Semantic Web Services

Rudi Studer - Stephan Grimm -
Andreas Abecker (Eds.)

Semantic Web Services

Concepts, Technologies, and Applications

With 102 Figures

@ Springeﬂ

Editors

Rudi Studer Andreas Abecker

Universitit Karlsruhe Forschungszentrum Informatik (FZI)
Inst. Angewandte Informatik und Haid-und-Neu-Str. 10-14

Formale Beschreibungsverfahren 76131 Karlsruhe

76128 Karlsruhe Germany

Germany abecker @fzi.de

studer @aifb.uni-karlsruhe.de

Stephan Grimm

Forschungszentrum Informatik (FZI)
Haid-und-Neu-Str. 10-14

76131 Karlsruhe

Germany

grimm@fzi.de

Library of Congress Control Number: 2007923415
ACM Classification: H.4,D.2,1.2,J.1
ISBN 978-3-540-70893-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
(© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Typesetting by the editors
Production: Integra Software Services Pvt. Ltd., India
Cover design: KiinkelLopka, Heidelberg

Printed on acid-free paper =~ 45/3100/Integra 54 32 1 0

Contents

(Infroduction|

|Rudi Studer, Stephan Grimm and Andreas Abecken

[Part T Web Services Technology|

1 T I rvice-Orien Archi I

|Stefan Fischer and Christian Werner|

A [Standardisation of Web Services

|Christian Werner and Stefan Fischer

[Part IT_Semantic Web Technology]

3 Knowledge Representation and Ontologies|

4 Ontology Development]

ydbor Nagypdl|.

ES . oo R iheS TCWeb

WSiegfried Handschuh|.

tephan Grimm, Pascal Hitzler and Andreas Abecker|.

[7 Description|

Holger Lausen, Rubén Lara, Axel Polleres, Jos de Bruijn

ead Dumitru Romanl« oo oo e

VI Contents

[Discovery]

|Laurent Henocque and Mathias Kleinen|.

[0Mediation|

|Oscar Corcho, Silvestre Losada and Richard Benjamins|.

| tepnan Grimmf. i e e e e

[Part TV Tools and Use Cases|

ML Toos TorS - Web Services

Anupriya Ankolekar, Massimo Paolucci, Naveen Srinivasan

[endKatia Sycard).

12 Ontology-Based Change Management in an eGovernment

|Application Scenario|

ILjtljana Stojanovid|

113 An eGovernment Case Study|

114 An eHealth Case Study|

|Emanuele Della Valle, Dario Cerizza, Irene Celino, Asuman Dogac,

|once B. Laleci, Yildiray Kabak, Alper Okcan, Ozgur Gulderen,

[Tuncay Namli and Veli Bicen}. i,

Introduction

Rudi Studer, Stephan Grimm and Andreas Abecker

FZI Research Center for Information Technologies, University of Karlsruhe, Germany
[{studer, grimm, abecker}@fzi.de|

Motivation for the Topic of this Book

Web Service (WS) technology and the idea of a Service-Oriented Architecture (SOA)
for web-based, modular implementation of complex, distributed software systems
seem to become a tremendous success [T 0. In just a few years, the service-oriented
approach not only gained considerable interest in Computer Science research, but
was also taken up with a unique unanimity by all big international players in the IT
industry, such as IBM, Microsoft, Hewlett Packard, and SAP.

Distributed software systems conquer more and more fields of daily lifeEl and
the software itself becomes more and more powerful. On the other hand, such soft-
ware systems also become increasingly complex, and the software bridges more and
more between formerly separated, heterogeneous areasEl Hence, the matter of how
to structure modular systems and how to achieve interoperability between heteroge-
neous parts becomes a key to success. The effective and efficient realisation of such
modular, interoperable, large-scale software systems is facilitated by Web Services
and SOA because they provide a standardised architecture for modular systems, for
creating new functionality from existing building blocks, and for enabling commu-
nication between heterogeneous elements.

In contrast to the former, technologically well-founded, approaches that
addressed (at least partially) similar goals, such as CORBA or Multi-Agent Systems,
the current approach seems to have some striking advantages:

e [tis simple, based on simple, open protocols.
e These protocols does not require or require only a limited amount of additional
software.

1 See, for instance, the ever growing importance of embedded software systems in the auto-
motive area, or the thrilling new opportunities opened up by Ubiquitous Computing and
RFID technology

2 Consider, e.g., cross-platform implementations, cross-department workflows, cross-organi-
sational application integration, or even cross-national eGovernment processes

{studer,grimm,abecker}@fzi.de

2 Rudi Studer et al.

e It is a conservative extension of accepted Internet standards which proved to
work, also platform independently.
e It allows easy encapsulation of existing code and applications.

Maybe even more important for the success of SOA than purely technological issues
is the fact that times have changed to some extent:

e Standardisation of some levels of software communication is commonly accepted
through the success of the Internet.

e Supporting business processes and understanding business logic becomes more
important than mastering low-level computer functionality.

e Interoperability in a networked world is going to be considered a bigger compet-
itive advantage than binding customers through proprietary software and proto-
cols.

All such considerations led to an atmosphere which facilitates the widespread indus-
trial take-up of ideas like SOA and Web Services. Nevertheless, it would be an illu-
sion to think that we have already found the golden bullet for solving all problems
of interoperability in heterogeneous systems, as required for Enterprise Application
Integration or Business-to-Business solutions. Essentially, Web Service standards
provide a communication medium for distributed systems, but they cannot yet ensure
that the communicating parties “speak the same language”—which is necessary for
smooth, fully automated system interoperation.

For illustrating the deficiencies of existing SOA solutions, let us use the follow-
ing analogy. If two parties want to communicate, they might want to send a letter by
mail. Hence they need paper and pen for writing, they need stamps, postal offices, etc.
which provide a transport infrastructure. They also need some addressing schemes
and coding standards, such as ZIP codes. All this can be considered as given in the
SOA approach with its lower levels for message transport, etc. For really communi-
cating, our two parties also need to know the grammar and the lexicon of the English
language. Even this might be considered as given in SOA technology, e.g. through
the Web Service Description language.

However, such standards for structure, syntax, and vocabulary of Web Service
functionality do not yet offer the semantics and the pragmatics of the used vocabu-
lary. Software systems cannot know that the words bank and credit institute may be
used in many cases as synonyms; that a flower shop in particular sells roses, tulips,
and cloves because they are flowers; that flower shops may offer seedlings of salad
or vegetables, but not always do — if a certain shop does not, a market-garden is
the more appropriate address; that flower shops sometimes also sell greeting cards
because they go often along with a bouquet of flowers; or that a market-garden may
also produce the flowers for the flower shop, and thus might offer cheaper prices,
but less floristic services. Coming back to our analogy, we can say that by writing
a letter, real communication between the two parties is only achievable if they both
share a common understanding of how language refers to concepts prevalent in the
real world, and if both know which constraints and which background knowledge is
typically associated with these concepts.

Introduction 3

All such common-sense reasoning as well as general or business-specific back-
ground knowledge are typically not available in a computer system. Hence it is still
often the case that also in today’s most developed service-oriented software sce-
narios, there is much manual, human intervention required in order to interpret the
semantics of informal descriptions of service functionality, or in order to harmonise
incompatible data schemata or communication protocols.

Semantic Web Technology

This is the moment where Semantic Web (SW; see [[I]) technology comes into play.
Its aim is exactly to harmonise semantical discrepancies in software systems by pro-
viding machine-interpretable semantics, and to “understand” ambiguous descriptions
— thus achieving a new quality of intelligent and automated information processing
in the web [[& 28]].

This is done on the basis of semantically rich meta data for webpages, for web-
accessible data or multimedia resources, etc. This meta data is expressed in powerful,
logic-based, representation languages (which are in part already standardised by the
World Wide Web Consortium W3C) that refer to the controlled vocabulary of shared
and quasi standardised domain knowledge models, so-called ontologies [IQ 29
The ultimate goal of such an approach—based upon formal, expressive languages
and shared, controlled vocabularies—is to make semantics machine-processable to a
much bigger extent than it is today.

Semantic Web Services

Semantic Web Services (SWS) employ such Semantic Web technology in the Web
Services area: service functionality, Web Service inputs and outputs, their precon-
ditions and effects, etc., all are expressed in knowledge representation languages,
referring to shared ontological vocabularies [201 [[@]. In this way, a higher
degree of automation and more precise results can be achieved:

e When searching for a service providing a specific functionality, ontologies and
associated thesauri can provide synonyms of words, the taxonomic structure of
service capabilities, relationships between service capabilities, etc.

e When trying to harmonise different data formats for two services which have to
exchange messages, ontologies can provide elaborated conceptual data models
for message descriptions which facilitate automated translation.

e When mediating different communication protocols of services to work together,
highly expressive Semantic Web languages can provide well-founded means to
describe interaction patterns in communication protocols.

e When trying to compose complex business processes from given partial pro-
cesses implemented by a number of Web Services, automated planning algo-
rithms from Aurtificial Intelligence can be employed, provided the semantics of
the input services is formally defined.

4 Rudi Studer et al.
About this Book

This book aims to be a self-contained compendium of material for newcomers in the
field, starting with the basics, and also coming to a level of technical depth which is
sufficient to start one’s own concrete technical work in the area. We aim at provid-
ing the necessary theoretical and practical knowledge for understanding the essential
ideas and the current status of Semantic Web Services research. The reader should be
familiar with Computer Science basics and fundamental terminology; prior knowl-
edge in Semantic Web technology or Artificial Intelligence is useful, but not required.
The book mainly addresses advanced Computer Science students or researchers, as
well as practitioners with a good theoretical background, interested in the future of
computing. It provides a snapshot of ongoing research in the SWS area and might
be used as a supplementary textbook for Semantic Web, Artificial Intelligence, Web
Services, or Middleware lectures. It shall also serve as an introductory and survey
volume for IT professionals who prepare the step from Web Service programming to
Semantic Web Services or who want to assess the potential of this new technology.

In order to achieve these goals, we followed some principles guiding the prepa-
ration of this book:

e The book aims at a complete coverage of the topic and its background. Therefore,
we included in Parts I and II of the book introductory chapters on Web Services
and SOA, as well as on the most important Semantic Web fundamentals, in order
to provide all necessary prior knowledge for the SWS topic.

o The aim of a comprehensive discussion of Semantic Web Services also led to
the goal of finding a balance between theoretical foundations and practical or
practice-oriented topics. This led to the decision of discussing in Part III of the
book the overall SWS life cycle and technology foundations in a principled sur-
vey manner, whereas Part IV contains concrete application examples and imple-
mentation issues.

e We tried to have all chapters reasonably self-contained, such that they could be
taken (by a reader familiar with the required background) as stand-alone papers,
also including their own list of references. Definitely, the several parts of the book
can be read stand-alone.

e Although we had this aim of providing relatively self-contained chapters, we also
tried to ensure a maximum level of consistency between chapters, meaning that
we avoided redundancies and tried to ensure a consistent use of terminology and
overall idea of SWS — which is mainly based on Chap.[f}

e The book is not committed to a specific knowledge representation or service
description approach (such as OWL-S or WSMO), but tries to give a fair and
comprehensive account of today’s existing solutions.

It should be noted that the SWS topic is still pretty young; by far not all technical
discussions are completed yet nor is any technical basis finally standardised. Conse-
quently, this early stage of SWS research is also reflected in the content of the various
chapters and their level of overall integration.

Introduction 5

Structure of the Book

The structure of this book, divided into parts and chapters, is as follows.

Part I briefly presents the basics of current, non-semantic Web Services and SOA
technology:

e Chapter[Ijmotivates the basic idea of Web Services and SOA.

e Chapter [] introduces the Web Service technology stack and technical fun-
damentals of SOA, and thoroughly discusses the most important standards,
protocols, and basic technologies underlying the approach (such as SOAP,
WSDL, and UDDI).

Part Il introduces major ideas and some basic technology of the Semantic Web:

e Chapter [f] introduces the basic ideas of knowledge representation and pro-
cessing, in particular with respect to ontologies as a key feature of the
Semantic Web.

e Chapter[d]gives a pragmatic introduction to ontology engineering.

e Chapter[j]explains the overall Semantic Web idea with ontology-based meta
data, and meta data annotation of Web resources as its core concepts.

Part III presents the major principles and technological components of the SWS
approach:

e Chapter [f] sketches the overall vision and idea of SWS and introduces the
basic notions used in the subsequent chapters.

e Chapter [7] shows the principles and the major, widespread approaches for
SWS description by ontology-based meta data.

e Chapter [§]illustrates the usage of such semantic description for precise dis-
covery and selection of Web Services.

e Chapter[Q]discusses several ways of how to compose complex Web Services
from simpler ones.

e Chapter [I0]identifies various kinds of heterogeneity prevalent in SWS sce-
narios and shows ways to overcome them with semantic mediation technolo-
gies.

Part IV illustrates implementation and application aspects of Semantic Web Ser-
vices:

e Chapter [TT] gives an impression of contemporary, implemented SWS tech-
nology by discussing basic tool categories for Semantic Web Services and
showing many example implementations.

e Chapter[I2]uses elements of the SWS technology as introduced in the former
parts of the book for adding a new functionality to existing legacy systems in
the area of Electronic Government. Concretely, an approach is shown which
supports tracking of changes in an evolving world down to the affected ser-
vice implementations.

e Chapter[[3]describes some more application examples in the domain of Elec-
tronic Government. Here, the focus is on interoperability of different soft-
ware systems.

6 Rudi Studer et al.

e Finally, Chap.[I4]shows two applications of SWS technology in the eHealth
area. Again, interoperability is a major aim, and also the easier use of new
mobile technologies is addressed.

Practical Relevance of the SWS Topic

At the time of editing this book, Semantic Web Services were a highly active research
and development topic. Initiatives such as OWL-S, WSMO, IRS-III, or METEOR-S
have gained a high level of visibility and produced valuable research results. Issues
such as intelligent service discovery or fully automated service composition were
subject to widespread ongoing research in many labs. Standardisation efforts such as
OWL-S, WSMO, WSDL-S or SWSF (all submitted to W3C and partially discussed
in OASIS and OMG) have found their way into relevant standardisation processes.
Big IT companies like Hewlett Packard, SAP, and IBM have taken up the topic in
their research agendas and belong to the major drivers in the field. Semantic Web
Service approaches are investigated as a base technology for supporting other rel-
evant Web Service issues such as policy modelling or quality of service [I3 B2].
Other approaches to distributed computing, such as Peer-to-Peer or Grid computing,
settle upon Web Services as an underlying technology and can thus also be “lifted”
to Semantic Peer-to-Peer or Semantic Grid computing [[[4 B3]

However, regarding real-world practical applications, Semantic Web Services are
still looking for their “killer applications”. In this book, we included case studies
from the healthcare and the government area. Both are perfect application domains
for SWﬂ however, in eBusiness, it is not yet clear which scenarios definitely need
SWS functionality — although company-internal application integration (EAI) and
cross-organisational business processes in Business-to-Business (B2B) relationships
were a main driver for the development of SWS technology. There is a number of
published applications, mostly in the prototype status:

e Logistics — In [23], logistics supply chains are generated on-the-fly, while chang-
ing availability of transportation alternatives may require real-time reconfigura-
tion of service networks.

3 eHealth and eGovernment seem to be fruitful for a number of reasons: both are charac-
terised by a huge number of parties, the software of which should seamlessly interoperate
(e.g. all doctor’s surgeries with all hospitals and all health insurance companies); interop-
erability is a critical issue since both domains face a strong pressure for significant cost
reductions; moreover, legal regulations enforce a better software process interoperability in
some fields of eGovernment; traditionally, both domains are to some extent resistant against
some market mechanisms which reduce interoperability problems in some eBusiness sce-
narios (e.g. when a big Original Equipment Manufacturer presses its suppliers or vendors
to use a specific software that is compliant with its own systems, or when a certain de-facto
standard arises for any economic reason which does not apply to public authorities); last
but not the least, in spite of their huge heterogeneity, both areas have some tradition in
standardisation and are thus prepared for the use of ontologies etc.

Introduction 7

e Tourism — In [I2 [B3], travel Web Services are composed for a virtual travel
agency in an automated way, in order to loosen the currently centralised struc-
tures of the travel business.

e Collaborative work — Reference [[T]] presents a simple demonstrator for the ad
hoc composition of virtual teams, exploiting semantic descriptions for match-
making of appropriate collaborators and for facilitating interoperability of
involved software applications.

e Finance — Reference [l demonstrates automatic selection and composition of
account monitoring and message delivery Web Services in an eBanking scenario
where a user is automatically notified if he/she is financially overcommitted.

e Telecommunication — Reference [§]] explains how British Telecom aims at an eas-
ier integration of new business partners into their BT Wholesale’s B2B Gateway
through SWS technology.

e Bioinformatics — Reference [24]] employs SWS methods and models for a seman-
tic workflow tool which configures and manages complex workflows for pro-
cessing information about protein sequences in genes. Similar approaches are
also under work in other bioinformatics labs. Reference [I8]] compares several
architectural alternatives for semantics-based bioinformatics software, and draws
some general conclusions about the potential for applying SWS technology in
bioinformatics. We suspect that a similar application potential exists also in other
eScience domains with complex information processing tasks.

e Business Intelligence (BI) — similarly to the above-mentioned bioinformatics
example, [27]] uses the IRS-IIT Semantic Web Service framework for integrating
heterogeneous applications and for reusing code of existing BI software. Such
a usage of SWS technology, namely easier web-based construction of software
workbenches from existing code, seems to be possible and useful in many other
domains too.

e Geographic Information Systems (GIS) — Recently, more and more spatial-
related data becomes publicly available and opens up new opportunities for
space-oriented information services which combine different information streams
at runtime, within a given context. To this end, the integration of manifold het-
erogeneous data at different layers of abstraction is important. For instance, [ZT]]
describes an emergency management system based on a Semantic Web GIS, with
SWS as the technological basis for achieving data interoperability and for inter-
facing different software services.

The examples above illustrate potential SW'S use cases and show under which condi-
tions the provided functionality can be used beneficially. It seems decent to think that
large-scale SOA installations with thousands of available services and high expecta-
tions with respect to process automation cannot be realised at all without models of
formalised semantics and powerful inferences acting upon them. However, the lack
of widespread industrial take-up of SWS technology shows that practitioners are not
yet fully convinced. Nevertheless, independent from possible future SWS usage sce-
narios in eBusiness or eScience, we suspect a remarkable success of SWSs in two
further areas: Semantics-Based Software Engineering and Pervasive Computing.

8 Rudi Studer et al.
Semantics-Based Software Engineering

Let us call our first vision Semantics-Based Software Engineering (SBSE, cp. [21}
2. Imagine a software engineering scenario within a company that often builds
large-scale software solutions from many components (modules, packages, classes,
etc.) with different functionality, many of them being slight variations of others. In
such a situation, the semantic description of components could facilitate the man-
ual discovery of reusable components by employing well-known techniques from
ontology-based information retrieval, thus increasing significantly the programmers’
productivity. Components could be linked with supporting documentation, FAQs,
example usages, etc. Usage constraints and interdependencies with other compo-
nents would be modelled formally to enable automated consistency checks. More-
over, the semantic description of general, as well as domain-specific usage policies
would facilitate automated policy enforcement for checking the consistency of sys-
tem configurations, or for tracing the effects of policy changes. While the “general”
SWS scenario strives for full automation, the SBSE vision keeps the human in the
loop: software development tasks are supported, facilitated, and controlled by the
system, thus leading to an approach which is much more realistic in the short term.

Pervasive Computing and Ubiquitous Intelligence

Another scenario, much more ambitious than the aforementioned, is the idea of
Ambient, Ubiquitous Intelligence, or Pervasive Computing, where human—computer
interaction is supported by networked physical devices which act as sensors or as
actuators and are embedded in our clothes or in our everyday working and living
environments, tools, or electrical appliances. For instance, the MyCampus project
at Carnegic Mellon University [26] describes ubiquitous, context-aware, person-
alised information services in three sample domains: at a University campus, in a
museum, and in a smart office environment. Reference [d]] presents context-aware,
policy-based, and personalised computing services in a smart meeting room. All such
scenarios imply the seamless ad hoc interoperability of a variety of software com-
ponents, which requires a high degree of automation in composition and mediation.
Moreover, the implementation of intelligent system behaviour can benefit from the
higher level of abstraction provided by declarative modelling of policies, context,
behaviour, etc.

Acknowledgments

The work presented in this book is the result of cooperation in many inspired and
committed teams, which could not have taken place without the generous financial
support by many public and private institutions and organisations. At this place, we
want to thank all these co-financing partners which made ambitious IT research pos-
sible and which helped to shape the future of our working environments.

Introduction 9

Let us mention with special emphasis the European Commission (EC) which
co-funded two ground-breaking research projects laying the foundations for a wide-
spread adoption of SWS approaches in Europe:

1. SWWS (Semantic Web Enabled Web Services, funded by the EC under grant
FP5-IST-2001-37134) was probably the first endeavour to join forces of sev-
eral European research institutions and commercial players to come to a com-
mon, eBusiness-driven vision of Semantic Web Service technology as a basis for
Enterprise Application Integration and Business-to-Business Interoperation.

2. DIP (Data, Information and Process Integration with Semantic Web Services,
funded by the EC under grant FP6-IST-507483) continued the SWWS efforts
and came up with the Web Service Modelling Ontology (WSMO), an ontology-
based, comprehensive SWS framework.

Many of the chapters benefit from the work done in these two projects. Let us also
mention especially the European OntoGov project (Ontology-enabled eGov Service
Configuration, funded by the EC under grant FP6-IST-507237) which substantially
supported the editors’ work. OntoGov employed semantics-based service modelling
methods for change management as part of service management in Electronic Gov-
ernment.

For the US authors, we have to mention DARPA which considerably supported
the success of SWS research through its DAML programme.

Other projects which supported some of our chapter authors, include the follow-
ing:

e ARTEMIS (A Semantic Web Service-Based P2P Infrastructure for the Interoper-
ability of Medical Information Systems, funded by the EC under grant FP6-IST-
002103)

ASG (Adaptive Service Grid, funded by the EC under grant FP6-IST-004617)
COCOON (Building Knowledge Driven and Dynamically Adaptive Networked
Communities within Healthcare Systems, funded by the EC under grant FP6 IST-
507126)

e CollaBaWii (Collaborative, Component-Based Business Application Software
Development within the Financial Service Provider Domain in Baden-
Wiierttemberg, funded by the German Federal State of Baden-Wiirttemberg)
DERI-Lion (funded by Science Foundation Ireland)

Esperonto (Application Service Provision of Semantic Annotation, Aggregation,
Indexing and Routing of Textual, Multimedia, and Multilingual Web Content,
funded by the EC under grant FP5-IST-2001-34373)

e FIT (Fostering Self-Adaptive e-Government Service Improvement Using Seman-
tic Technologies, funded by the EC under grant FP6-IST-027090)

e InfraWebs (Intelligent Framework for Generating Open (Adaptable) Develop-
ment Platforms for Web-Service Enabled Applications Using Semantic Web
Technologies, Distributed Decision Support Units and Multi-Agent Systems,
funded by the EC under grant FP6-IST-511723)

10

Rudi Studer et al.

Knowledge Web (Network of Excellence, funded by the EC under grant FP6-
507482)

Monadic Media (funded under the ITEA scheme by the government of Italy)
RW2 (Reasoning With Semantic Web Services, funded by the Austrian govern-
ment in the FIT-IT programme)

SEKT (Semantically Enabled Knowledge Technologies, funded by the EC under
grant FP6-IST-506826)

TSC (Triple-Space Computing, funded by the Austrian government in the FIT-IT
programme).

References

10.

11.

12.

13.

14.

15.

. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284,
May 2001.

. C. Bussler, J. Davies, D. Fensel, and R. Studer, editors. The Semantic Web: Research
and Applications, First European Semantic Web Symposium, ESWS 2004, volume 3053
of LNCS. Springer-Verlag, 2004.

. L. Cabral, J. Domingue, E. Motta, T.R. Payne, and F. Hakimpour. Approaches to Semantic
Web Services: an Overview and Comparisons. In [2J, pages 225-239, 2004.

. H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, and D. Chakraborty. Intelligent Agents
Meet the Semantic Web in Smart Spaces. IEEE Internet Computing, 8, November/De-
cember 2004.

. J.M. Lépez Cobo, S. Losada, 0. Corcho, V.R. Benjamins, M. Niflo, and J. Contreras.
SWS for Financial Overdrawn Alerting. In Mcllraith et al. [[9], pages 782-796.

. J. Davies, R. Studer, and P. Warren, editors. Semantic Web Technologies — Trends and
Research in Ontology-based Systems. John Wiley & Sons, 2006.

. J. Domingue, S. Galizia, and L. Cabral. The Choreography Model for IRS-III. In Hawaii
International Conference on System Sciences (HICSS 2006), 2006.

. A. Duke, M. Richardson, S. Watkins, and M. Roberts. Towards B2B Integration in
Telecommunications with Semantic Web Services. In Gémez-Pérez and Euzenat [3,
pages 710-724.

. T. Erl, editor. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice

Hall PTR, 2005.

D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-

merce. Springer-Verlag, 2001.

M. Fliigge and K.-U. Schmidt. Using Semantic Web Services for ad hoc Collaboration in

Virtual Teams. In Berliner XML Tage, pages 187-198, 2004.

M. Fliigge and D. Tourtchaninova. Ontology-derived Activity Components for Compos-

ing Travel Web Services. In Berliner XML Tage, pages 133—150, 2004.

A. Gémez-Pérez and J. Euzenat, editors. The Semantic Web: Research and Applica-

tions, Second European Semantic Web Conference, ESWC 2005, volume 3532 of LNCS.

Springer-Verlag, 2005.

P. Haase, S. Agarwal, and Y. Sure. Service-Oriented Semantic Peer-to-Peer Systems. In

C. Bussler et al., editor, Workshop Web Information Systems Engineering, volume 3307

of LNCS, pages 46-57. Springer-Verlag, 2004.

J. Miller, J. Arnold, J. Cardoso, A. Sheth, and K. Kochut. Quality of Service for Work-

flows and Web Service Processes. Journal of Web Semantics, July/August, 2004.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Introduction 11

A.P. Sheth, J.A. Miller, Z. Wu, K. Verma, and K. Gomadam. The METEOR-S Approach
for Configuring and Executing Dynamic Web Processes. Technical report, June 2005.

D. Krafzig, K. Banke, and D. Slama, editors. Enterprise SOA: Service Oriented Architec-
ture Best Practices. Prentice Hall PTR, 2004.

P.W. Lord, S. Bechhofer, M. D. Wilkinson, G. Schiltz, D. Gessler, D. Hull, C.A. Goble,
and L. Stein. Applying Semantic Web Services to Bioinformatics: Experiences Gained,
Lessons Learnt. In Mcllraith et al. [T9]], pages 350-364.

. S. A. Mcllraith, D. Plexousakis, and F. van Harmelen, editors. The Semantic Web - ISWC

2004: Third International Semantic Web Conference, volume 3298 of LNCS. Springer-
Verlag, 2004.

S.A. Mcllraith, T. Cao Son, and H. Zeng. Semantic Web Services. [EEE Intelligent
Systems, 16(2):46-53, 2001.

D. Oberle. Semantic Management of Middleware. Springer-Verlag, February 2006.

D. Oberle, S. Lamparter, S. Grimm, D. Vrandecic, S. Staab, and A. Gangemi. Towards
Ontologies for Formalizing Modularization and Communication in Large Software Sys-
tems. Journal of Applied Ontology, 2006.

A. Polleres, I. Toma, and D. Fensel. Modeling Services for the Semantic Grid. In
C. Goble, C. Kesselman, and Y. Sure, editors, Semantic Grid: The Convergence of Tech-
nologies, number 05271 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

S. Potter and J.S. Aitken. A Semantic Service Environment: A Case Study in Bioinfor-
matics. In Gémez-Pérez and Euzenat [I3]], pages 694-709.

C. Preist, J. Esplugas Cuadrado, S. Battle, S. Grimm, and S.K. Williams. Automated
Business-to-Business Integration of a Logistics Supply Chain Using Semantic Web Ser-
vices Technology. In Y. Gil, E. Motta, V.R. Benjamins, and M.A. Musen, editors, Inter-
national Semantic Web Conference, volume 3729 of LNCS, pages 987-1001. Springer-
Verlag, 2005.

N. Sadeh, F. Gandon, and O. Buyng Kwon. Ambient Intelligence: The MyCampus Expe-
rience. In T. Vasilakos and W. Pedrycz, editors, Ambient Intelligence and Pervasive Com-
puting. ArTech House, 2006.

D. Sell, L. Cabral, E. Motta, J. Domingue, and F. Hakimpour. A Semantic Web based
Architecture for Analytical Tools. In 7th International IEEE Conference on E Commerce
Technology (IEEE CEC 2005), 2005.

S. Staab and H. Stuckenschmidt, editors. Semantic Web and Peer-to-Peer. Springer-
Verlag, November 2005.

S. Staab and R. Studer. Handbook on Ontologies. International Handbooks on Informa-
tion Systems. Springer-Verlag, 2004.

K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated Discovery, Interac-
tion and Composition of Semantic Web Services. Journal of Web Semantics, 1(1):27-46,
September 2003.

V. Tanasescu, A. Gugliotta, J. Domingue, L. Gutiérrez Villarias, R. Davies, M. Rowlatt,
and M. Richardson. A Semantic Web GIS based Emergency Management System. In
Workshop on Semantic Web for eGovernment Held in conjunction with ESWC 2006, 2006.
J.M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, A. Uszok, and S. Aitken.
KAoS Policy Management for Semantic Web Services. IEEE Intelligent Systems, 19,
July/August 2004.

M. Zaremba, M. Moran, and T. Haselwanter. Applying Semantic Web Services to Virtual
Travel Agency Case Study, Poster Presentation. In Y. Sure and J. Domingue, editors,
ESWC, volume 4011 of LNCS, pages 782—796. Springer-Verlag, 2004.

Part I

Web Services Technology

1

Towards Service-Oriented Architectures

Stefan Fischer and Christian Werner

Institute for Telematics, University of Liibeck
[{fischer, werner}@itm.uni—luebeck.de|

Summary. This chapter is meant as a motivation of why and how Web Services have evolved.
Starting from the increasing need for integration of IT solutions, we argue that Web Services
have something to offer, especially for the important fields of Business-to-Business (B2B) and
Enterprise Application Integration (EAI). However, this is only the beginning of a new road,
leading to the radically new software technology of Service-Oriented Architectures (SOA).

1.1 Integration: The New Challenge

This book is about Semantic Web Services, and before we can talk about the new and
fascinating “semantics” part, it will be helpful to consider the foundations, namely to
look at the Web Service technology itself. Web Services themselves are a relatively
new phenomenon and have been under development for only slightly more than five
years. During this time, they have gained a lot of attention and have also already
gone through their hype phase. Meanwhile, they are accepted as one of the most
important technologies when talking about application integration. In this context,
they have been brought together with many other buzzwords that have been coming
up in recent years.

1.1.1 The Need for Integration

First, Web Services have been considered as a new kind of middleware, taking their
place between application and network. Here, they are in competition with other sim-
ilar approaches such as CORBA, Java RMI, OSF DCE, etc. One can very well argue
that Web Services have an excellent chance to become the dominating middleware,
due to their extensive support of Internet technologies — one of the most important
and relatively rarely mentioned being the use of URIs/URLSs as addressing scheme
— and the massive support by IT industry, resulting, for instance, in an excellent tool
chain support throughout the software life cycle.

Second, Web Services have been chosen as one of the base technologies in grid
computing, another major recent buzzword. A computing or storage grid works just

{fischer,werner}@itm.uni-luebeck.de

16 Stefan Fischer and Christian Werner

like a water or electrical grid — just press a button and the grid delivers as much water
or power as you need. In IT terms, you just plug in your terminal and get as much
storage capacity or computing power as you need. The resources will be provided
by the grid, which consists of some cooperation software and lots of more or less
powerful computers. As a user, you do not see the computers, you just see the grid
(or the plug) and its services. And grid services are provided as Web Services, so that
is where they come into the game. Whenever your grid application makes use of one
of the grid’s services, it calls a Web Service.

Third and final example, Web Services are the basic component in most SOA
approaches. SOA means Service-Oriented Architecture, and it is the latest hype in
enterprise application software architecture design. SOA will most likely become one
of the most important technologies within the next few years. Due to its importance,
we will come back to it at the end of this chapter.

All these technologies are related to integration. Why is integration obviously so
important that it triggers the development of so many new buzzwords, hypes, and
serious new technologies?

This has to do with the famous real-world phenomenon of globalisation. Today,
goods and services are traded and provided worldwide. Companies are no longer
restricted to their home base, but often produce their products in different countries.
There, they cooperate with other companies they might not have heard of a few
weeks before. Or they might even buy other companies which fit into their portfolio
or provide a certain service that the buying company urgently needs.

In order to survive in a globalised world, the IT infrastructure of such companies
needs to be adjusted to the new requirements. This basically means two things. First,
integration has to take place on an internal level. It will be necessary that applications
in different domains can work together, based on the same stock of data. This is not
as simple as it might sound: just consider as an example the merger of Daimler and
Chrysler and the need to integrate these two completely different IT worlds. Second,
integration has to take place on an external level. Applications of different business
partners have to cooperate, e.g. in a selling—buying process. This is a major chal-
lenge based on heterogeneous technologies, but a major success factor for a globally
operating company.

How can integration be achieved? Let us first have a look at an obvious candi-
date — the Internet and especially the World Wide Web.

1.1.2 B2C: Great New World?

One could well argue that the Web offers everything you need in order to conduct
business. In fact, probably millions of web-based applications are in use today, so a
lot of business is going on already. Looking closely at these applications, one will
realise that they all have one very specific property: they are interactive applications,
which means that there is a always a human on one end of the line (human—machine
interaction). Take, e.g., all the well-known ticket-booking applications for flights,
railway travel, etc. They are very well suited for interaction between a user and the
application, providing a usually very nice and stylish user interface. Most of them

1 Towards Service-Oriented Architectures 17

are the so-called business-to-consumer (B2C) applications, i.e. individuals use them
to conduct all kinds of businesses on the web.

However, when we talk about globalisation and integration, we usually mean
something else: it is the companies that need to cooperate. Usually, we then talk about
B2B applications. So, can we use the same technologies to organise this cooperation,
i.e. to implement B2B applications?

The answer is clearly no, and the reason for this is the already mentioned interac-
tivity of B2C applications. B2B applications are inherently non-interactive; instead,
nearly every transaction is expected to be executed automatically. Only then, such
applications really make sense, because of the gain of speed and efficiency. What
therefore is needed is not human—machine, but machine—machine interaction. Why
does it not make sense to use the existing interface of web applications for B2B
applications?

B2C applications use a standardised page description language to create these
interfaces the name of which is HTML. HTML does a great job: it is simple, flexible,
robust and very expressive, especially with its partner Cascading Style Sheets (CSS),
but it does just that: it describes page layouts. This is great for user interfaces, but
it is not good for automatised interactions between applications. Applications need
to exchange clean data, just describing the objects of the application domain which
need to be exchanged. Let us look at an example.

When you book a flight on the Lufthansa or British Airways website, you will
typically be presented a list of available flights. For a human user, it is absolutely no
problem to understand the content of the page, since it has been nicely rendered by
the web browser. The web browser got, from the Lufthansa web server, something
like

<tr><td>FRA</td><td>SFR</td><td>10:00</td><td>12:00</td></tr>

The browser need not understand the application-specific semantics of this code, it
just needs to understand the meaning of tags such as <t r> — in this case indicating
a new line in the table displaying all flights. For an automated application-specific
processing (i.e. not simply layout oriented), however, this is not sufficient, since there
is absolutely no information available on what the application domain of this code
is. We as humans can tell that most likely this describes a flight from Frankfurt to
San Francisco which leaves at 10 in the morning and arrives at noon, but the “dumb”
computer can not.

To summarise, HTML is not enough for B2B applications. If we want to make
use of applications which are available on the Internet today in B2B contexts, we
need to provide different interfaces.

1.1.3 B2B and EAI: Today’s Solutions

Before we see how the new integration solution works, let us have a look at some
earlier approaches that have been developed in order to create interoperable appli-
cations in the business world. We already called the interaction between companies
B2B. There was (and still is) a second big movement that covered the integration

18 Stefan Fischer and Christian Werner

question on an inter-company level. It is called Enterprise Application Integration
(EAI), but in essence, from a technical point of view, it is the same as B2B.

The name of these solutions has already been mentioned: middleware. The pur-
pose of middleware is usually twofold. First, it is meant to abstract away from the
details and the complexity of network programming which includes bit-wise encod-
ing of messages and their transfer to specific destinations. Second, it provides a uni-
form way of describing interfaces of objects relevant in a certain application. Based
on these interfaces, services provided by one object can be used by other objects
using the interface’s description.

First solutions such as Sun’s Remote Procedure Call (RPC) were simple and
straight-forward, but today’s dominant technologies such as the Common Object
Request Broker Architecture (CORBA) developed by the OMG or Sun’s Enterprise
Java Beans provide a full-featured framework for creating powerful distributed appli-
cations. And even more important, this framework can be very well used to integrate
existing applications by providing them with a new wrap-around interface which can
then be used by other applications.

This sounds good, but it did not really work out. Mainly, three types of reasons
can be given:

1. Complexity
Most of today’s middleware approaches employ complex communication proto-
cols which make it rather difficult to implement them. Consequently, there are
typically rather few implementations to choose from. In addition, they are often
incompatible, as has been reported for a number of CORBA implementations.
This is critical for any kind of integration approaches for applications created by
different companies.

2. Lack of standardisation
Whenever a new middleware was invented, most of the important underlying
technologies were invented too. This includes, for instance, all the communi-
cation protocols between application components, all the pre-defined services
(such as name service or trader service), and also basic features such as the
scheme for addressing objects of the system. It is obviously hard to convince
others who have been using a certain scheme all the time to use a new (just
invented) one when nobody else is doing that.

3. Political reasons
Information technology’s short history has already shown that technologies
invented by one company are rarely adopted by their competitors. A typi-
cal example is the programming language Java which has been developed by
Sun while, in turn, Microsoft released a competing language realising similar
concepts. Another example is middleware: Microsofts DCOM has never been
accepted or supported by Sun, and Suns Java 2 Enterprise Edition (J2EE, which
includes Enterprise Java Beans) has never been supported by Microsoft.

A typical example is the programming language Java which has been devel-

oped by Sun and never been liked by Microsoft. So they invented their own
Java but gave it a different name. The same is true for middleware: Microsoft’s

1 Towards Service-Oriented Architectures 19

DCOM has never been accepted or supported by Sun, and Sun’s Java 2 Enter-
prise Edition (J2EE, which includes Enterprise Java Beans) has never been sup-
ported by Microsoft.

As a result, instead of integration, we got many IT islands in the 1990s, and there
was no simple way to let them cooperate. Shortly before the year 2000, however, the
pressure by IT industry’s customers became big enough to make it think about a solu-
tion to these problems. In the next section, we will see how Web Services addresses
them. The next chapter will then give a more technical, in-depth introduction into the
most important components of Web Services.

1.2 Web Services as a New Solution

As one may have guessed by now, the Web Service technology tackles the major
problems that come with other technologies, as mentioned above. And this is cer-
tainly by design and not by accident. Here is what one of the standard documents
says what a Web Service is: “A Web Service is a software system designed to sup-
port interoperable machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL). Other systems
interact with the Web Service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialisation in conjunction
with other Web-related standards” [W3C Web Services Architecture]ﬂ

From this definition, two of the three main questions are already answered: Web
Services use standardised and open web technology wherever possible, from URIs
as the basic addressing scheme over XML as the basic description language to the
use of Internet protocols for message transport. The next few paragraphs describe
why these are advantages.

1.2.1 URI as Addressing Scheme

The concept of Universal Resource Identifiers and their more practicable subset, the
Uniform Resource Locator, was developed for the World Wide Web. It is used to
uniquely identify any single resource on the web, especially documents and applica-
tions. The concept is very well introduced and well under stood. In addition, there is
massive infrastructure available that supports all kinds of operations on URIs, namely
their mapping on more concrete addresses as used by computers to find the resource
identified by a URI. The most important part of this infrastructure is the Domain
Name System (DNS) which maps host names to IP addresses. Another important role
is played by the web server which maps the rest of the URL to a local path in the file
system.

Why is this so important? Obviously, this infrastructure can simply be used for
Web Services. When a service user calls a specific Web Service, the URI of this
service is known. Then, the features of DNS and the existing web servers can easily
be used to find this service. There is absolutely no need to develop something like a
new name service: everything is already there.

1|http 2/ /www.w3. org/TR/ws—arch/'

http://www.w3.org/TR/ws-arch/

20 Stefan Fischer and Christian Werner
1.2.2 XML as the New Lingua Franca

XML as such is just another data description language, and this is exactly what is
needed: a simple and standardised language that can be used to describe data struc-
tures. It is not that such languages have not existed before: just think of ASN.1, the
data description language coming from the OSI world. As with many things, XML
came just at the right point in time, and it provided a number of features that quickly
made it popular with a huge community:

e XML is simple. It is very easy to define a data structure in XML, due to its
intuitive hierarchical structure.

e XML is ASCIIL Every XML data structure is human-readable. This might result
in performance problems, but it brings a lot of advantages, for instance when
debugging a service.

e XML is self-describing. An XML data structure contains both a description of
its structure and the content itself.

e Ithas been standardised by the World Wide Web Consortium (W3C), which is the
most important standardisation body in the context of World Wide Web protocols
and languages.

In Web Services, everything is based on XML. As can be seen from the above defini-
tion, it is not only the definition of data structures, but all message exchanges and also
the service descriptions are based on this new universal data description language.

1.2.3 Exchanging XML Messages

In order for two distributed application components to communicate with each other,
they need to exchange messages. As we already know, the messages are described in
XML, but how does the exchange protocol look like? How are messages encoded?
How are they finally transported over the network?

Many people say that these are the core questions when designing a middleware,
so one can argue well that the solutions in this field belong to the core of Web Ser-
vice technology. The protocol that is used to encode XML messages is called Simple
Object Access Protocol (SOAP), or, more correctly as of today, the XML Protocol
(XMLP). And it is really simple: it just defines a general pattern of how XML Web
Service messages have to look like, it defines a few so-called message exchange pat-
tern that can be used by Web Service partners, and it defines how XML type informa-
tion can be encoded in such messages. It also gives some hints how such messages
can be transported over the Internet: just use one of the existing application-level
protocols such as the web protocol HTTP or the email protocol SMTP.

Why is it good to use such existing protocols? Obviously again, these are well-
established technologies, and there is a mass of products available which can simply
be used. Most importantly, one can use web or email servers in order to receive
Web Service calls and forward them to their appropriate end points. Such servers are
available everywhere, and every system administrator knows how to configure and
administrate them. So, we have the same advantage as with DNS: the infrastructure

1 Towards Service-Oriented Architectures 21

is there and just waits to be used. And protocols such as HTTP and SMTP have been
verified over and over again: they simply work, and interoperability questions simply
do not arise anymore today.

1.2.4 Creating Services Based on XML Messages

How, after all, does a service user know how a message has to look like in order
to use a provided service? Here, we have to mention the second most important
Web Service technology, the Web Service Description Language (WSDL). WSDL is
defined in XML, and it is used to define how Web Service interfaces look like. This
basically means that it describes how incoming and outgoing messages look like and
where such services are available (in terms of a URI). Once such a definition exists
and gets published, a service user can read it and then knows how to call a Web
Service. Since everything is again in XML, the messages to be transferred can be
immediately deduced from the service description. And on the service side, it is easy
to decode incoming service messages: just use one of the many existing XML parsers
and read the message into your service program. All in all, creating a Web Service
usually only means copying an already existing object into a certain location — and
that is it.

1.2.5 And Politics?

What is not obvious from the above definition is the political question. Why are Web
Services much better accepted and supported within the IT industry than any other
middleware technology?

One may well argue that Web Services have been invented by Microsoft. The
above-mentioned SOAP has been brought up by Microsoft. And right from the begin-
ning, Microsoft was interested in making this an open standard, which had so far not
exactly been one of Microsoft’s core strategies. As a result, other companies such
as IBM and Hewlett-Packard and later on Sun Microsystems jumped onto the band-
waggon. With this support, Web Services on the one hand get a lot of publicity and
on the other hundreds of developers started to create languages, protocols and, most
importantly, tools. Today, from all middleware and integration technologies, Web
Services get the best tool support along the life cycle. It has been the core or it has
been fully integrated into today’s most relevant enterprise application architectures,
namely Microsoft’s .Net and Sun’s J2EE. Meanwhile, we see applications being cre-
ated that consist of both .Net and J2EE (and other) components, so it obviously
works. Still, a few things are missing.

1.2.6 What is Missing?

Since their creation in the late 1990s, Web Services have gained a lot of momentum.
Many people are sure that this is the new integration technology. However, there are
still a few things to do in order to make it real and have the Web Service technology
universally accepted. From the authors’ point of view, there are at least the following
three points to mention:

22

1.

Stefan Fischer and Christian Werner

Well-established directory services

Directory services are needed in order to find available Web Services. Web Ser-
vice providers publish their services in such a directory, and Web Service users
look for services that best fit their needs. In the best case, applications know what
they need and then automatically check directories for corresponding services
(we will later in this book see how semantics help in this respect). Surely, this
need has been openly visible from early on, and with the specification of Univer-
sal Description, Discovery, and Integration (UDDI), there is a solution available.
However, UDDI in its use as a global Web Service directory today does not have
the best image. This is due to the fact that basically everybody is allowed to
publish new service entries. Sounding good at first hand, this quickly results in
lots of dummy entries and dangling pointers to no longer existing services. As
a result, the quality of the global UDDI directory is not good, so that UDDI is
not often used for serious applications (though on an enterprise-level, the UDDI
technology is widely adopted, since here, the entries can be controlled). In order
to create a really useful global service directory, some kind of quality manage-
ment needs to be put into effect.

Security

In Web Service technology’s early days, security never has been a big issue, due
to the need to first make Web Services really work. The typical way of talking
about it was “Great, Web Services work over firewalls”. This is true, because
Web Services are typically transported using the HTTP protocol, and the HTTP
port is usually open on a firewall, but certainly is a bad argument — which admin-
istrator likes the thought that all kinds of active codes can be transported into his
systems? Today, many solutions around Web Service security exist, including
something like SOAP proxies in order to allow security checks on incoming
Web Service calls, XML encryption which allows confidential calls of Web Ser-
vices, and XML signature for Web Service message authentication. Actually,
there are so many security standards available right now that it is already too
much. For making Web Services really happen, a small set of security standards
has to be identified that needs to be supported by all serious Web Service users
and providers. A first step has been done by the so-called WS-Security standard
that provides such a basic set of services. It is now necessary to promote this
approach more actively.

. Interoperability

It certainly sounds strange that interoperability is one of the major problems with
Web Services, when we just said that Web Services are all about integration. It
is true, there is a number of open standards which are easy to implement and
ubiquitously available. The bad thing is there are already too many of these stan-
dards. We mentioned this above for the field of security, but this is also already
true for the basic standards such as SOAP/XMLP, WSDL, or UDDI; in other
words those technologies that need to be present in order to make Web Ser-
vices run at all. Basically, there are two problems. First, some companies might
tweak the standard just a little bit in order to make them work better with their
own tools. Second, there are different versions of these basic standards. Unfor-

1 Towards Service-Oriented Architectures 23

tunately, they are usually not interoperable. The newest WSDL standard, for
instance, uses keywords which have not been available in earlier standards, and
discards others. As a result, a WSDL 1.1 interpreter will not be able to decode
a WSDL 2.0 description, making it impossible for the user to call this specific
service.

There is already a solution for this problem, provided by the organisation
WS-Interoperability (WS-I). WS-I defines the so-called profiles which contain
a set of standards. Whenever a company declares that its services are compati-
ble with a certain WS-I profile, it guarantees that all the relevant standards are
implemented in a standard-conforming way. As of today, WS-I has published the
Basic Interoperability Profile. Companies which are really interested in global
and automatised interaction with other companies will have to make their ser-
vices compatible to these profiles.

And after all, this book is about Semantic Web Services. In the last section of this
chapter, we will look, as promised, at the new idea of service-oriented architectures
and explain how a formally described semantics may play a major role in making
them real.

1.3 The Future: SOA

Web Services are a basic building block in the creation of SOA. These SOAs are
expected to be the future architecture of enterprise applications. As can be told from
the name, the idea is that future applications will be built upon services. This is,
however, not the whole picture; service-oriented computing has already been the
concept of CORBA and similar approaches. SOA go a step further and propose a
completely new way of creating applications. In the SOA vision, they will no longer
be programmed, but instead composed of loosely coupled components which will
be imported from servers from all over the world. Required services will be dynami-
cally — potentially during run time — searched and called when needed. Such an archi-
tecture is well suited to map the dynamic environment that enterprises are confronted
with in today’s globalised world. If, for instance, two companies form a new strate-
gic alliance or just create a new customer—supplier relationship in the real world, the
vision says that in the IT world this will simply mean abandoning a few services and
selecting a few new ones.

The question certainly is, how realistic this vision is today. Above, we have
already discussed a few obstacles such as unused security features, lack of inter-
operability, or missing high-quality directory services. However, even when all these
are available, would you, as the Chief Information Officer, lay the fate of your com-
pany in the hands of some obscure services that you probably do not really know
anything about?

The probably much more realistic scenario is an implementation of SOAs within
the boundaries of an enterprise, i.e. as a new approach towards EAI. Here, the com-
pany has full control over all services and service offers and can thus make sure that
all applications that the company relies on will really be operational.

24 Stefan Fischer and Christian Werner

Since the rest of this book is on semantics and Web Services, we consider it
useful to provide a first hint at how these two big trends in Web Services — SOA and
semantics — fit together.

We have mentioned several times now that Web Services is on integration,
automatisation, and machine-machine interaction. In order to fully automate the
communication between application components, the search for new Web Services
also needs to go into this direction. In a perfect SOA world, an application com-
ponent in need for a specific service describes this need in its problem domain and
sends it to a directory service. This service will “understand” the need of the compo-
nent and look for matching services. From the list of found matches, the component
selects one service and automatically binds it to the running application.

Today, this is not possible, because a formal description of the functionality of a
service is not available. This book shows what needs to be done in order to make the
vision real.

2

Architecture and Standardisation of Web Services

Christian Werner and Stefan Fischer

Institute for Telematics, University of Liibeck
{werner, fischer}@itm.uni—luebeck.de|

Summary. Since Web Services are complex artefacts that rely on sophisticated protocols and
data formats, it is important to have effective strategies for dealing with this complexity. As a
basic concept, the Web Service technologies are structured in a stack model. It is crucial for
every Web Service developer to have this model in mind and to have a clear understanding
how the single items work together. In this chapter, we will first give an overview of the Web
Service technology stack. Then, we will step through this model and discuss the different
core technologies in detail. This includes different variants of Web Service transport bindings,
SOAP, WSDL and UDDI.

2.1 Web Services Technology Stack

The W3C Web Service Architecture Working Group has developed a model that
describes how Web Services are generally structured, called the Web Service Tech-
nology Stack. However, in order not to limit the scope of Web Service technology,
this model has been purposely designed on a very abstract level, i.e. without spec-
ifying technologies used for the implementation. Other W3C working groups are
providing such technology specific bindings.

The current version of the Web Service Architecture Document has been released
on 11 February 2004 and is publicly available at http://www.w3.0org/TR/]
[2004/NOTE-ws-arch-20040211/] Figure 1] depicts the basic structure of
the Web Service technology stack.

The “Communications” block, which some authors also call “Wire Stack”, is the
basis for all other layers. It comprises generic transport mechanisms that can be used
to send messages over the Internet. In terms of classical network architecture these
technologies are located on the “Application Layer” (or “Layer 7”) of the ISO/OSI
Protocol Reference Model. Typical examples would be HTTP, SMTP, FTP, etc. All
these protocols can be used with Web Services and each protocol does provide spe-
cific benefits and drawbacks. The Web Service Technology Stack does not determine
which transport mechanism should be used, since the optimal choice may heavily
depend on the specific use case. We will have a detailed look on this topic in the
following section.

{werner,fischer}@itm.uni-luebeck.de
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

26 Christian Werner and Stefan Fischer

SOAP Extensions
Reliahility, Correlation, Transactions ...

Fig. 2.1. The web service technology stack (taken from the W3C web service architecture
document)

The core technology of Web Services is located on the next higher layer. The
“Messages” block provides basic functionalities for encapsulating network messages
in a neutral way that is independent from a certain programming language or oper-
ating systems. The goal here is to find message representation that can be syntacti-
cally understood by humans as well as computers. Unfortunately, this does not mean
that the meaning of a message can be understood by everybody. Technologies for
semantic interoperability will be focussed in the following parts of this book. The
key technology for achieving syntactical interoperability in the Web Service world
is XML. In Fig. 2] this is indicated by the dark box around Messages, Descriptions
and Processes.

The Simple Object Access Protocol (SOAP) is an XML language itself. It pro-
vides a composable framework for packaging and exchanging XML messages. In
particular, it provides a platform- and application- independent message format. Fur-
thermore, a number of extensions have been developed for SOAP. With these it is
possible to provide additional protocol features, such as reliable message transport
or support for transactions.

The layer above is named Descriptions. Here we find technologies that are used
for describing Web Services in a formal way. Such a description is crucial because a
Web Service consumer needs exact access parameters before the service can be used.
This includes data about the service location as well as a specification of supported
data types and operations. The most widely used solution here is the Web Service
Description Language (WSDL). It is important to note that WSDL does cover only
the technical but not the semantical description of a service. So with WSDL it is
possible to express that “This service has an operation echo which takes a string as

2 Architecture and Standardisation of Web Services 27

parameter and returns another string.” A human can guess from the operation’s name
that the two strings will be identical, but machines do need an additional semantic
service description in order to discover services that provide suitable operations for
a given problem.

The very top layer comprises Processes. One of the most important processes in
the field of Web Services here is the discovery of a service. Web Services can be dis-
tributed all over the world and they might be used from all over the world too. How
can we locate a Web Service that fits the user’s needs? The most popular solution
here is Universal Description, Discovery and Integration (UDDI). This worldwide
service registry can be visualised as a huge phone book. A service provider can pub-
lish a Web Service in this registry and if somebody is looking for a specific Web
Service he or she can query the UDDI registry by specifying certain search criteria.
Although there are mechanisms in UDDI for realising things like data replication,
it is basically a centralised approach and therefore UDDI contradicts the concept of
service distribution in some way. Anyhow, distributed service registries are harder
to maintain and no solution for practical usage have been developed yet. A more
active approach for building up service registries is called Web Service Inspection
(WS-Inspection). Here the service directory looks actively for new services and reg-
isters them.

Besides service discovery, there are more Processes that are important in a Web
Service world. For instance, it is possible to combine a number of services in order
to complete a certain task. Here we are talking about Web Service aggregation or
Web Service composition.

In addition to the concepts and tasks that are located on the different layers in
the Web Service Technology Stack, there are some issues that are relevant to all
layers. The most important one here certainly is Security, shown as a column on the
very right side of Fig. 2] In April 2002, Microsoft and IBM introduced the Web
Service Security (WS-Security) specification. It provides a comprehensive security
framework that is based on two other W3C standards as core components, namely
XML Encryption and XML Signature.

A second area that is relevant to all layers of the Web Service technology stack
is Management, shown in the very right side of Fig.[2-T} Since the Web Service tech-
nology primarily targets the domain of business applications, where the availability
and reliability of a service might be crucial, it is very important that there are capable
measures for monitoring and controlling the state of a Web Service. If we think of
“pay per use” scenarios, it is also desirable that the service provides a certain Quality
of Service (Q0S), e.g. by sending back query results within a given time interval. IBM
addresses this issue in a framework called Web Service Level Agreement (WSLA),
which has been introduced in 2003. We will not discuss Web Service management
here in detail, because it is still a very active area in research and therefore out of
scope for this chapter.

In the remainder of this chapter, we will discuss the different layers of the Web
Service Technology Stack, from bottom to top, more in detail.

