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Preface

When I was first approached for the 2005 edition of the Saint-Flour
Probability Summer School, I was intrigued, flattered and scared.1

Apart from the challenge posed by the teaching of a rather analytical
subject to a probabilistic audience, there was the danger of producing
a remake of my recent book Topics in Optimal Transportation.

However, I gradually realized that I was being offered a unique op-
portunity to rewrite the whole theory from a different perspective, with
alternative proofs and a different focus, and a more probabilistic pre-
sentation; plus the incorporation of recent progress. Among the most
striking of these recent advances, there was the rising awareness that
John Mather’s minimal measures had a lot to do with optimal trans-
port, and that both theories could actually be embedded within a single
framework. There was also the discovery that optimal transport could
provide a robust synthetic approach to Ricci curvature bounds. These
links with dynamical systems on one hand, differential geometry on
the other hand, were only briefly alluded to in my first book; here on
the contrary they will be at the basis of the presentation. To summa-
rize: more probability, more geometry, and more dynamical systems.
Of course there cannot be more of everything, so in some sense there
is less analysis and less physics, and also there are fewer digressions.

So the present course is by no means a reduction or an expansion of
my previous book, but should be regarded as a complementary reading.
Both sources can be read independently, or together, and hopefully the
complementarity of points of view will have pedagogical value.

1 Fans of Tom Waits may have identified this quotation.
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VIII Preface

Throughout the book I have tried to optimize the results and the
presentation, to provide complete and self-contained proofs of the most
important results, and comprehensive bibliographical notes — a daunt-
ingly difficult task in view of the rapid expansion of the literature. Many
statements and theorems have been written specifically for this course,
and many results appear in rather sharp form for the first time. I also
added several appendices, either to present some domains of mathe-
matics to non-experts, or to provide proofs of important auxiliary re-
sults. All this has resulted in a rapid growth of the document, which in
the end is about six times (!) the size that I had planned initially. So
the non-expert reader is advised to skip long proofs at first
reading, and concentrate on explanations, statements, examples and
sketches of proofs when they are available.

About terminology: For some reason I decided to switch from “trans-
portation” to “transport”, but this really is a matter of taste.

For people who are already familiar with the theory of optimal trans-
port, here are some more serious changes.

Part I is devoted to a qualitative description of optimal transport.
The dynamical point of view is given a prominent role from the be-
ginning, with Robert McCann’s concept of displacement interpolation.
This notion is discussed before any theorem about the solvability of the
Monge problem, in an abstract setting of “Lagrangian action” which
generalizes the notion of length space. This provides a unified picture
of recent developments dealing with various classes of cost functions,
in a smooth or nonsmooth context.

I also wrote down in detail some important estimates by John
Mather, well-known in certain circles, and made extensive use of them,
in particular to prove the Lipschitz regularity of “intermediate” trans-
port maps (starting from some intermediate time, rather than from
initial time). Then the absolute continuity of displacement interpolants
comes for free, and this gives a more unified picture of the Mather and
Monge–Kantorovich theories. I rewrote in this way the classical theo-
rems of solvability of the Monge problem for quadratic cost in Euclidean
space. Finally, this approach allows one to treat change of variables
formulas associated with optimal transport by means of changes of
variables that are Lipschitz, and not just with bounded variation.

Part II discusses optimal transport in Riemannian geometry, a line
of research which started around 2000; I have rewritten all these ap-
plications in terms of Ricci curvature, or more precisely curvature-



Preface IX

dimension bounds. This part opens with an introduction to Ricci
curvature, hopefully readable without any prior knowledge of this
notion.

Part III presents a synthetic treatment of Ricci curvature bounds
in metric-measure spaces. It starts with a presentation of the theory of
Gromov–Hausdorff convergence; all the rest is based on recent research
papers mainly due to John Lott, Karl-Theodor Sturm and myself.

In all three parts, noncompact situations will be systematically
treated, either by limiting processes, or by restriction arguments (the
restriction of an optimal transport is still optimal; this is a simple
but powerful principle). The notion of approximate differentiability, in-
troduced in the field by Luigi Ambrosio, appears to be particularly
handy in the study of optimal transport in noncompact Riemannian
manifolds.

Several parts of the subject are not developed as much as they would
deserve. Numerical simulation is not addressed at all, except for a few
comments in the concluding part. The regularity theory of optimal
transport is described in Chapter 12 (including the remarkable recent
works of Xu-Jia Wang, Neil Trudinger and Grégoire Loeper), but with-
out the core proofs and latest developments; this is not only because
of the technicality of the subject, but also because smoothness is not
needed in the rest of the book. Still another poorly developed subject is
the Monge–Mather–Mañé problem arising in dynamical systems, and
including as a variant the optimal transport problem when the cost
function is a distance. This topic is discussed in several treatises, such as
Albert Fathi’s monograph, Weak KAM theorem in Lagrangian dynam-
ics; but now it would be desirable to rewrite everything in a framework
that also encompasses the optimal transport problem. An important
step in this direction was recently performed by Patrick Bernard and
Boris Buffoni. In Chapter 8 I shall provide an introduction to Mather’s
theory, but there would be much more to say.

The treatment of Chapter 22 (concentration of measure) is strongly
influenced by Michel Ledoux’s book, The Concentration of Measure
Phenomenon; while the results of Chapters 23 to 25 owe a lot to
the monograph by Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré,
Gradient flows in metric spaces and in the space of probability measures.
Both references are warmly recommended complementary reading. One
can also consult the two-volume treatise by Svetlozar Rachev and
Ludger Rüschendorf, Mass Transportation Problems, for many appli-
cations of optimal transport to various fields of probability theory.



X Preface

While writing this text I asked for help from a number of friends and
collaborators. Among them, Luigi Ambrosio and John Lott are the ones
whomI requestedmost to contribute; this book owes a lot to their detailed
comments and suggestions. Most of Part III, but also significant portions
ofParts I and II, aremadeupwith ideas taken frommycollaborationswith
John, which started in 2004 as I was enjoying the hospitality of the Miller
Institute in Berkeley. Frequent discussions with Patrick Bernard and
Albert Fathi allowed me to get the links between optimal transport and
JohnMather’s theory,whichwere a key to the presentation inPart I; John
himselfgaveprecioushintsaboutthehistoryof thesubject.NeilTrudinger
and Xu-Jia Wang spent vast amounts of time teaching me the regularity
theory of Monge–Ampère equations. Alessio Figalli took up the dreadful
challenge to check the entire set of notes fromfirst to last page.Apart from
these people, I got valuable help from Stefano Bianchini, François Bolley,
Yann Brenier, Xavier Cabré, Vincent Calvez, José Antonio Carrillo,
Dario Cordero-Erausquin, Denis Feyel, Sylvain Gallot, Wilfrid Gangbo,
Diogo Aguiar Gomes, Nathaël Gozlan, Arnaud Guillin, Nicolas Juillet,
Kazuhiro Kuwae, Michel Ledoux, Grégoire Loeper, Francesco Maggi,
Robert McCann, Shin-ichi Ohta, Vladimir Oliker, Yann Ollivier, Felix
Otto, Ludger Rüschendorf, Giuseppe Savaré, Walter Schachermayer,
Benedikt Schulte, Theo Sturm, Josef Teichmann, Anthon Thalmaier,
Hermann Thorisson, Süleyman Üstünel, Anatoly Vershik, and others.

Short versions of this course were tried on mixed audiences in the
Universities of Bonn, Dortmund, Grenoble and Orléans, as well as the
Borel seminar in Leysin and the IHES in Bures-sur-Yvette. Part of
the writing was done during stays at the marvelous MFO Institute
in Oberwolfach, the CIRM in Luminy, and the Australian National
University in Canberra. All these institutions are warmly thanked.

It is a pleasure to thank Jean Picard for all his organization work
on the 2005 Saint-Flour summer school; and the participants for their
questions, comments and bug-tracking, in particular Sylvain Arlot
(great bug-tracker!), Fabrice Baudoin, Jérôme Demange, Steve Evans
(whom I also thank for his beautiful lectures), Christophe Leuridan,
Jan Ob�lój, Erwan Saint Loubert Bié, and others. I extend these thanks
to the joyful group of young PhD students and mâıtres de conférences
with whom I spent such a good time on excursions, restaurants, quan-
tum ping-pong and other activities, making my stay in Saint-Flour
truly wonderful (with special thanks to my personal driver, Stéphane
Loisel, and my table tennis sparring-partner and adversary, François
Simenhaus). I will cherish my visit there in memory as long as I live!



Preface XI

Typing these notes was mostly performed on my (now defunct)
faithful laptop Torsten, a gift of the Miller Institute. Support by the
Agence Nationale de la Recherche and Institut Universitaire de France
is acknowledged. My eternal gratitude goes to those who made fine
typesetting accessible to every mathematician, most notably Donald
Knuth for TEX, and the developers of LATEX, BibTEX and XFig. Final
thanks to Catriona Byrne and her team for a great editing process.

As usual, I encourage all readers to report mistakes and misprints.
I will maintain a list of errata, accessible from my Web page.

Lyon, June 2008 Cédric Villani
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Conventions

Axioms

I use the classical axioms of set theory; not the full version of the axiom
of choice (only the classical axiom of “countable dependent choice”).

Sets and structures

Id is the identity mapping, whatever the space. If A is a set then the
function 1A is the indicator function of A: 1A(x) = 1 if x ∈ A, and 0
otherwise. If F is a formula, then 1F is the indicator function of the
set defined by the formula F .

If f and g are two functions, then (f, g) is the function x �−→
(f(x), g(x)). The composition f ◦ g will often be denoted by f(g).

N is the set of positive integers: N = {1, 2, 3, . . .}. A sequence is
written (xk)k∈N, or simply, when no confusion seems possible, (xk).

R is the set of real numbers. When I write R
n it is implicitly assumed

that n is a positive integer. The Euclidean scalar product between two
vectors a and b in R

n is denoted interchangeably by a · b or 〈a, b〉. The
Euclidean norm will be denoted simply by | · |, independently of the
dimension n.

Mn(R) is the space of real n×n matrices, and In the n×n identity
matrix. The trace of a matrix M will be denoted by tr M , its deter-
minant by detM , its adjoint by M∗, and its Hilbert–Schmidt norm√

tr (M∗M) by ‖M‖HS (or just ‖M‖).
Unless otherwise stated, Riemannian manifolds appearing in the

text are finite-dimensional, smooth and complete. If a Riemannian
manifold M is given, I shall usually denote by n its dimension, by
d the geodesic distance on M , and by vol the volume (= n-dimensional

XVII



XVIII Conventions

Hausdorff) measure on M . The tangent space at x will be denoted by
TxM , and the tangent bundle by TM . The norm on TxM will most
of the time be denoted by | · |, as in R

n, without explicit mention of
the point x. (The symbol ‖ · ‖ will be reserved for special norms or
functional norms.) If S is a set without smooth structure, the notation
TxS will instead denote the tangent cone to S at x (Definition 10.46).

If Q is a quadratic form defined on R
n, or on the tangent bundle of a

manifold, its value on a (tangent) vector v will be denoted by
〈
Q ·v, v

〉
,

or simply Q(v).
The open ball of radius r and center x in a metric space X is denoted

interchangeably by B(x, r) or Br(x). If X is a Riemannian manifold,
the distance is of course the geodesic distance. The closed ball will be
denoted interchangeably by B[x, r] or Br](x). The diameter of a metric
space X will be denoted by diam (X ).

The closure of a set A in a metric space will be denoted by A (this
is also the set of all limits of sequences with values in A).

A metric space X is said to be locally compact if every point x ∈ X
admits a compact neighborhood; and boundedly compact if every closed
and bounded subset of X is compact.

A map f between metric spaces (X , d) and (X ′, d′) is said to be
C-Lipschitz if d′(f(x), f(y)) ≤ C d(x, y) for all x, y in X . The best
admissible constant C is then denoted by ‖f‖Lip.

A map is said to be locally Lipschitz if it is Lipschitz on bounded
sets, not necessarily compact (so it makes sense to speak of a locally
Lipschitz map defined almost everywhere).

A curve in a space X is a continuous map defined on an interval of
R, valued in X . For me the words “curve” and “path” are synonymous.
The time-t evaluation map et is defined by et(γ) = γt = γ(t).

If γ is a curve defined from an interval of R into a metric space,
its length will be denoted by L(γ), and its speed by |γ̇|; definitions are
recalled on p. 119.

Usually geodesics will be minimizing, constant-speed geodesic curves.
If X is a metric space, Γ (X ) stands for the space of all geodesics
γ : [0, 1] → X .

Being given x0 and x1 in a metric space, I denote by [x0, x1]t the
set of all t-barycenters of x0 and x1, as defined on p. 393. If A0 and
A1 are two sets, then [A0, A1]t stands for the set of all [x0, x1]t with
(x0, x1) ∈ A0 ×A1.
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Function spaces

C(X ) is the space of continuous functions X → R, Cb(X ) the space
of bounded continuous functions X → R; and C0(X ) the space of
continuous functions X → R converging to 0 at infinity; all of them
are equipped with the norm of uniform convergence ‖ϕ‖∞ = sup |ϕ|.
Then Ck

b (X ) is the space of k-times continuously differentiable func-
tions u : X → R, such that all the partial derivatives of u up to order k
are bounded; it is equipped with the norm given by the supremum of
all norms ‖∂u‖Cb

, where ∂u is a partial derivative of order at most k;
Ck
c (X ) is the space of k-times continuously differentiable functions with

compact support; etc. When the target space is not R but some other
space Y, the notation is transformed in an obvious way: C(X ;Y), etc.

Lp is the Lebesgue space of exponent p; the space and the measure
will often be implicit, but clear from the context.

Calculus

The derivative of a function u = u(t), defined on an interval of R and
valued in R

n or in a smooth manifold, will be denoted by u′, or more
often by u̇. The notation d+u/dt stands for the upper right-derivative
of a real-valued function u: d+u/dt = lim sups↓0[u(t+ s)− u(t)]/s.

If u is a function of several variables, the partial derivative with
respect to the variable t will be denoted by ∂tu, or ∂u/∂t. The notation
ut does not stand for ∂tu, but for u(t).

The gradient operator will be denoted by grad or simply ∇; the di-
vergence operator by div or ∇· ; the Laplace operator by ∆; the Hessian
operator by Hess or ∇2 (so ∇2 does not stand for the Laplace opera-
tor). The notation is the same in R

n or in a Riemannian manifold. ∆ is
the divergence of the gradient, so it is typically a nonpositive operator.
The value of the gradient of f at point x will be denoted either by
∇xf or ∇f(x). The notation ∇̃ stands for the approximate gradient,
introduced in Definition 10.2.

If T is a map R
n → R

n, ∇T stands for the Jacobian matrix of T ,
that is the matrix of all partial derivatives (∂Ti/∂xj) (1 ≤ i, j ≤ n).

All these differential operators will be applied to (smooth) functions
but also to measures, by duality. For instance, the Laplacian of a mea-
sure µ is defined via the identity

∫
ζ d(∆µ) =

∫
(∆ζ) dµ (ζ ∈ C2

c ). The
notation is consistent in the sense that ∆(fvol) = (∆f) vol. Similarly,
I shall take the divergence of a vector-valued measure, etc.

f = o(g) means f/g −→ 0 (in an asymptotic regime that should be
clear from the context), while f = O(g) means that f/g is bounded.
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log stands for the natural logarithm with base e.
The positive and negative parts of x ∈ R are defined respectively

by x+ = max (x, 0) and x− = max (−x, 0); both are nonnegative, and
|x| = x+ +x−. The notation a∧ b will sometimes be used for min (a, b).
All these notions are extended in the usual way to functions and also
to signed measures.

Probability measures

δx is the Dirac mass at point x.
All measures considered in the text are Borel measures on Polish

spaces, which are complete, separable metric spaces, equipped with
their Borel σ-algebra. I shall usually not use the completed σ-algebra,
except on some rare occasions (emphasized in the text) in Chapter 5.

A measure is said to be finite if it has finite mass, and locally finite
if it attributes finite mass to compact sets.

The space of Borel probability measures on X is denoted by P (X ),
the space of finite Borel measures by M+(X ), the space of signed finite
Borel measures by M(X ). The total variation of µ is denoted by ‖µ‖TV.

The integral of a function f with respect to a probability measure
µ will be denoted interchangeably by

∫
f(x) dµ(x) or

∫
f(x)µ(dx) or∫

f dµ.
If µ is a Borel measure on a topological space X , a set N is said to

be µ-negligible if N is included in a Borel set of zero µ-measure. Then
µ is said to be concentrated on a set C if X \ C is negligible. (If C
itself is Borel measurable, this is of course equivalent to µ[X \C] = 0.)
By abuse of language, I may say that X has full µ-measure if µ is
concentrated on X .

If µ is a Borel measure, its support Sptµ is the smallest closed set
on which it is concentrated. The same notation Spt will be used for the
support of a continuous function.

If µ is a Borel measure on X , and T is a Borel map X → Y, then
T#µ stands for the image measure2 (or push-forward) of µ by T : It is
a Borel measure on Y, defined by (T#µ)[A] = µ[T−1(A)].

The law of a random variable X defined on a probability space
(Ω,P ) is denoted by law (X); this is the same as X#P .

The weak topology on P (X ) (or topology of weak convergence, or
narrow topology) is induced by convergence against Cb(X ), i.e. bounded

2 Depending on the authors, the measure T#µ is often denoted by T#µ, T∗µ, T (µ),
Tµ,

∫
δT (a) µ(da), µ ◦ T−1, µT−1, or µ[T ∈ · ].
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continuous test functions. If X is Polish, then the space P (X ) itself is
Polish. Unless explicitly stated, I do not use the weak-∗ topology of
measures (induced by C0(X ) or Cc(X )).

When a probability measure is clearly specified by the context, it
will sometimes be denoted just by P , and the associated integral, or
expectation, will be denoted by E .

If π(dx dy) is a probability measure in two variables x ∈ X and
y ∈ Y, its marginal (or projection) on X (resp. Y) is the measure
X#π (resp. Y#π), where X(x, y) = x, Y (x, y) = y. If (x, y) is random
with law (x, y) = π, then the conditional law of x given y is denoted
by π(dx|y); this is a measurable function Y → P (X ), obtained by
disintegrating π along its y-marginal. The conditional law of y given x
will be denoted by π(dy|x).

A measure µ is said to be absolutely continuous with respect to a
measure ν if there exists a measurable function f such that µ = f ν.

Notation specific to optimal transport and related fields

If µ ∈ P (X ) and ν ∈ P (Y) are given, then Π(µ, ν) is the set of all joint
probability measures on X × Y whose marginals are µ and ν.

C(µ, ν) is the optimal (total) cost between µ and ν, see p. 80. It
implicitly depends on the choice of a cost function c(x, y).

For any p ∈ [1,+∞), Wp is the Wasserstein distance of order p, see
Definition 6.1; and Pp(X ) is the Wasserstein space of order p, i.e. the
set of probability measures with finite moments of order p, equipped
with the distance Wp, see Definition 6.4.

Pc(X ) is the set of probability measures on X with compact support.
If a reference measure ν on X is specified, then P ac(X ) (resp.

P ac
p (X ), P ac

c (X )) stands for those elements of P (X ) (resp. Pp(X ),
Pc(X )) which are absolutely continuous with respect to ν.
DCN is the displacement convexity class of order N (N plays the

role of a dimension); this is a family of convex functions, defined on
p. 443 and in Definition 17.1.

Uν is a functional defined on P (X ); it depends on a convex function
U and a reference measure ν on X . This functional will be defined at
various levels of generality, first in equation (15.2), then in Definition
29.1 and Theorem 30.4.

Uβ
π,ν is another functional on P (X ), which involves not only a convex

function U and a reference measure ν, but also a coupling π and a
distortion coefficient β, which is a nonnegative function on X ×X : See
again Definition 29.1 and Theorem 30.4.
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The Γ and Γ2 operators are quadratic differential operators associ-
ated with a diffusion operator; they are defined in (14.47) and (14.48).

β
(K,N)
t is the notation for the distortion coefficients that will play a

prominent role in these notes; they are defined in (14.61).
CD(K,N) means “curvature-dimension condition (K,N)”, which

morally means that the Ricci curvature is bounded below by Kg (K a
real number, g the Riemannian metric) and the dimension is bounded
above by N (a real number which is not less than 1).

If c(x, y) is a cost function then č(y, x) = c(x, y). Similarly, if
π(dx dy) is a coupling, then π̌ is the coupling obtained by swapping
variables, that is π̌(dy dx) = π(dx dy), or more rigorously, π̌ = S#π,
where S(x, y) = (y, x).

Assumptions (Super), (Twist), (Lip), (SC), (locLip), (locSC),
(H∞) are defined on p. 234, (STwist) on p. 299, (Cutn−1) on p. 303.
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To start, I shall recall in Chapter 1 some basic facts about couplings
and changes of variables, including definitions, a short list of famous
couplings (Knothe–Rosenblatt coupling, Moser coupling, optimal cou-
pling, etc.); and some important basic formulas about change of vari-
ables, conservation of mass, and linear diffusion equations.

In Chapter 2 I shall present, without detailed proofs, three applica-
tions of optimal coupling techniques, providing a flavor of the kind of
applications that will be considered later.

Finally, Chapter 3 is a short historical perspective about the foun-
dations and development of optimal coupling theory.
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Couplings and changes of variables

Couplings are very well-known in all branches of probability theory,
but since they will occur again and again in this course, it might be a
good idea to start with some basic reminders and a few more technical
issues.

Definition 1.1 (Coupling). Let (X , µ) and (Y, ν) be two probability
spaces. Coupling µ and ν means constructing two random variables
X and Y on some probability space (Ω,P ), such that law (X) = µ,
law (Y ) = ν. The couple (X,Y ) is called a coupling of (µ, ν). By abuse
of language, the law of (X,Y ) is also called a coupling of (µ, ν).

If µ and ν are the only laws in the problem, then without loss of
generality one may choose Ω = X × Y. In a more measure-theoretical
formulation, coupling µ and ν means constructing a measure π on X×Y
such that π admits µ and ν as marginals on X and Y respectively.
The following three statements are equivalent ways to rephrase that
marginal condition:

• (projX )#π = µ, (projY)#π = ν, where projX and projY respectively
stand for the projection maps (x, y) �−→ x and (x, y) �−→ y;

• For all measurable sets A ⊂ X , B ⊂ Y, one has π[A × Y] = µ[A],
π[X ×B] = ν[B];

• For all integrable (resp. nonnegative) measurable functions ϕ,ψ on
X ,Y,

∫

X×Y

(
ϕ(x) + ψ(y)

)
dπ(x, y) =

∫

X
ϕdµ+

∫

Y
ψ dν.

C. Villani, Optimal Transport, Grundlehren der mathematischen 5
Wissenschaften 338,
c© Springer-Verlag Berlin Heidelberg 2009
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A first remark about couplings is that they always exist: at least
there is the trivial coupling, in which the variables X and Y are
independent (so their joint law is the tensor product µ ⊗ ν). This
can hardly be called a coupling, since the value of X does not give
any information about the value of Y . Another extreme is when all
the information about the value of Y is contained in the value of X,
in other words Y is just a function of X. This motivates the following
definition (in which X and Y do not play symmetric roles).

Definition 1.2 (Deterministic coupling). With the notation of
Definition 1.1, a coupling (X,Y ) is said to be deterministic if there
exists a measurable function T : X → Y such that Y = T (X).

To say that (X,Y ) is a deterministic coupling of µ and ν is strictly
equivalent to any one of the four statements below:

• (X,Y ) is a coupling of µ and ν whose law π is concentrated on the
graph of a measurable function T : X → Y;

• X has law µ and Y = T (X), where T#µ = ν;
• X has law µ and Y = T (X), where T is a change of variables

from µ to ν: for all ν-integrable (resp. nonnegative measurable) func-
tions ϕ,

∫

Y
ϕ(y) dν(y) =

∫

X
ϕ
(
T (x)

)
dµ(x); (1.1)

• π = (Id , T )#µ.

The map T appearing in all these statements is the same and is
uniquely defined µ-almost surely (when the joint law of (X,Y ) has been
fixed). The converse is true: If T and T̃ coincide µ-almost surely, then
T#µ = T̃#µ. It is common to call T the transport map: Informally,
one can say that T transports the mass represented by the measure µ,
to the mass represented by the measure ν.

Unlike couplings, deterministic couplings do not always exist: Just
think of the case when µ is a Dirac mass and ν is not. But there
may also be infinitely many deterministic couplings between two given
probability measures.
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Some famous couplings

Here below are some of the most famous couplings used in mathematics
— of course the list is far from complete, since everybody has his or
her own preferred coupling technique. Each of these couplings comes
with its own natural setting; this variety of assumptions reflects the
variety of constructions. (This is a good reason to state each of them
with some generality.)

1. The measurable isomorphism. Let (X , µ) and (Y, ν) be two
Polish (i.e. complete, separable, metric) probability spaces with-
out atom (i.e. no single point carries a positive mass). Then there
exists a (nonunique) measurable bijection T : X → Y such that
T#µ = ν, (T−1)#ν = µ. In that sense, all atomless Polish prob-
ability spaces are isomorphic, and, say, isomorphic to the space
Y = [0, 1] equipped with the Lebesgue measure. Powerful as that
theorem may seem, in practice the map T is very singular; as a good
exercise, the reader might try to construct it “explicitly”, in terms
of cumulative distribution functions, when X = R and Y = [0, 1]
(issues do arise when the density of µ vanishes at some places). Ex-
perience shows that it is quite easy to fall into logical traps when
working with the measurable isomorphism, and my advice is to
never use it.

2. The Moser mapping. Let X be a smooth compact Riemannian
manifold with volume vol, and let f, g be Lipschitz continuous pos-
itive probability densities on X ; then there exists a deterministic
coupling of µ = f vol and ν = g vol, constructed by resolution of an
elliptic equation. On the positive side, there is a somewhat explicit
representation of the transport map T , and it is as smooth as can
be: if f, g are Ck,α then T is Ck+1,α. The formula is given in the
Appendix at the end of this chapter. The same construction works
in R

n provided that f and g decay fast enough at infinity; and it is
robust enough to accommodate for variants.

3. The increasing rearrangement on R. Let µ, ν be two probability
measures on R; define their cumulative distribution functions by

F (x) =
∫ x

−∞
dµ, G(y) =

∫ y

−∞
dν.

Further define their right-continuous inverses by
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F−1(t) = inf
{
x ∈ R; F (x) > t

}
;

G−1(t) = inf
{
y ∈ R; G(y) > t

}
;

and set
T = G−1 ◦ F.

If µ does not have atoms, then T#µ = ν. This rearrangement is quite
simple, explicit, as smooth as can be, and enjoys good geometric
properties.

4. The Knothe–Rosenblatt rearrangement in R
n. Let µ and ν be

two probability measures on R
n, such that µ is absolutely continu-

ous with respect to Lebesgue measure. Then define a coupling of µ
and ν as follows.
Step 1: Take the marginal on the first variable: this gives probabil-
ity measures µ1(dx1), ν1(dy1) on R, with µ1 being atomless. Then
define y1 = T1(x1) by the formula for the increasing rearrangement
of µ1 into ν1.
Step 2: Now take the marginal on the first two variables and dis-
integrate it with respect to the first variable. This gives proba-
bility measures µ2(dx1 dx2) = µ1(dx1)µ2(dx2|x1), ν2(dy1 dy2) =
ν1(dy1) ν2(dy2|y1). Then, for each given y1 ∈ R, set y1 = T1(x1),
and define y2 = T2(x2;x1) by the formula for the increasing re-
arrangement of µ2(dx2|x1) into ν2(dy2|y1). (See Figure 1.1.)
Then repeat the construction, adding variables one after the other
and defining y3 = T3(x3;x1, x2); etc. After n steps, this produces
a map y = T (x) which transports µ to ν, and in practical situa-
tions might be computed explicitly with little effort. Moreover, the
Jacobian matrix of the change of variables T is (by construction)
upper triangular with positive entries on the diagonal; this makes
it suitable for various geometric applications. On the negative side,
this mapping does not satisfy many interesting intrinsic properties;
it is not invariant under isometries of R

n, not even under relabeling
of coordinates.

5. The Holley coupling on a lattice. Let µ and ν be two discrete
probabilities on a finite lattice Λ, say {0, 1}N , equipped with the
natural partial ordering (x ≤ y if xn ≤ yn for all n). Assume that

∀x, y ∈ Λ, µ[inf(x, y)] ν[sup(x, y)] ≥ µ[x] ν[y]. (1.2)
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T1

dx1 dy1

ν
µ

Fig. 1.1. Second step in the construction of the Knothe–Rosenblatt map: After the
correspondance x1 → y1 has been determined, the conditional probability of x2 (seen
as a one-dimensional probability on a small “slice” of width dx1) can be transported
to the conditional probability of y2 (seen as a one-dimensional probability on a slice
of width dy1).

Then there exists a coupling (X,Y ) of (µ, ν) withX ≤ Y . The situa-
tion above appears in a number of problems in statistical mechanics,
in connection with the so-called FKG (Fortuin–Kasteleyn–Ginibre)
inequalities. Inequality (1.2) intuitively says that ν puts more mass
on large values than µ.

6. Probabilistic representation formulas for solutions of par-
tial differential equations. There are hundreds of them (if not
thousands), representing solutions of diffusion, transport or jump
processes as the laws of various deterministic or stochastic processes.
Some of them are recalled later in this chapter.

7. The exact coupling of two stochastic processes, or Markov chains.
Two realizations of a stochastic process are started at initial time,
and when they happen to be in the same state at some time, they
are merged: from that time on, they follow the same path and ac-
cordingly, have the same law. For two Markov chains which are
started independently, this is called the classical coupling. There
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are many variants with important differences which are all intended
to make two trajectories close to each other after some time: the
Ornstein coupling, the ε-coupling (in which one requires the
two variables to be close, rather than to occupy the same state),
the shift-coupling (in which one allows an additional time-shift),
etc.

8. The optimal coupling or optimal transport. Here one intro-
duces a cost function c(x, y) on X × Y, that can be interpreted
as the work needed to move one unit of mass from location x to
location y. Then one considers the Monge–Kantorovich mini-
mization problem

inf E c(X,Y ),

where the pair (X,Y ) runs over all possible couplings of (µ, ν); or
equivalently, in terms of measures,

inf
∫

X×Y
c(x, y) dπ(x, y),

where the infimum runs over all joint probability measures π on
X×Y with marginals µ and ν. Such joint measures are called trans-
ference plans (or transport plans, or transportation plans); those
achieving the infimum are called optimal transference plans.

Of course, the solution of the Monge–Kantorovich problem depends
on the cost function c. The cost function and the probability spaces here
can be very general, and some nontrivial results can be obtained as soon
as, say, c is lower semicontinuous and X ,Y are Polish spaces. Even the
apparently trivial choice c(x, y) = 1x �=y appears in the probabilistic
interpretation of total variation:

‖µ− ν‖TV = 2 inf
{

E 1X �=Y ; law (X) = µ, law (Y ) = ν
}
.

Cost functions valued in {0, 1} also occur naturally in Strassen’s duality
theorem.

Under certain assumptions one can guarantee that the optimal cou-
pling really is deterministic; the search of deterministic optimal cou-
plings (or Monge couplings) is called the Monge problem. A solution
of the Monge problem yields a plan to transport the mass at minimal
cost with a recipe that associates to each point x a single point y. (“No
mass shall be split.”) To guarantee the existence of solutions to the
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Monge problem, two kinds of assumptions are natural: First, c should
“vary enough” in some sense (think that the constant cost function
will allow for arbitrary minimizers), and secondly, µ should enjoy some
regularity property (at least Dirac masses should be ruled out!). Here
is a typical result: If c(x, y) = |x − y|2 in the Euclidean space, µ is
absolutely continuous with respect to Lebesgue measure, and µ, ν have
finite moments of order 2, then there is a unique optimal Monge cou-
pling between µ and ν. More general statements will be established in
Chapter 10.

Optimal couplings enjoy several nice properties:
(i) They naturally arise in many problems coming from economics,

physics, partial differential equations or geometry (by the way, the in-
creasing rearrangement and the Holley coupling can be seen as partic-
ular cases of optimal transport);

(ii) They are quite stable with respect to perturbations;
(iii) They encode good geometric information, if the cost function c

is defined in terms of the underlying geometry;
(iv) They exist in smooth as well as nonsmooth settings;
(v) They come with a rich structure: an optimal cost functional

(the value of the infimum defining the Monge–Kantorovich problem); a
dual variational problem; and, under adequate structure conditions,
a continuous interpolation.

On the negative side, it is important to be warned that optimal
transport is in general not so smooth. There are known counterexam-
ples which put limits on the regularity that one can expect from it,
even for very nice cost functions.

All these issues will be discussed again and again in the sequel. The
rest of this chapter is devoted to some basic technical tools.

Gluing

If Z is a function of Y and Y is a function of X, then of course Z is
a function of X. Something of this still remains true in the setting of
nondeterministic couplings, under quite general assumptions.

Gluing lemma. Let (Xi, µi), i = 1, 2, 3, be Polish probability spaces. If
(X1, X2) is a coupling of (µ1, µ2) and (Y2, Y3) is a coupling of (µ2, µ3),
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then one can construct a triple of random variables (Z1, Z2, Z3) such
that (Z1, Z2) has the same law as (X1, X2) and (Z2, Z3) has the same
law as (Y2, Y3).

It is simple to understand why this is called “gluing lemma”: if π12

stands for the law of (X1, X2) on X1×X2 and π23 stands for the law of
(X2, X3) on X2×X3, then to construct the joint law π123 of (Z1, Z2, Z3)
one just has to glue π12 and π23 along their common marginal µ2.
Expressed in a slightly informal way: Disintegrate π12 and π23 as

π12(dx1 dx2) = π12(dx1|x2)µ2(dx2),
π23(dx2 dx3) = π23(dx3|x2)µ2(dx2),

and then reconstruct π123 as

π123(dx1 dx2 dx3) = π12(dx1|x2)µ2(dx2)π23(dx3|x2).

Change of variables formula

When one writes the formula for change of variables, say in R
n or on

a Riemannian manifold, a Jacobian term appears, and one has to be
careful about two things: the change of variables should be injective
(otherwise, reduce to a subset where it is injective, or take the multi-
plicity into account); and it should be somewhat smooth. It is classical
to write these formulas when the change of variables is continuously
differentiable, or at least Lipschitz:

Change of variables formula. Let M be an n-dimensional Rie-
mannian manifold with a C1 metric, let µ0, µ1 be two probability
measures on M , and let T : M → M be a measurable function
such that T#µ0 = µ1. Let ν be a reference measure, of the form
ν(dx) = e−V (x) vol(dx), where V is continuous and vol is the volume
(or n-dimensional Hausdorff) measure. Further assume that

(i) µ0(dx) = ρ0(x) ν(dx) and µ1(dy) = ρ1(y) ν(dy);
(ii) T is injective;
(iii) T is locally Lipschitz.

Then, µ0-almost surely,
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ρ0(x) = ρ1(T (x))JT (x), (1.3)

where JT (x) is the Jacobian determinant of T at x, defined by

JT (x) := lim
ε↓0

ν[T (Bε(x))]
ν[Bε(x)]

. (1.4)

The same holds true if T is only defined on the complement of a µ0-
negligible set, and satisfies properties (ii) and (iii) on its domain of
definition.

Remark 1.3. When ν is just the volume measure, JT coincides with
the usual Jacobian determinant, which in the case M = R

n is the ab-
solute value of the determinant of the Jacobian matrix ∇T . Since V is
continuous, it is almost immediate to deduce the statement with an ar-
bitrary V from the statement with V = 0 (this amounts to multiplying
ρ0(x) by eV (x), ρ1(y) by eV (y), JT (x) by eV (x)−V (T (x))).

Remark 1.4. There is a more general framework beyond differen-
tiability, namely the property of approximate differentiability. A
function T on an n-dimensional Riemannian manifold is said to be
approximately differentiable at x if there exists a function T̃ , differen-
tiable at x, such that the set {T̃ �= T} has zero density at x, i.e.

lim
r→0

vol
[{
x ∈ Br(x); T (x) �= T̃ (x)

}]

vol [Br(x)]
= 0.

It turns out that, roughly speaking, an approximately differentiable
map can be replaced, up to neglecting a small set, by a Lipschitz map
(this is a kind of differentiable version of Lusin’s theorem). So one can
prove the Jacobian formula for an approximately differentiable map by
approximating it with a sequence of Lipschitz maps.

Approximate differentiability is obviously a local property; it holds
true if the distributional derivative of T is a locally integrable function,
or even a locally finite measure. So it is useful to know that the change
of variables formula still holds true if Assumption (iii) above is replaced
by

(iii’) T is approximately differentiable.
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Conservation of mass formula

The single most important theorem of change of variables arising in
continuum physics might be the one resulting from the conservation
of mass formula,

∂ρ

∂t
+∇ · (ρ ξ) = 0. (1.5)

Here ρ = ρ(t, x) stands for the density of a system of particles at
time t and position x; ξ = ξ(t, x) for the velocity field at time t and
position x; and ∇· stands for the divergence operator. Once again, the
natural setting for this equation is a Riemannian manifold M .

It will be useful to work with particle densities µt(dx) (that are not
necessarily absolutely continuous) and rewrite (1.5) as

∂µ

∂t
+∇ · (µ ξ) = 0,

where the time-derivative is taken in the weak sense, and the diver-
gence operator is defined by duality against continuously differentiable
functions with compact support:

∫

M
ϕ∇ · (µ ξ) = −

∫

M
(ξ · ∇ϕ) dµ.

The formula of conservation of mass is an Eulerian description of
the physical world, which means that the unknowns are fields. The next
theorem links it with the Lagrangian description, in which everything
is expressed in terms of particle trajectories, that are integral curves of
the velocity field:

ξ
(
t, Tt(x)

)
=

d

dt
Tt(x). (1.6)

If ξ is (locally) Lipschitz continuous, then the Cauchy–Lipschitz the-
orem guarantees the existence of a flow Tt locally defined on a maximal
time interval, and itself locally Lipschitz in both arguments t and x.
Then, for each t the map Tt is a local diffeomorphism onto its image.
But the formula of conservation of mass also holds true without any
regularity assumption on ξ; one should only keep in mind that if ξ is
not Lipschitz, then a solution of (1.6) is not uniquely determined by
its value at time 0, so x �−→ Tt(x) is not necessarily uniquely defined.
Still it makes sense to consider random solutions of (1.6).

Mass conservation formula. Let M be a C1 manifold, T ∈ (0,+∞]
and let ξ(t, x) be a (measurable) velocity field on [0, T ) × M . Let


