MRI Atlas of MS Lesions
M. A. Sahraian, E.-W. Radue

MRI Atlas of MS Lesions

With the collaboration of A. Gass, S. Haller, L. Kappos, J. Kesselring, J.-I. Kira, K. Weier

Springer
To our wives Barbara and Niloofar
and our children Pascal, Geraldine and Amir hossien
Magnetic resonance imaging (MRI) has greatly increased our understanding about multiple sclerosis (MS) during the last two decades, and is now considered to be the imaging of choice for diagnosis and in vivo monitoring of the disease. New diagnostic criteria allow us to demonstrate dissemination of MS pathology in space and time by MRI, thus making early diagnosis and treatment possible. Exclusion of other possible pathologies is a main step in MS diagnosis. Also in this context, MRI plays an important role. Despite its high sensitivity, MRI is not a specific tool for diagnosing MS, and almost any alteration in cerebral white matter may change the signal intensity on T2-weighted images. Nevertheless, understanding MS lesion characteristics, patterns on different sequences, and topography of lesions in the central nervous system help to determine if MS is the best diagnosis for a patient who has presented with signs and symptoms of white matter involvement.

The present book aims at demonstrating MS lesions in different sequences of conventional MRI, and shows examples of typical and atypical lesions. The main idea for collecting the images in this atlas is to show the diversity of MS lesions in different sequences of conventional MRI. There is a summarized introduction at the beginning of each chapter, followed by selected images in different sequences demonstrating MS lesions in different shapes, sizes, and locations. A teaching point has been added to the images as a “Note” in order to increase the information resulting from them. Revised McDonald criteria and some of the most important differential diagnoses have been discussed in two separate chapters. The images have been selected out of thousands of MRI images, and we hope that this MRI Atlas of MS Lesions, which is accompanied by a learning CD, provides valuable tools for clinicians and radiologists who are interested in MS for a better depiction of lesions, avoiding pitfalls, and demonstrating dissemination in space and time by MRI.
Acknowledgement

We would like to thank Alexandra Palatini for her secretarial work on the book and her organization skills during the project. Without her assistance, this book would not have been possible.

We also wish to thank Pascal Kuster, Stefan Traud, Alain Thoeni, and Verena Koch for their support in selecting and preparing the images.

M.A. Sahraian
E.-W. Radue
Contents

How to Read the Atlas

1. **MS Lesions in T2-Weighted Images**
 - M.A. Sahraian, E.-W. Radue
 - 1.1 Introduction
 - 1.2 Shape and Size
 - 1.3 Location
 - 1.4 Follow-Up
 - 1.5 Normal Appearing White Matter
 - 1.6 Atypical Lesions

2. **MS Lesions in Fluid Attenuated Inversion Recovery Images**
 - M.A. Sahraian, E.-W. Radue
 - 2.1 Introduction
 - 2.2 Location, Shape and Size

3. **Gadolinium Enhancing Lesions in Multiple Sclerosis**
 - M.A. Sahraian, E.-W. Radue
 - 3.1 Introduction
 - 3.2 Different Patterns of Enhancement
 - 3.3 Shape and Size
 - 3.4 Different Locations
 - 3.5 Follow-Up

4. **T1 Hypointense Lesions (Black Holes)**
 - M.A. Sahraian, E.-W. Radue
 - 4.1 Introduction
 - 4.2 Shape and Size
 - 4.3 Locations
 - 4.4 Follow-Up

5. **Multiple Sclerosis and Brain Atrophy**
 - M.A. Sahraian, E.-W. Radue
 - 5.1 Introduction
 - 5.2 General Atrophy

6. **Pitfalls in the Depiction of MS Lesions on Conventional MRI**
 - M.A. Sahraian, E.-W. Radue
 - 6.1 Introduction
 - 6.2 Virchow-Robin Spaces
 - 6.3 Vessels: Arteries
 - 6.4 Vessels: Veins
 - 6.5 Partial Volume Effect: Ventricular Caps
 - 6.6 Artifacts
 - 6.7 Special Locations

7. **Magnetic Resonance Imaging of the Spinal Cord in Multiple Sclerosis**
 - K. Weier, S. Haller, A. Gass
 - 7.1 Introduction
 - 7.2 Lesions
 - 7.3 Atrophy

8. **Diagnosis of Multiple Sclerosis**
 - M.A. Sahraian, L. Kappos
 - 8.1 Introduction. Revised McDonald Criteria
 - 8.2 Images

9. **Differential Diagnosis of Multiple Sclerosis**
 - J. Kira, S. Haller, J. Kesselring, M.A. Sahraian
 - 9.1 Introduction
 - 9.2 Systemic Immune-Mediated Diseases
 - 9.2.1 Systemic Lupus Erythematosus
 - 9.2.2 Behçet's Disease
 - 9.2.3 Sarcoidosis

Pages

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Shape and Size</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Location</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Follow-Up</td>
<td>19</td>
</tr>
<tr>
<td>1.5 Normal Appearing White Matter</td>
<td>24</td>
</tr>
<tr>
<td>1.6 Atypical Lesions</td>
<td>28</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>35</td>
</tr>
<tr>
<td>2.2 Location, Shape and Size</td>
<td>36</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>45</td>
</tr>
<tr>
<td>3.2 Different Patterns of Enhancement</td>
<td>46</td>
</tr>
<tr>
<td>3.3 Shape and Size</td>
<td>50</td>
</tr>
<tr>
<td>3.4 Different Locations</td>
<td>54</td>
</tr>
<tr>
<td>3.5 Follow-Up</td>
<td>65</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>75</td>
</tr>
<tr>
<td>4.2 Shape and Size</td>
<td>78</td>
</tr>
<tr>
<td>4.3 Locations</td>
<td>80</td>
</tr>
<tr>
<td>4.4 Follow-Up</td>
<td>84</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>95</td>
</tr>
<tr>
<td>5.2 General Atrophy</td>
<td>96</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>103</td>
</tr>
<tr>
<td>6.2 Virchow-Robin Spaces</td>
<td>104</td>
</tr>
<tr>
<td>6.3 Vessels: Arteries</td>
<td>105</td>
</tr>
<tr>
<td>6.4 Vessels: Veins</td>
<td>108</td>
</tr>
<tr>
<td>6.5 Partial Volume Effect: Ventricular Caps</td>
<td>109</td>
</tr>
<tr>
<td>6.6 Artifacts</td>
<td>112</td>
</tr>
<tr>
<td>6.7 Special Locations</td>
<td>115</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>123</td>
</tr>
<tr>
<td>7.2 Lesions</td>
<td>124</td>
</tr>
<tr>
<td>7.3 Atrophy</td>
<td>128</td>
</tr>
<tr>
<td>8.1 Introduction. Revised McDonald Criteria</td>
<td>133</td>
</tr>
<tr>
<td>8.2 Images</td>
<td>135</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>145</td>
</tr>
<tr>
<td>9.2 Systemic Immune-Mediated Diseases</td>
<td>145</td>
</tr>
<tr>
<td>9.2.1 Systemic Lupus Erythematosus</td>
<td>145</td>
</tr>
<tr>
<td>9.2.2 Behçet's Disease</td>
<td>146</td>
</tr>
<tr>
<td>9.2.3 Sarcoidosis</td>
<td>146</td>
</tr>
<tr>
<td>5.3 Focal Atrophy</td>
<td>97</td>
</tr>
</tbody>
</table>
9.3 Noninflammatory Vascular Syndromes .. 146
 9.3.1 Binswanger’s Disease ... 146
 9.3.2 Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarct and Leukoencephalopathy (CADASIL) ... 147
 9.3.3 Mitochondrial Encephalopathies ... 147
9.4 Other Demyelinating Diseases .. 147
 9.4.1 Acute Disseminated Encephalomyelitis (ADEM) 147
 9.4.2 Neuromyelitis Optica (NMO) ... 148
9.4.3 Central Pontine Myelinolysis (CPM) .. 148
9.5 Infectious Diseases ... 149
 9.5.1 Progressive Multifocal Leukoencephalopathy (PML) 149
 9.5.2 Human T-Cell Leukemia Virus 1 (HTLV1) Infection 149
 9.5.3 Lyme Disease .. 150
 9.5.4 Metabolic Diseases .. 150
 9.6.1 Leukodystrophies .. 150
9.7 Normal Aging Phenomenon ... 150

Subject Index ... 175
Contributors

Prof. Dr. med. Achim Gass
Department of Neurology-Neuroradiology
University Hospital Basel
Petersgraben 4
4031 Basel
Switzerland

Dr. med. Sabine Haller
Department of Neuroradiology
University Hospital Basel
Petersgraben 4
4031 Basel
Switzerland

Prof. Dr. med. Ludwig Kappos
Head of Outpatient Clinic Neurology-
Neurosurgery
University Hospital Basel
Petersgraben 4
4031 Basel
Switzerland

Prof. Dr. med. Jun-Ichi Kira
Head of Department of Neurology
Neurological Institute
Graduate School of Medical Sciences
Kyushu University
Japan

Prof. Dr. med. Ernst-Wilhelm Radue
Head of Department of Neuroradiology
University Hospital Basel
Petersgraben 4
4031 Basel
Switzerland

Prof. Dr. med. Mohammad Ali Sahraian
Assistant Professor of Neurology
Department of Neurology
Tehran University of Medical Sciences
Hassan Abad Square
Sina Hospital
Tehran-Iran

Prof. Dr. med. Jürg Kesselring
Head of Department of Neurology
and Neuroradiology
University Hospital Basel
Petersgraben 4
4031 Basel
Switzerland

Dr. med. Katrin Weier
Department of Neurology-Neuroradiology
University Hospital Basel
Petersgraben 4
4031 Basel
Switzerland
How to Read the Atlas

In order to receive maximum information from this book, we highly advise you to have a look on the introductory part of each chapter. There you will find some basic information on each topic, followed by images sorted to show the lesions in different shapes, sizes, and locations, starting from the posterior fossa and continuing to supratentorial structures.

It should be noted that our intent was not to elaborate on all the details on each image. There may be several findings, but we have tried to demonstrate the most important ones according to the topic.

Each image is described in a legend giving additional explanations to the reader as well as important clinical information (correlation lesions/clinical presentation, lesions/course of the disease) under “note”.

You will find the basic principles about correct detection of multiple sclerosis (MS) lesions in different sequences, so as to avoid pitfalls.

This atlas is accompanied by a complementary CD on which you will find selected images of different patients with MS. You will have the possibility to select MS lesions out of several suggested areas. Your selection, the correct answer, as well as training remarks, will be shown subsequently.
1 MS Lesions in T2-Weighted Images

M.A. Sahraian, E.-W. Radue

1.1 Introduction

Multiple hyperintense lesions on T2- and PD-weighted sequences are the characteristic magnetic resonance imaging (MRI) appearance of multiple sclerosis (MS). The majority of the lesions are small, although they can occasionally measure several centimeters in diameter. Focal MS lesions are usually round or oval in shape and relatively well circumscribed.

MS lesions may occur in any part of the central nervous system where myelin exists, but lesions around the ventricles and the corpus callosum are highly suggestive. Other common sites of involvement are subcortical and infratentorial regions (Ge 2006). Although MS is a white matter disease, a subset of lesions may involve gray matter including the cerebral cortex, thalamus, and basal ganglia (Ormerod et al. 1987). Cortical involvement has been described in several pathological studies (Brownwell et al. 1962; Peterson et al. 2001), but these lesions may be missed on conventional MRI due to similarities in signal intensities of MS lesions and gray matter or partial volume effect of cerebrospinal fluid within the adjacent sulci (Kidd et al. 1999).

Postmortem studies have demonstrated a close correlation between the lesions seen on pathological examinations and the lesions seen on T2-weighted MRI (Stewart et al. 1984; De Groot et al. 2001). T2 hyperintensities are not specific, and almost any alteration in the brain tissue composition can change signal intensity. Inflammation, demyelination, gliosis, edema, and axonal loss will increase the signal intensity, without any specific pattern (Bruck et al. 1997).

Most of the lesions – especially in the early stages of the disease – are discrete on conventional MRI, although diffuse changes throughout the normal-appearing white matter (NAWM) have been demonstrated by nonconventional MR techniques such as magnetization transfer imaging (MTI) (Ostuni et al. 1999), diffusion-weighted imaging (DWI) (Ciccarelli et al. 2002), and MR spectroscopy (De Stefano et al. 2002). Conventional T2-weighted MR images may also demonstrate diffuse, large, and irregular hyperintensities with poorly defined borders around the ventricles, especially adjacent to the occipital horn. They are known as dirty-appearing white matter (DAWM) and have been reported in 17% of the patients with remitting-relapsing multiple sclerosis (RRMS) (Zhao et al. 2000).

Acute T2 lesions may show a halo of less striking hyperintensity, probably consistent with edema that resolves over time, and they reach their final size within about 6 months.

With ongoing disease, new lesions or enlargement of preexisting lesions can be seen to occur simultaneously with the shrinkage of previously acute plaques. Most T2 lesions develop without clinical symptoms, but most clinical relapses are associated with new lesions on MRI (Smith et al. 1993; Thorpe et al. 1996). On average, MS patients will develop four or five new MRI lesions.
per year, with great variability among individuals (Paty 1988).

Both cross-sectional and short-term longitudinal correlations between T2 lesion load and clinical impairment are generally poor (Rovaris et al. 2003; Barkhof 1999). Lack of pathological specificity for the extent of tissue destruction, inability of conventional MRI to detect damage in NAWM, limitations of the expanded disability status scale (EDSS), and occurrence of lesions in clinically “silent” areas are some of possible explanations for such a clinicoradiological paradox (Goodin 2006).

T2 lesions have a specific value in predicting the outcome of the patients presenting with clinically isolated syndrome (CIS). CIS patients with normal cerebral MRI at presentation have only an 11% risk of another clinical attack in the next 10 years, whereas those with two or more cerebral lesions have a considerably higher risk (90%) (O’Riordan et al. 1998). Changes in the number and volume of T2 lesions have been used as surrogate markers in clinical trials of new therapeutic agents. These measures are based on the evaluations of serially obtained images and generally require image acquisition according to a standardized protocol (Simon et al. 2006).

This chapter deals with typical as well as atypical MS lesions on T2-weighted images, presenting MS lesions in different patterns, sizes, and locations.

1.2 Shape and Size

![Fig. 1.1](image) Axial proton density (PD)- (a) and T2-weighted (b) images of a patient with remitting-relapsing multiple sclerosis (RRMS) demonstrate classic MR appearance of the disease. Note: Multiple hyperintense lesions (plaques) with periventricular predominance are the classic MRI feature of MS (arrows)
Fig. 1.2 Axial PD- (a) and T2-weighted (b) images demonstrate MS plaques in different areas of the cerebral hemisphere. Note: MS lesions can occur in different locations of the central nervous system. The most common locations are periventricular (arrows), juxtacortical (arrowheads), corpus callosum, and infratentorial structures.

Fig. 1.3 Axial PD- (a) and T2-weighted (b) images demonstrate typical periventricular lesions in MS (arrows). Note: Periventricular lesions are defined as the lesions that are attached to the walls of the ventricles.
Fig. 1.4 Axial PD- (a) and T2-weighted (b) images demonstrating juxtacortical lesions in parietal (a), frontal (b, d) and occipital lobes (c) (arrows). Note: Juxtacortical lesions are defined as the lesions that touch the cerebral cortex.

Fig. 1.5 Axial PD- (a) and T2-weighted (b) images of a patient with RRMS, demonstrating different shapes of the lesions (arrows). Note: MS lesions are usually oval or round in shape, but other complex and irregular patterns may also be seen in this disease. In fact, there is no characteristic pattern on T2-weighted images that is specific for MS.
Fig. 1.6 Axial PD- (a) and T2-weighted (b) images of a patient with MS demonstrate lesions of different sizes (arrows). Note: MS lesions are usually small, but the diameter may vary from a few millimeters to several centimeters.

Fig. 1.7 Axial PD- (a) and T2-weighted (b) images of a patient with RRMS demonstrate lesions of different sizes. Two of the lesions are bilateral, periventricular, and relatively large (arrows). Note: The average lesion size has been reported to be 7 mm in nominal diameter, and most MS lesions are smaller than 1 cm in diameter.
1.3 Location

Fig. 1.8 Axial PD- (a) and T2-weighted (b) images demonstrate a lesion in the upper part of the pons (arrows). Note: Infratentorial lesions may be seen in any part of these structures, but lesions are most commonly seen in the pons, cerebellum, and cerebellar peduncles.

Fig. 1.9 Axial PD- (a) and T2-weighted (b) images show a lesion in the surface of the pons (arrows). Note: Some brainstem lesions may be superficial abutting the subarachnoid space. In contrast to this, abnormalities in the center of the pons are more characteristic in small vessel disease.
Fig. 1.10 Axial PD- (a) and T2-weighted (b) images of a patient with MS demonstrate a cerebellar lesion (*arrows*). Note: Lesions may occur in any part of the cerebellar white matter. About 50% of MS patients may have one or more lesions in this area.

Fig. 1.11 Axial PD- (a) and T2-weighted (b) images demonstrate a lesion in the floor of the 4th ventricle (*arrows*)
Fig. 1.12 Axial PD- (a) and T2-weighted (b) images demonstrate two bilateral, relatively symmetrical lesions in the pons (arrows). Note: Symmetric lesions are not usually seen in MS. The lesions are bilateral rather than symmetrical, but in rare cases symmetrical lesions may be seen in the cerebral hemispheres, brainstem, or cerebellar peduncles.

Fig. 1.13 Axial PD- (a) and T2-weighted (b) images of a patient with MS demonstrate a large lesion involving pons and middle cerebellar peduncle (arrows). Note: In MS and some other inflammatory diseases the middle cerebellar peduncles are preferentially affected. The reason is not clear.
Fig. 1.14 Axial PD- (a) and T2-weighted (b) images of a patient with RRMS demonstrate a relatively large lesion in the posteroalateral part of the pons (*arrows*).

Fig. 1.15 Axial PD- (a) and T2-weighted (b) images of a patient with RRMS demonstrate a lesion in the cerebral peduncle. The border of the lesion towards the cerebral spinal fluid (CSF) is not clearly defined (*arrows*).