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Preface

The purpose of this book is to provide an introduction to the theories and
techniques of multi-sensor data fusion. The book has been designed as a text
for a one-semester graduate course in multi-sensor data fusion. It should also
be useful to advanced undergraduates in electrical engineering or computer
science who are studying data fusion for the first time and to practising engi-
neers who wish to apply the concepts of data fusion to practical applications.

The book is intended to be largely self-contained in so far as the subject
of multi-sensor data fusion is concerned, although some prior exposure to the
subject may be helpful to the reader. A clear understanding of multi-sensor
data fusion can only be achieved with the use of a certain minimum level of
mathematics. It is therefore assumed that the reader has a reasonable working
knowledge of the basic tools of linear algebra, calculus and simple probability
theory. More specific results and techniques which are required are explained
in the body of the book or in appendices which are appended to the end of
the book.

Although conceptually simple, the study of multi-sensor data fusion pre-
sents challenges that are fairly unique within the education of the electrical
engineer or computer scientist. Unlike other areas encounted by a student
of these subjects, multi-sensor data fusion draws on, and brings together,
theories and techniques that are typically taught separately in the traditional
curricula. To become competent in the field the student must be familiar with
tools taken from a wide range of diverse subjects, including: neural networks,
signal processing, statistical estimation, tracking algorithms, computer vision,
and control theory. All too often the student views multi-sensor data fusion
as a miscellaneous assortment of processes and techniques which bear no re-
lationship to each other. We have attempted to overcome this problem by
presenting the material using a common statistical Bayesian framework. In
this way the different theories and techniques are clearly integrated and the
underlying pattern of relationships that exist between the different method-
ologies are emphasized. Furthermore, by adopting a single framework, we have
kept the book at a reasonable size while treating many new and important
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topics in great depth. We should point out that we have not, however, ignored
other frameworks when this seemed appropriate.

As with any other branch of engineering, multi-sensor data fusion is a
pragmatic activity which is driven by practicalities. It is therefore important
that the student is able to experiment with the different techniques presented
in the book. For this purpose software code, written in Matlab, is particu-
larly convenient and we have included details of relevant Matlab code which
may be downloaded from the worldwide web. For the professional engineer
we have both illustrated the theory with many real-life applications and have
provided him with an extensive list of up-to-date references. Additional infor-
mation, including material for course instructors, is available from the author’s
homepage: www.hbmitchell.com.

The book is based on seminars, lectures and courses on multi-sensor data
fusion which have been taught over several years. The structure and content
of the book is based on material gathered and ideas exchanged with my col-
leagues. Particular thanks are extended to Dr. Paul Schaefer and Mr. Michael
Avraham with whom I have discussed most topics in the book and to Ms. Ruth
Rotman, Prof. Brian Cowan and Prof. Stanley Rotman who have kindly read
and commented on the various drafts of the book. I am also indebted to my
wife and children for the support and patience they have shown me while the
book was being written.

Finally, to the reader. We hope you will enjoy reading this book and
that it will prove to be an useful addition to the increasingly important and
expanding field of multi-sensor data fusion.

H.B. Mitchell
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Introduction

1.1 Definition

The subject of this book is multi-sensor data fusion which we define as “the
theory, techniques and tools which are used for combining sensor data, or
data derived from sensory data, into a common representational format”. In
performing sensor fusion our aim is to improve the quality of the information,
so that it is, in some sense, better than would be possible if the data sources
were used individually.

The above definition implies that the sensor data, or the data derived
from the sensory data, consists of multiple measurements which have to be
combined. The multiple measurements may, of course, be produced by mul-
tiple sensors. However, the definition also includes multiple measurements,
produced at different time instants, by a single sensor.

The general concept of multi-sensor data fusion is analogous to the manner
in which humans and animals use a combination of multiple senses, experience
and the ability to reason to improve their chances of survival.

The basic problem of multi-sensor data fusion is one of determining the
best procedure for combining the multi-sensor data inputs. The view adopted
in this book is that combining multiple sources of information with a priori in-
formation is best handled within a statistical framework. The main advantage
of a statistical approach is that explicit probabilistic models are employed to
describe the various relationships between sensors and sources of information
taking into account the underlying uncertainties. In particular we restrict our-
selves to the Bayesian methodology which provides us with a useful way to
formulate the multi-sensor data fusion problem in mathematical terms and
which yields an assessment of the uncertainty in all unknowns in the problem.
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1.2 Synergy

The principal motivation for multi-sensor data fusion is to improve the quality
of the information output in a process known as synergy. Strictly speaking,
synergy does not require the use of multiple sensors. The reason being that the
synergistic effect may be obtained on a temporal sequence of data generated
by a single sensor. However, employing more than one sensor may enhance
the synergistic effect in several ways, including: increased spatial and temporal
coverage, increased robustness to sensor and algorithmic failures, better noise
suppression and increased estimation accuracy.

Example 1.1. Multi-Modal Biometric Systems [226]. Biometric systems that
rely on a single biometric trait for recognition are often characterized by high
error rates. This is due to the lack of completeness or universality[1] in most
biometric traits. For example, fingerprints are not truly universal since it is not
possible to obtain a good quality fingerprint from people with hand-related
disabilities, manual workers with many cuts and bruises on their fingertips
or people with very oily or very dry fingers. Multi-modal biometric sensor
systems solve the problem of non-universality by fusing the evidence obtained
from multiple traits. ��
Example 1.2. Multiple Camera Surveillance Systems [142]. The increasing de-
mand for security by society has led to a growing need for surveillance ac-
tivities in many environments. For example, the surveillance of a wide-area
urban site may be provided by periodically scanning the area with a single
narrow field-of-view camera. The temporal coverage is, however, limited by the
time required for the camera to execute one scan. By using multiple cameras
we reduce the mean time between scans and thereby increase the temporal
coverage. ��

Broadly speaking, multi-sensor data fusion may improve the performance
of the system in four different ways [18]:

Representation. The information obtained during, or at the end, of the fusion
process has an abstract level, or a granuality, higher than each input
data set. The new abstract level or the new granuality provides a richer
semantic on the data than each initial source of information

Certainty. If V is the sensor data before fusion and p(V ) is the a priori
probability of the data before fusion, then the gain in certainty is the
growth in p(V ) after fusion. If VF denotes data after fusion, then we ex-
pect p(VF ) > p(V ).

Accuracy. The standard deviation on the data after the fusion process is
smaller than the standard deviation provided directly by the sources. If
data is noisy or erroneous, the fusion process tries to reduce or eliminate

1 A biometric trait is said to be universal if every individual in the target population
is able to present the trait for recognition.
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noise and errors. In general, the gain in accuracy and the gain in certainty
are correlated.

Completeness. Bringing new information to the current knowledge on an envi-
ronment allows a more complete the view on this environment. In general,
if the information is redundant and concordant, we could also have a gain
in accuracy

Example 1.3. Multi-Modal Medical Imaging: Gain in Completeness. We con-
sider images obtained through Magnetic Resonance Imaging (MRI), Com-
puted Tomography (CT) and Positron Emission Tomography (PET). The
multi-sensor data fusion of all three images allows a surgeon to view “soft
tissue” information (MRI) in the context of “bone” (CT) and in the context
of “functional” or “physiological information” (PET). ��

1.3 Multi-Sensor Data Fusion Strategies

As the above examples show, multi-sensor data fusion is a wide-ranging sub-
ject with many different facets. In order to understand it better, and to become
familiar with its terminology, we shall consider it from three different points
of view as suggested by Boudjemaa and Forbes [27], Durrant-Whyte [69] and
Dasarathy [56]. Other points of view will be developed in succeeding chapters
of the book.

1.3.1 Fusion Type

Boudjemaa and Forbes [27] classify a multi-sensor data fusion system accord-
ing to what aspect of the system is fused:

Fusion across sensors. In this situation, a number of sensors nominally mea-
sure the same property, as, for example, a number of temperature sensors
measuring the temperature of an object.

Fusion across attributes. In this situation, a number of sensors measure dif-
ferent quantities associated with the same experimental situation, as, for
example, in the measurement of air temperature, pressure and humidity
to determine air refractive index.

Fusion across domains. In this situation, a number of sensors measure the
same attribute over a number of different ranges or domains. This arises,
for example, in the definition of a temperature scale.

Fusion across time. In this situation, current measurements are fused with
historical information, for example, from an earlier calibration. Often the
current information is not sufficient to determine the system accurately
and historical information has to be incorporated to determine the system
accurately.
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Example 1.4. Flood Forecasting [302]. Water companies are under constant
pressure to reduce the frequency of combined sewer overflows to natural wa-
ter courses from urban drainage systems (UDS). The management of storm-
water through the UDS and similar applications require accurate real-time
estimates of the rainfall. One way water companies have done this is to fuse
measurements of the rainfall made by ground-based rain gauges and a weather
radar system. This is “fusion across sensors” since, nominally, the two sensors
measure the same property. ��

1.3.2 Sensor Configuration

Durrant-Whyte [69] classifies a multi-sensor data fusion system according to
its sensor configuration. There are three basic configurations:

Complementary. A sensor configuration is called complementary if the sen-
sors do not directly depend on each other, but can be combined in order
to give a more complete image of the phenomenom under observation.
Complementary sensors help resolve the problem of incompleteness.

Competitive. A sensor configuration is competitive if each sensor delivers an
independent measurement of the same property. The aim of competitive
fusion is to reduce the effects of uncertain and erroneous measurements.

Cooperative. A cooperative sensor configuration network uses the information
provided by two, or more, independent sensors to derive information that
would not be available from the single sensors.

Example 1.5. Triangulation: Cooperative Fusion [272]. The location (x, y) of
an object O is found by cooperatively fusing two bearings, θ1 and θ2, as mea-
sured by the direction-finding sensors, S1 and S2. Let (X1, Y1) and (X2, Y2)
denote the locations of the two sensors S1 and S2, then by simple geometry
(see Fig. 1.1), we find the location (x, y) of O, where

x =
Y2 − Y1 + (X1 tan θ1 −X2 tan θ2)

tan θ1 − tan θ2
,

y =
Y2 tan θ1 − Y1 tan θ2 + tan θ1 tan θ2(X1 −X2)

tan θ1 − tan θ2
.

Note: See Ex. 4.2 for a Bayesian analysis of this problem. ��

1.3.3 Input/Output Characteristics

Dasarathy (1994) [56] classifies a multi-sensor data fusion system according
to its joint input/output characteristics. Table 1.1 illustrates the types of
inputs/outputs considered in this scheme.
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Fig. 1.1. Shows the calculation of the location (x, y) of the object O by triangulation
of the angles θ1 and θ2.

Table 1.1. Dasarathy’s Input/Output Data Fusion Model.

Symbol Name Description/Example

DaI-DaO Data Input/Data
Output

Input data is smoothed/filtered.

DaI-FeO Data Input/Feature
Output

Features are generated from the input data
e.g. edge detection in an image.

FeI-FeO Feature Input/Feature
Output

Input features are reduced in number or new
features are generated by fusing input fea-
tures.

FeI-DeO Feature Input/Decision
Output

Input features are fused together to give out-
put decision.

DeI-DeO Decision Input/Decision
Output

Multiple input decisions are fused together to
give a final output decision.

It is sometimes useful to divide the DeI-DeO fusion model into two sub-models:
a “soft” decision-input model (denoted as DsI-DeO) in which each input decision
is accompanied by a degree-of-support value and a “hard” decision-input model
(denoted as DhI-DeO) in which the input decisions are not accompanied by any
degree-of-support values.

1.4 Formal Framework

Multi-sensor data fusion systems are often of a size and a complexity that
requires the use of a formal framework [234] around which we may organize
our knowledge. The framework adopted in this book is that of a distributed
network of autonomous modules, in which each module represents a separate
function in the data fusion system.
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Apart from providing us with a structured framework, the modular design
decreases the complexity involved in designing a data fusion system by com-
partmentalizing the design problem. Modularity also helps in the construction
and maintenance of an operational multi-sensor data fusion system.

In analyzing a multi-sensor data fusion system it is useful to divide the
system into three parts: the physical, information and cognitive domains and
to determine the flow of data between these parts [72, 73, 76, 234] (Fig. 1.2).

Physical Domain: Hardware. The physical domain contains the sensor mod-
ules each of which represents a sensor which physically interacts with the
external environment. Each module contains a sensor model which pro-
vides us with a description of the measurements made by the sensor and
of the local environment within which the sensor operates. In some ap-
plications we may wish to physically change the external environment. In
this case the physical domain will also contain actuators which are able
to modify the external environment.

Information Domain: Software. The information domain constitutes the heart
of a multi-sensor data fusion system. It contains three blocks which are
responsible for data fusion, control application/resource management and
human-machine interface (HMI). The data fusion block is constructed as
an autonomous network of “fusion” modules. This network is responsible
for combining all the sensor data into a unified view of the environment in
the form of an “environmental image”. The control application/resource
management block is constructed as autonomous networks of “control”

Control
Application

Sensors

External
Environment

Actuators

HMI
Human

Operator

Data
Fusion

InformativePhysical Cognitive

Fig. 1.2. Shows the division of a generic multi-sensor data fusion system into three
parts or domains: physical, informative and cognitive and the flow between the parts.
The figure is divided into three panels which correspond to the physical domain (left-
most panel), information domain (middle panel) and cognitive domain (rightmost
panel).
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modules. This network is responsible for all decisions which are made on
the basis of the environmental image. In many applications the decisions
are fed back to the sensor block. In this case the process is known as
“sensor management”.

Cognitive Domain: Human User. In many multi-sensor data fusion applica-
tions the human user is the final arbiter or decision maker. In this case it
is important to design the system in such a way that all the information
which is transmitted to the human user is transformed into a form which
is intuitively usable by the user for his decision-making process.

Example 1.6. Control Loop [72, 73, 76]. Fig. 1.3 shows a control loop contain-
ing four blocks: sensor, actuator, data fusion and control application. The
environment is observed with one or more sensors. The corresponding sensor
observations are then passed to the data fusion block where they are com-
bined to form a unified view of the environment (“environmental image”).
The environmental image is, in turn, passed to the control application block.
The loop is closed by feeding the decisions made by the control application
block back to the environment. ��

1.4.1 Multi-Sensor Integration

In the data fusion block only a few of the autonomous modules perform
“multi-sensor data fusion” as defined in Sect. 1.1, the remaining modules
perform auxiliary functions. The modules which perform the data fusion will
receive input data from the physical sensors S1, S2, . . . , SN and from other

Control
Application

Sensors

External
Environment

Actuators

Data
Fusion

Physical Informative

Fig. 1.3. Shows a simple control loop built from four blocks: sensors, actuators,
data fusion and control application. A feedback mechanism is included by allowing
the control application to act on the external environment via an actuator block.
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modules. In this case, we sometimes find it convenient to differentiate be-
tween multi-sensor data fusion performed by the individual modules and
multi-sensor data integration performed by the entire data fusion block [187]
(see Fig. 1.4).

S
1

S
2

S
3

F
1

F
2

Fig. 1.4. Shows two multi-sensor data fusion blocks F1 and F2. F1 performs data
fusion on the output of sensors S1 and S2 and F2 performs data fusion on the output
of F1 and the sensor S3. Together F1 and F2 perform “multi-sensor integration”.

1.5 Catastrophic Fusion

[2] The unsuspecting reader may conclude, on the basis of what has been
presented so far, that a multi-sensor fusion system is always better than a
single sensor system. This conclusion is, however, mistaken: Often the per-
formance of a multi-sensor data fusion system is below that of the individual
sensors. This phenomenom is known as catastrophic fusion and clearly should
be avoided at all times.

Formally, catastrophic fusion [218] is said to occur when the performance
of a multi-sensor data fusion system F is significantly lower than the perfor-
mance of one, or more, of the individual sensors Sm. In general, each sensor
Sm,m ∈ {1, 2, . . . ,M}, is designed to operate correctly only under specific
conditions, or environment, Cm. Let CF denote the corresponding condition

2 This section contains advanced material. It assumes the reader has some famil-
iarity with Bayesian statistics (see Chapts. 8-10). The section is not, however,
essential for what follows and it may be left for a second reading.
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for the correct operation of all the sensors in system F , then CF is the “in-
tersection” of the Cm which we may write symbolically as

CF = C1 ∧ C2 ∧ . . . CM . (1.1)

Sometimes, however, F is used in an environment C which is inconsistent with
one of the Cm, say Cm∗ . When this happens, the signal from the corresponding
sensor, Sm∗ , may dominant the fused output with catastrophic results. To
prevent this happening, multi-sensor fusion systems often employ secondary
classifiers which monitor the performance of each sensor Sm.

Example 1.7. Automatic Speech Recognition: Preventing Catastrophic Fusion
[218]. In ideal, or clean, conditions automatic speech recognition systems per-
form very well using a single audio sensor SA. However, we often observe a
substantial reduction in performance when background noise, channel distor-
tion or reverberation are present. This has led to the development of auto-
matic speech recognition systems which employ an audio sensor SA and a
visual sensor SV (see Ex. 3.11). The two sensors are complementary: speech
characteristics that are visually confusable are often acoustically distinct, and
characteristics that are acoustically confusable are often visually distinct.
The audio-visual system work as follows. Given a finite set of utterances
Ui, i ∈ {1, 2, . . . , N}, we identify an unknown utterance, U , as

U∗ = argmax
i

(
P (Ui|yA, yV )

)
, (1.2)

where P (Ui|yA, yV ) is the conditional probability of Ui given an audio-visual
observation (yA, yV ). To a first approximation, the audio and visual features
are conditionally independent. In this case, we may write P (Ui|yA, yV ) as

P (Ui|yA, yV ) ∝ P (Ui|yA) × P (Ui|yV ) , (1.3)

where the conditional probabilities P (Ui|yA) and P (Ui|yV ) are calculated off-
line using a set of training samples D.

If the set of training samples and test samples are well matched, the solu-
tion represented by (1.2) and (1.3) is theoretically optimal: we automatically
compensate for any noise or distortion and assign more importance to the clas-
sification which is more “certain”. The underlying assumption is, however,
that the conditional probabilities P (Ui|yA) and P (Ui|yV ) generated during
training, match the speech data that is being tested. When the speech data
is contaminated with noise this assumption is no longer valid and the proba-
bility estimates are incorrect. In such cases, it is common to use a weighted
integration scheme, where the influence of the noisy channel is attenuated.
This weighting can be a function of the signal-to-noise ratio (SNR) in each
channel, and can be implemented as follows:

P (Ui|yA, yV ) ∝ PαA(Ui|yA)PαV (Ui|yV ) ,
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where

αA + αV = 1 .

The purpose of the weights αm,m ∈ {A, V }, is to “neutralize” a sensor Sm,
whenever the secondary classifiers determine that Sm is operating outside its
specified operating conditions Cm. In the worst case, when environmental con-
ditions make the sensor completely unreliable we set the corresponding weight
to zero. ��

1.6 Organization

Although we shall discuss the physical, information and cognitive domains in
a multi-sensor data fusion system, the emphasis will be on the data fusion
block. The book is organized into five parts as follows.

Part I: Introduction. This consists of Chapts. 1-3. Chapt. 1 is a general in-
troduction to the subject of multi-sensor data fusion. In this chapter we
provide an overview of the basic concepts used in multi-sensor data fusion.
In Chapt. 2 we consider the sensors, which ultimately, are the source of all
input data into a multi-sensor data fusion system. In Chapt. 3 we consider
the different system architectures which may be employed in constructing
a data fusion system.

Part II: Common Representational Format. This consists of Chapts. 4-7. In
Chapt. 4 we provide an overview of the basic concept of a common rep-
resentational format and the different techniques used to create such a
representation. The techniques may be broadly divided into three differ-
ent types which are then discussed in turn in Chapts. 5, 6 and 7.

Part III: Data Fusion. This consists of Chapts. 8-13. In Chapt. 8 we give an
overview of the Bayesian approach to multi-sensor data fusion and the
different techniques involved. This is followed by Chapts. 9-11 in which
we deal with parameter estimation theory including sequential estimation
theory. In Chapts. 12-13 we consider decision fusion.

Part IV. Sensor Management. This consists of a single chapter (Chapt. 14) in
which we consider sensor management. Specifically we consider how the
decisions made by the data fusion block may, if required, be fed back to
the sensors.

Part V. Appendices. This consists of Appendices A and B. Appendix A is
a list of relevant software written in matlab which is available on the
world wide web. Sufficient information is provided in the table so that the
software may be easily found on the world wide web using a simple search
machine [3]. Appendix B is a summary of elementary results in probability
theory, linear algebra and matrix theory with which the reader should be
familiar.

3 The internet addresses themselves are not given for the simple reason that internet
adresses tend to have a very short timelife.
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1.7 Further Reading

General overviews on multi-sensor data fusion are [3, 6, 7, 108, 109, 131, 154,
187, 318]. For an extended discussion regarding the issues involved in defining
multi-sensor data fusion and related terms, see [316, 236].
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Sensors

2.1 Introduction

Sensors are devices which interact directly with the environment and which are
ultimately the source of all the input data in a multi-sensor data fusion system
[87]. The physical element which interacts with the environment is known as
the sensor element and may be any device which is capable of perceiving
a physical property, or environmental attribute, such as heat, light, sound,
pressure, magnetism or motion. To be useful, the sensor must map the value
of the property or attribute to a quantitative measurement in a consistent
and predictable manner.

In Chapt. 1 we introduced a formal framework in which we represented a
sensor fusion system as a distributed system of autonomous modules. To sup-
port such a scheme, the sensors must not only measure a physical property,
but must also perform additional functions. These functions can be described
in terms of compensation, information processing, communication and inte-
gration:

Compensation. This refers to the ability of a sensor to detect and respond to
changes in the environment through self-diagnostic tests, self-calibration
and adaption.

Information Processing. This refers to processes such as signal conditioning,
data reduction, event detection and decision-making, which enhance the
information content of the raw sensor measurements.

Communications. This refers to the use of a standardized interface and a
standardized communication protocol for the transmission of information
between the sensor and the outside world.
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Integration. This refers to the coupling of the sensing and computation
processes on the same silicon chip. Often this is implemented using
microelectro-mechanical systems (MEMS) technology.

A practical implementation of such a sensor is known as a smart, or intelligent,
sensor [77].

2.2 Smart Sensor

A smart sensor is a hardware/software device that comprises in a compact
small unit a sensor element, a micro-controller, a communication controller
and the associated software for signal conditioning, calibration, diagnostic
tests and communication. The smart sensor transforms the raw sensor signal
to a standardized digital representation, checks and calibrates the signal, and
transmits this digital signal to the outside world via a standardized interface
using a standardized communication protocol.

Fig. 2.1 shows the measurement of a physical property by a smart sensor.
The transfer of information between a smart sensor and the outside world

is achieved by reading (writing) the information from (to) an interface-file sys-
tem (IFS) which is encapsulated in the smart sensor as shown in Fig. 2.2 [75].

Amplifier Filter A/D μP

sensor
element

transmitter/
receiver

Smart Sensor

Fig. 2.1. The sensor element measures the physical property and outputs an analog
signal which is amplified, filtered and then converted to a digital signal by the analog-
to-digital, or A/D, unit. The digital signal is processed by the microprocessor, μP ,
where it is temporally stored before being transmitted by the transmitter/receiver.
Note: The smart sensor may also receive command instructions via the transmit-
ter/receiver unit.
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Fig. 2.2. Shows a smart sensor with a sensor element and the encapsulated signal
processing functions and the encapsulated Interface file system (IFS).

2.3 Logical Sensors

A logical sensor [116] is defined as any device which functions as a source of
information for a multi-sensor data fusion node. Thus a logical sensor encom-
pass both physical sensors and any fusion node whose output is subsequently
fed into another fusion node. Unless stated otherwise, from now on the term
“sensor” will refer to a logical sensor or a source-of-information.

2.4 Interface File System (IFS)

The IFS provides a structured (name) space which is used for communicating
information between a smart sensor and the outside world [74]. The following
example neatly illustrates the concept of an IFS.

Example 2.1. Brake Pedal in a Car: An Interface File System [160]. We con-
sider a driver in a car. For the purposes of braking, the brake pedal acts as an
IFS between the driver and the brakes. At this interface there are two relevant
variables. The first variable is P : the pressure applied to the brake pedal by
the driver and the second variable is R: the resistance provided by the brakes
back to the driver. The relative position of the brake pedal uniquely identifies
the values of P and R to both the driver and the brakes. The temporal as-
sociation between sensing the information (e. g. by the driver) and receiving
the information (e. g. by the brakes) is implicit, because of the mechanical
connection between the driver and the brakes. ��

A record of the IFS can be accessed, both from the sensor and from the
outside world (Fig. 2.2). Whenever one of the internal processes of a smart
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sensor requires information from the outside world or produces information
for the outside world, it accesses the appropriate records of the IFS and reads
(writes) the information to (from) this record. The internal processes of a
smart sensor are thus not visible to the outside world.

Often we implement the IFS so that it acts as a temporal firewall between
the sensors and the outside world. In this case, the IFS uses local interface
file systems that can be written by the sensor and read by the outside world,
without having direct communication between the sensor and the outside
world (Fig. 2.3).

2.4.1 Interface Types

In the smart sensor model we distinguish between three interface types: the
real-time service interface, the diagnostic and maintenance interface and the
configuration and planning interface. All information that is exchanged across
these interfaces is stored in files of the IFS.

Real-time Service (RS) Interface. This interface provides time sensitive infor-
mation to the outside world. The communicated data is sensor observa-
tions made by a sensor on real-time entities in the environment. The RS
accesses the real-time IFS files within the smart sensor which is usually
time-critical.

Diagnostic and Management (DM) Interface. This interface establishes a con-
nection to each smart sensor. Most sensors need both parameterization
and calibration at start-up and the periodic collection of diagnostic in-
formation to support maintenance activities. The DM interface accesses
the diagnostic IFS files within the smart sensor which is not usually time-
critical.

Configuration and Planning (CP) Interface. This interface is used to config-
ure a smart sensor for a given application. This includes the integration

Sensor Outside
World

Local
IFS

Local
IFS

Fig. 2.3. Shows the Interface file system (IFS) built as a temporal firewall. The IFS
contains two separate local interface file systems: one is accessed by the sensor and
the other is accessed by the outside world.


