a classical real random variable valued distribution satisfying:

wt = w+
t (4.2)

[ws, wt] = 0; ∀s, t (4.3)

〈wt〉 = 0 (4.4)

〈wswt〉 = δ(t− s) (4.5)

〈wt2n
. . . wt1〉 =

∑
{lα,rα}∈p.p.{1,...,2n}

n∏
α=1

〈wtlαwtrα
〉 (4.6)

moreover all odd moments vanish and p.p.{1, . . . , 2n} denotes the set of all
pair partitions of {1, . . . , 2n}.
Remark. The self–adjointness condition (4.2) and the commutativity condi-
tion (4.3) mean that (wt) is (isomorphic to) a classical real valued process.
Conditions (4.4) and (4.5) mean respectively that (wt) is mean zero and
δ–correlated. Finally (4.6), which follows from (3.4) and from the same ar-
guments used to deduce the explicit form of (3.7), shows that the classical
process (wt) is Gaussian.

Definition 2. The process (wt) satisfying (4.2),. . .,(4.5) (one can prove its
uniqueness up to stochastic equivalence) is called the standard d–dimensional
classical real valued White Noise (WN). The identity (4.1) is called the quan-
tum decomposition of the classical d–dimensional white noise.

Remark. Notice that, for the classical process (wt), it is not true that algebra
implies statistics: this becomes true only using the quantum decomposition
(4.1) combined with the Fock prescription (3.4).

Remark. In the case d = 1, integrating the classical WN one obtains the
classical Brownian motion with zero initial condition:

Wt = Bt +B+
t =

∫ t

0

ds(b+s + bs) (4.7)

Notice that (4.7) gives the q–decomposition of the classical BM just as (4.1)
gives the q–decomposition of the classical WN.

From now on we will only consider the case d = 1.
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5 Classical Subprocesses Associated to the First Order
White Noise

An important generalization of the quantum decomposition (4.1) of the clas-
sical white noise is the identity:

pt(λ) = bt + b+t + λb+t bt; λ ≥ 0 (5.1)

which can be shown to define (in the sense of vacuum distribution) a
1–parameter family of classical real valued distribution processes (i.e. pt(λ) =
pt(λ)+ and [ps(λ), pt(λ)] = 0). In fact this classical process can be identified,
up to a time rescaling, to the compensated scalar valued standard classical
Poisson noise with intensity 1/λ and the identity (5.1) gives a q–decomposition
of this process.

Integrating (5.1), in analogy with (4.7), one obtains the standard compen-
sated Poisson processes. Notice that the critical value

λ = 0

corresponds to the classical WN while any other value

λ �= 0

gives a Poisson noise. As a preparation to the discussion of Section (17) notice
that λ = 0 is the only critical point, i.e. a point where the vacuum distribution
changes and that these two classes of stochastic processes exactly coincide with
the first two Meixner classes.

6 The Hudson–Parthasarathy Quantum Stochastic
Calculus

In the previous sections we have seen that, integrating the densities

wt = bt + b+t

p(λ)t = bt + b+t + λb+t bt

one obtains the stochastic differentials (random measures) as WN integrals

dWt =
∫ t+dt

t

wsds =
∫ t+dt

t

(bs + b+s )ds =: dB+
t + dBt

dPt(λ) =
∫ t+dt

t

ps(λ)ds =
∫ t+dt

t

(bs + b+s + λb+s bs)ds = dB+
t + dBt + λdNt
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Starting from these one defines the classical stochastic integrals with the usual
constructions. ∫ t

0

FsdWs;
∫ t

0

FsdPs(λ)

The passage to q–stochastic integrals consists in separating the stochastic
integrals corresponding to the different pieces. In other words, the quantum
decomposition (5.1) suggests to introduce separately the stochastic integrals

∫ t

0

FsdBs;
∫ t

0

FsdB
+
s ;

∫ t

0

FsdNs

This important development was due to Hudson and Parthasarathy and we
refer to the monograph [Partha92] for an exposition of the whole theory.

7 Schrödinger and Heisenberg Equations

A Schrödinger equation (also called an operator Hamiltonian equation) is an
equation of the form:

∂tUt = −iHtUt; U0 = 1; t ∈ R (7.1)

where the 1–parameter family of symmetric operators on a Hilbert space H

Ht = H∗t

is called the Hamiltonian. In the pyhsics literature one often requires the
positivity of Ht. We do not follow this convenction in order to give a unified
treatment of the usual Schrödinger equation and of its so–called interaction
representation form. This approach is essential to underline the analogy with
the white noise Hamiltonian equations, to be discussed in Section (12).

When Ht is a self–adjoint operator independent of t, the solution of equa-
tion (7.1) exists and is a 1–parameter group of unitary operators:

Ut ∈ Un(H); UsUt = Us+t; U0 = 1; U∗t = U−1
t = U−t; s, t ∈ R

Conversely every 1–parameter group of unitary operators is the solution of
equation (7.1) for some self–adjoint operator Ht = H independent of t.

An Heisenberg equation, associated to equation (7.1), is

∂tXt = δt(Xt); X0 = X ∈ B(H) (7.2)

where δt has the form

δt(Xt) := −i[Ht,Xt]; X0 = X ∈ B(H) (7.3)

One can prove that δt is a ∗–derivation, i.e. a linear operator on an appropriate
subspace of the algebra B(H) of all the bounded operators on H, also called
the algebra of observables, satisfying (on this subspace):
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δt(ab) = δt(a)b+ aδt(b) (7.4)

δ∗t (a) := δt(a∗)∗ = δt(a)

Not all ∗–derivations δt on subspaces (or sub algebras) of B(H) have the
form (7.3). If this happens, then the ∗–derivation, δt, and sometimes also the
Heisenberg equation, is called inner and its solution has the form

Xt = UtXtU
∗
t (7.5)

where Ut is the solution of the corresponding Schrödinger equation (7.1).
Conversely, every solution Ut of the Schrödinger equation (7.1) defines,
through (7.5), a solution of the Heisenberg equation (7.2) with δt given
by (7.3).

Thus every Schrödinger equation is canonically associated to an Heisenberg
equation. The converse is in general false, i.e. there are Heisenberg equations
with no associated Schrödinger equation (equivalently: not always a derivation
is inner). The simplest physically relevant examples of this situation are given
by the quantum generalization of the so called interacting particle systems
[AcKo00b] which have been widely studied in classical probability.

8 Algebraic Form of a Classical Stochastic Process

Let (Xt) be a real valued stochastic process. Define

jt(f) := f(Xt)

In the spirit of quantum probability, we realize f as a multiplication
operator on L2(R) and f(Xt) as a multiplication operator on

L2(R×Ω,BR ×F , dx⊗ P ) ≡ L2(R)⊗ L2(Ω,F , P )

where (Ω,F , P ) is the probability space of the process (Xt) and BR denotes
the Borel σ–algebra on R. Sometimes we use the notation:

Mfϕ(x) := f(x)ϕ(x); ϕ ∈ L2(R)

The same notation will be used if x ∈ R is replaced by (x, ω) ∈ R×Ω.
Thus f(Xt) is realized as multiplication operator on L2(R)⊗L2(Ω,F , P ).

With these notations, for each t ≥ 0, jt is a ∗−homomorphism

jt : C2(R) ⊆ B(L2(R))→ B(L2(R)⊗ L2(Ω,F , P ))

9 Koopman’s Argument and Quantum Extensions
of Classical Deterministic Dynamical Systems

The following considerations, due to Koopman, constitute the basis of the
algebraic approach to dynamical systems which reduces the study of such
systems to the study of 1–parameter groups of unitary operators or of



20 L. Accardi and A. Boukas

∗–automorphisms of appropriate commutative ∗–algebras or, at infinitesimal
level, to the study of appropriate Schrödinger or Heisenberg equations.

To every ordinary differential equation in R
d

dxt = b(xt)dt; x(0) = x0 ∈ R
d

such that the initial value problem admits a unique solution for every initial
data x0 and for every t ≥ 0: one associates the 1–parameter family of maps

Tt : R
d → R

d

characterized by the property that the image of x0 under Tt is the value of
the solution at time t:

xt(x0) =: Ttx0; T0 = id

Uniqueness then implies the semigroup property:

TtTs = Tt+s

If the above properties hold not only for every t ≥ 0, but for every t ∈ R, then
the system is called reversible. In this case each Tt is invertible and

T−1
t = T−t

Typical examples of these systems are the classical Hamiltonian systems. They
have the additional property that the maps Tt preserve the Lebesgue measure
(Liouville’s theorem).

Abstracting the above notion to an arbitrary measure space leads to the
notion of (deterministic) dynamical system:

Definition 3. Let (S, µ) be a measure space. A classical, reversible, determin-
istic dynamical system is a pair:

{(S, µ); (Tt) t ∈ R}

where Tt : S → S (t ∈ R) is a 1–parameter group of invertible bi–measurable
maps of (S, µ) admitting µ as a quasi–invariant measure:

µ ◦ Tt ∼ µ

The quasi–invariance of (S, µ) is equivalent to the existence of a µ–almost
everywhere invertible Radon–Nikodym derivative:

d(µ ◦ Tt)
dµ

=: pµ,t ∈ L1(S, µ)

pµ,t > 0; µ− a.e.;
∫
S
pµ,t(s)dµ(s) = 1


