SPRINGER PROCEEDINGS IN PHYSICS

96 Electromagnetics in a Complex World
 Editors: I.M. Pinto, V. Galdi, and L.B. Felsen

97 Fields, Networks, Computational Methods and Systems in Modern Electrodynamics
 A Tribute to Leopold B. Felsen
 Editors: P. Russer and M. Mongiardo

98 Particle Physics and the Universe
 Proceedings of the 9th Adriatic Meeting, Sept. 2003, Dubrovnik
 Editors: J. Trampetić and J. Wess

99 Cosmic Explosions
 On the 10th Anniversary of SN1993J
 (IAU Colloquium 193)
 Editors: J. M. Marcaide and K. W. Weiler

100 Lasers in the Conservation of Artworks
 LACONA V Proceedings, Osnabrück, Germany, Sept. 15–18, 2003
 Editors: K. Dickmann, C. Fotakis, and J.F. Asmus

101 Progress in Turbulence
 Editors: J. Peinke, A. Kittel, S. Barth, and M. Oberlack

102 Adaptive Optics for Industry and Medicine
 Proceedings of the 4th International Workshop
 Editor: U. Wittrock

103 Computer Simulation Studies in Condensed-Matter Physics XVII
 Editors: D.P. Landau, S.P. Lewis, and H.-B. Schütter

104 Complex Computing-Networks
 Brain-like and Wave-oriented Electrodynamic Algorithms
 Editors: I.C. Göknar and L. Sevgi

105 Computer Simulation Studies in Condensed-Matter Physics XVIII
 Editors: D.P. Landau, S.P. Lewis, and H.-B. Schütter

106 Modern Trends in Geomechanics
 Editors: W. Wu and H.S. Yu

107 Microscopy of Semiconducting Materials
 Editors: A.G. Cullis and J.L. Hutchison

108 Hadron Collider Physics 2005
 Proceedings of the 1st Hadron Collider Physics Symposium,
 Les Diablerets, Switzerland, July 4–9, 2005
 Editors: M. Campanelli, A. Clark, and X. Wu

109 Progress in Turbulence II
 Proceedings of the ITi Conference in Turbulence 2005
 Editors: M. Oberlack, G. Khujadze, S. Guenther, T. Weller, M. Frewer, J. Peinke, S. Barth

110 Nonequilibrium Carrier Dynamics in Semiconductors
 Proceedings of the 14th International Conference,
 July 25–29, 2005, Chicago, USA
 Editors: M. Saraniti, U. Ravaoli

111 Vibration Problems ICoVP 2005
 Editors: E. Inan, A. Kiris

112 Experimental Unsaturated Soil Mechanics
 Editor: T. Schanz

113 Theoretical and Numerical Unsaturated Soil Mechanics
 Editor: T. Schanz

114 Advances in Medical Engineering
 Editor: T.M. Buzug

115 X-Ray Lasers 2006
 Proceedings of the 10th International Conference,
 August 20–25, 2006, Berlin, Germany
 Editors: P.V. Nickles, K.A. Janulewicz

116 Lasers in the Conservation of Artworks
 LACONA VI Proceedings,
 Vienna, Austria, Sept. 21–25, 2005
 Editors: J. Nimmrichter, W. Kautek, M. Schreiner

117 Advances in Turbulence XI
 Proceedings of the 11th EUROMECH European Turbulence Conference,
 Editors: J.M.L.M. Palma and A. Silva Lopes

Volumes 70–95 are listed at the end of the book.
Lasers in the Conservation of Artworks

LACONA VI Proceedings,
Vienna, Austria, Sept. 21–25, 2005

With 419 Figures
Preface

Conservation and protection of works of art as well as of rare remnants of natural history has turned more and more into a race against time. Environments all over the world have become increasingly aggressive causing damage or at least deterioration to surfaces meant to be created for eternity. Conventional techniques do a lot against most of these dangers, but new approaches of high technology have to be explored to preserve the heritage of human civilization as well as the precious specimens of former life such as the feathers’ of birds which died out generations ago.

Mechanical and chemical methods are involved in traditional conservation treatments. Contactless cleaning by lasers, on the other hand, is a new and prospering field of laser materials processing. It allows avoiding mechanical disruption and the disadvantage of cleaning fluids – may they be toxic or just water – which could cause potentially long-term degradation of the substrate or health hazards. Moreover, laser cleaning may have the potential to accelerate conservatory work with high quality and moderate costs, and, thus, may help archives’, museums’ and collections’ strained budgets.

Laser cleaning in semiconductor, automotive and aerospace industries has already been motivated by cost-savings, yield enhancement, and environmental concerns so that substantial literature about laser processing and cleaning of technical surfaces has accumulated in scientific and technological journals in recent years. This wealth of knowledge and experience, however, is usually not accessible to the conservation, museum, and archiving community. Therefore, the series of the “International Conferences on Lasers in the Conservation of Artworks” – LACONA – was initiated by Costas Fotakis organizing LACONA I 1995 in Heraklion, Greece. This was followed by LACONA II 1997 in Liverpool, Great Britain, LACONA III 1999 in Florence, Italy, LACONA IV 2001 in Paris, France, and LACONA V 2003 in Osnabrück, Germany. The success of these unique conferences motivated the LACONA Permanent Scientific Committee to organize a LACONA VI – this time in the very heart of Europe, in Vienna, Austria.
The general development in laser conservation has led to the observation that scientific approaches and diagnostics have been introduced in an extent as never before in conservation. The key issues of the state of the art and future developments of laser cleaning of artefacts turned out to be as sketched in the following.

Paradigm Change of Conservation. Laser cleaning applies highly localized deposition of heat by a laser beam in contrast to traditional conservation involving both room-temperature mechanical and chemical methods.

Advanced Chemical Analysis and Diagnostics. In addition to the inspection by the conservator’s eye, micromorphological and spectroscopic methods are increasingly employed.

Inhomogeneity and Precision. The high-precision deliverance of laser radiation to morphologically and chemically inhomogeneous artefact surfaces allows an unprecedented treatment quality.

Integration. Merging laser cleaning with complementary conventional restoration steps may provide unrivalled solutions.

Automation. Laser precision processing can be highly automated allowing better precision, safety and cost-effectiveness in the future.

The 6th International Conference on Lasers in the Conservation of Artworks (LACONA VI) took place in Vienna, Austria, 21–25 September 2005. It represented the above listed new developments which entered the present proceedings volume.

Moreover, LACONA VI ran under the auspices of the United Nations endorsed “World Year of Physics 2005” initiative which started by the European Physical Society to demonstrate that natural sciences provide a significant basis for the development of understanding nature, and that scientific research and its applications are a major driving force to scientific and technological development, and remain a vital factor in addressing the challenges of the 21st century. The “World Year of Physics 2005” highlighted the vitality of natural science and its importance in the coming millennium, and will commemorate the pioneering contributions of Albert Einstein in 1905.

I want to thank Johann Nimmrichter, Chairman, and Manfred Schreiner, Co-Chairman of LACONA VI, for their unmatched enthusiasm and dedication to make LACONA VI a success. Further there has to be mentioned the invaluable support by the LACONA Permanent Scientific Committee, the LACONA Local Organizers (public institutions in Vienna), the LACONA Local Congress Committee, and last not least the LACONA Sponsors.

Finally, I would like to thank Robert Linke and Ed Teppo for their careful and generous support during the preparation of the proceedings of LACONA VI.

Vienna, May 2007

Wolfgang Kautek
Contents

List of Committees .. XVII
List of Sponsors ... XXI
List of Contributors .. XXIII

1 Serendipity, Punctuated
 J.F. Asmus .. 1

Part I Metal

2 Laser Cleaning of Corroded Steel Surfaces:
 A Comparison with Mechanical Cleaning Methods

3 Laser Cleaning of Gildings
 M. Panzner, G. Wiedemann, M. Meier, W. Conrad, A. Kempe,
 and T. Hutsch ... 21

4 Current Work in Laser Cleaning of the Porta del Paradiso
 S. Agnoletti, A. Brini, and L. Nicolai 29

5 Cleaning Historical Metals: Performance
 of Laser Technology in Monument Preservation
 A. Gervais, M. Meier, P. Mottner, G. Wiedemann, W. Conrad,
 and G. Haber ... 37

6 Laser Cleaning the Abergavenny Hoard: Silver Coins
 from the Time of William the Conqueror
 M. Davis .. 45
Part II Stone

7 The Application of Laser Cleaning in the Conservation of Twelve Limestone Relief Panels on St. George’s Hall
M. Cooper and S. Sportun ... 55

8 The Potential Use of Laser Ablation for Selective Cleaning of Indiana Limestone

9 Laser Cleaning of a Renaissance Epitaph with Traces of Azurite
J. Nimmrichter and R. Linke ... 75

10 Laser Cleaning of Peristyle in Diocletian Palace in Split (HR)
D. Almesberger, A. Rizzo, A. Zanini, and R. Geometrante 83

11 Phenomenological Characterisation of Stone Cleaning by Different Laser Pulse Duration and Wavelength
S. Siano, M. Giamello, L. Bartoli, A. Mencaglia, V. Parfenov,
and R. Salimbeni .. 87

12 The Cleaning of the Parthenon West Frieze by Means of Combined IR- and UV-Radiation
K. Frantzikinaki, G. Marakis, A. Panou, C. Vasilakis,
E. Papakonstantinou, P. Pouli, T. Ditsa, V. Zafiropulos,
and C. Fotakis .. 97

13 A Comprehensive Study of the Coloration Effect Associated with Laser Cleaning of Pollution Encrustations from Stonework
P. Pouli, G. Totou, V. Zafiropulos, C. Fotakis, M. Oujja, E. Rebollar,
M. Castillejo, C. Domingo, and A. Laborde 105

14 Poultices as a Way to Eliminate the Yellowing Effect Linked to Limestone Laser Cleaning
V. Vergès-Belmin and M. Labouré 115

15 Experimental Investigations and Removal of Encrustations from Interior Stone Decorations of King Sigismund’s Chapel at Wawel Castle in Cracow
A. Koss, J. Marczak, and M. Strzelec 125

C. Colombo, E. Martoni, M. Realini, A. Sansonetti, and G. Valentini 133
17 Exists a Demand for Nd:YAG Laser Technology in the Restoration of Stone Artworks and Architectural Surfaces?
E. Pummer ... 143

18 The SALUT Project: Study of Advanced Laser Techniques for the Uncovering of Polychromed Works of Art
G. Van der Snickt, A. De Boeck, K. Keutgens, and D. Anthierens 151

Part III Inorganic Materials

19 Comparison of Wet and Dry Laser Cleaning of Artworks
A. Sarzyński, K. Jach, and J. Marczak 161

20 Laser Cleaning of Avian Eggshell
L. Cornish, A. Ball, and D. Russell 169

21 Removal of Strong Sinter Layers on Archaeological Artworks with Nd:YAG Laser
J. Hildenhagen, K. Dickmann, and H.-G. Hartke 177

22 From the Lab to the Scaffold: Laser Cleaning of Polychromed Architectonic Elements and Sculptures
M. Castillejo, C. Domingo, F. Guerra-Librero, M. Jadraque, M. Martín, M. Oujja, E. Rebollar, and R. Torres 185

23 Integration of Laser Ablation Techniques for Cleaning the Wall Paintings of the Sagrestia Vecchia and Cappella del Manto in Santa Maria della Scala, Siena
S. Siano, A. Brunetto, A. Mencaglia, G. Guasparri, A. Scala, F. Droghini, and A. Bagnoli 191

24 Preliminary Results of the Er:YAG Laser Cleaning of Mural Paintings
A. Andreotti, M.P. Colombini, A. Felici, A. deCruz, G. Lanterna, M. Lanfranchi, K. Nakahara, and F. Penaglia 203

Part IV Organic Materials

25 Preliminary Results of the Er:YAG Laser Cleaning of Textiles, Paper and Parchment
A. Andreotti, M.P. Colombini, S. Conti, A. deCruz, G. Lanterna, L. Nussio, K. Nakahara, and F. Penaglia 213
26 Simultaneous UV-IR Nd:YAG Laser Cleaning of Leather Artifacts

27 An Evaluation of Nd:YAG Laser-Cleaned Basketry in Comparison with Commonly Used Methods
A. Elliott, A. Bezár, and J. Thornton 229

28 Novel Applications of the Er:YAG Laser Cleaning of Old Paintings
A. Andreotti, P. Bracco, M.P. Colombini, A. deCruz, G. Lanterna, K. Nakahara, and F. Penaglia .. 239

29 A Final Report on the Oxidation and Composition Gradients of Aged Painting Varnishes Studied with Pulsed UV Laser Ablation
C. Theodorakopoulos, V. Zafiropulos, and J.J. Boon 249

30 A New Solution for the Painting Artwork Rear Cleaning and Restoration: The Laser Cleaning
S.E. Andriani, I.M. Catalano, A. Brunetto, G. Daurelio, and F. Vona ... 257

31 Removal of Simulated Dust from Water-Based Acrylic Emulsion Paints by Laser Irradiation at IR, VIS and UV Wavelengths

32 Traditional and Laser Cleaning Methods of Historic Picture Post Cards
M. Mäder, H. Holle, M. Schreiner, S. Pentzien, J. Krüger, and W. Kautek ... 281

33 Femtosecond Laser Cleaning of Painted Artefacts; Is this the Way Forward?
P. Pouli, G. Bounos, S. Georgiou, and C. Fotakis 287

34 Laser Cleaning of Polyurethane Foam: An Investigation using Three Variants of Commercial PU Products
U. Staal Dinesen and M. Westergaard 295

35 Excimer Laser Ablation of Egg Tempera Paints and Varnishes
P.J. Morais, R. Bordalo, L. dos Santos, S.F. Marques, E. Salgueiredo, and H. Gouveia ... 303
36 Laser Cleaning of Undyed Silk:
Indications of Chemical Change

37 Determination of a Working Range for the Laser Cleaning of Soiled Silk
J. Krüger, S. Pentzien, and K. von Lerber ... 321

38 Laser Versus Conventional Cleaning Methods: Do the Costs Outweigh the Benefits?
P. van Dalen, R. Broere, and H.A. Aziz ... 329

Part V Analytical Techniques

39 Raman Spectroscopy: New Light on Ancient Artefacts
P. Vandenabeele and L. Moens .. 341

40 Pigment Identification on “The Ecstasy of St. Theresa” Painting by Raman Microscopy

41 Colorimetry, LIBS and Raman Experiments on Renaissance Green Sandstone Decoration During Laser Cleaning of King Sigismund’s Chapel in Wawel Castle, Cracow, Poland
A. Sarzynski, W. Skrzeczanowski, and J. Marczak 355

42 Non-Destructive Observation of the Laser Treatment Effect on Historical Paper via the Laser-Induced Fluorescence Spectra
K. Komar and G. Śliwiński ... 361

43 Effects of LIBS Measurement Parameters on Wall Paintings Pigments Alteration and Detection
R. Bruder, D. Menut, and V. Detalle .. 367

44 A Parametric Linear Correlation Method for the Analysis of LIBS Spectral Data
E. Tzamali and D. Anglos ... 377

45 Investigation on Painting Materials in “Madonna col Bambino e S. Giovannino” by Botticelli
D. Bersani, P.P. Lottici, A. Casoli, M. Ferrari, S. Lottini, and D. Cauzzi .. 383
46 Laser-Induced Plasma Spectroscopy for the Analysis of Roman Ceramics *Terra Sigillata*
A.J. López, G. Nicolás, M.P. Mateo, V. Piñón, and A. Ramil
391

47 Laser-Induced Fluorescence Analysis of Protein-Based Binding Media
A. Nevin, S. Cather, D. Anglos, and C. Fotakis
399

48 Applications of a Compact Portable Raman Spectrometer for the Field Analysis of Pigments in Works of Art
S. Bruni and V. Guglielmi
407

49 Classification of Patinas Found on Surfaces of Historical Buildings by Means of Laser-Induced Breakdown Spectroscopy
C. Vázquez-Calvo, A. Giakoumaki, D. Anglos, M. Álvarez de Buergo, and R. Fort
415

50 Laser-Induced Breakdown Spectroscopy of Cinematographic Film
M. Oujja, C. Abruscì, S. Gaspard, E. Rebollar, A. del Amo, F. Catalina, and M. Castillejo
421

51 Online Monitoring of the Laser Cleaning of Marbles by LIBS Sulphur Detection
V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and E. Teppo
429

52 Low Resolution LIBS for Online-Monitoring During Laser Cleaning Based on Correlation with Reference Spectra
M. Lentjes, K. Dickmann, and J. Meijer
437

53 Pigment Identification on a XIV/XV c. Wooden Crucifix Using Raman and LIBS Techniques
M. Sawczak, G. Śliwiński, A. Kamińska, M. Oujja, M. Castillejo, C. Domingo, and M. Klossowska
445

54 MOLAB, a Mobile Laboratory for In Situ Non-Invasive Studies in Arts and Archaeology
B.G. Brunetti, M. Matteini, C. Miliani, L. Pezzati, and D. Pinna
453

Part VI Scanning Techniques

55 From 3D Scanning to Analytical Heritage Documentation
M. Schaich
463
56 Cleaning of Painted Surfaces and Examination of Cleaning by 3D-Measurement Technology at the August Deussers Museum, Zurzach
P.-B. Eipper and G. Frankowski .. 473

57 Applicability of Optical Coherence Tomography at 1.55\mu m to the Examination of Oil Paintings

58 Varnish Thickness Determination by Spectral Optical Coherence Tomography

59 Multidimensional Data Analysis of Scanning Laser Doppler Vibrometer Measurements: An Application to the Diagnostics of Frescos at the US Capitol

60 Spectral Domain Optical Coherence Tomography as the Profilometric Tool for Examination of the Environmental Influence on Paintings on Canvas
T. Bajraszewski, I. Gorczyńska, B. Rouba, and P. Targowski 507

61 Polish Experience with Advanced Digital Heritage Recording Methodology, including 3D Laser Scanning, CAD, and GIS Application, as the Most Accurate and Flexible Response for Archaeology and Conservation Needs at Jan III Sobieski’s Residence in Wilanów
P. Baranowski, K. Czajkowski, M. Gładki, T. Morysiński, R. Szambelan, and A. Rzonca 513

62 Evaluation by Laser Micro-Profilometry of Morphological Changes Induced on Stone Materials by Laser Cleaning
C. Colombo, C. Daffara, R. Fontana, M.Ch. Gambino, M. Mastroianni, E. Pampaloni, M. Realini, and A. Sansonetti 523

63 A Mobile True Colour Topometric Sensor for Documentation and Analysis in Art Conservation
Z. Böröcz, D. Dirksen, G. Bischoff, and G. von Bally 527

64 Reconstruction of the Pegasus Statue on Top of the State Opera House in Vienna using Photogrammetry and Terrestrial and Close-Range Laser Scanning
C. Ressl ... 535
65 Some Experiences in 3D Laser Scanning for Assisting Restoration and Evaluating Damage in Cultural Heritage
L.M. Fuentes, J. Finat, J.J. Fernández-Martin, J. Martínez, and J.I. SanJose ... 543

66 Monitoring of Deformations Induced by Crystal Growth of Salts in Porous Systems Using Microscopic Speckle Pattern Interferometry
G. Gülker, A. El Jarad, K.D. Hinsch, H. Juling, K. Linnow, M. Steiger, St. Brüggerhoff, and D. Kirchner 553

67 Cultural Heritage Documentation by Combining Near-Range Photogrammetry and Terrestrial Laser Scanning: St. Stephen’s Cathedral, Vienna
F. Zehetner and N. Studnicka 561

68 Laser Engraving Gulf Pearl Shell – Aiding the Reconstruction of the Lyre of Ur
C. Rawcliffe, M. Aston, A. Lowings, M.C. Sharp, and K.G. Watkins 573

69 Fluorescence Lidar Multispectral Imaging for Diagnosis of Historical Monuments, Övedskloster: A Swedish Case Study
R. Grönlund, J. Hällström, S. Svanberg, and K. Barup................. 583

70 OptoSurf® Measurement Technology for Use on Surfaces of Historic Buildings and Monuments Cleaned by Laser
W.P. Weinhold, A. Wortmann, C. Diegelmann, E. Pummer, N. Pascua, Th. Brennan, R. Burkhardt, and L. Goretzki 593

71 Multi-Tasking Non-Destructive Laser Technology in Conservation Diagnostic Procedures

72 Time-Dependent Defect Detection by Combination of Holographic Tools
E. Tsiranidou, V. Tornari, Y. Orphanos, C. Kalpouzos, and M. Stefanaggi... 611

Part VII Safety and Miscellaneous

73 Health Risks Caused by Particulate Emission During Laser Cleaning
R. Ostrowski, St. Barcikowski, J. Markuz, A. Ostendorf, M. Strzelec, and J. Walter ... 623
74 Generation of Nano-Particles During Laser Ablation: Risk Assessment of Non-beam Hazards During Laser Cleaning
St. Barcikowski, N. Bärsch, and A. Ostendorf 631

75 A Novel Portable Multi-Wavelength Laser System
A. Charlton and B. Dickinson 641
List of Committees

Permanent Scientific Committee

Prof. Dr. Wolfgang Kautek (President)
University of Vienna
Department of Physical Chemistry
Wachringer Strasse 42
1090 Vienna, Austria
E-mail: wolfgang.kautek@univie.ac.at

Prof. Dr. John F. Asmus (Honorary President)
IPAPS University of California, San Diego
UCSD Physics Dept
9500 Gilman Drive
La Jolla, CA 92093, USA
E-mail: jfasmus@ucsd.edu

Margaret Abraham
Los Angeles County Museum of Art
5905 Wilshire Blvd
Los Angeles, CA 90036, USA
E-mail: mabraham@lacma.org

Prof. Dr. Giorgio Bonsanti
Opificio Delle Pietre Dure di Firenze
Via Alafani 78
50121 Firenze, Italy
E-mail: gbonsanti@dada.it

Dr. Marta Castillejo
Consejo Superior de Investigaciones Científicas
Instituto de Química Física Rocasolano
Serrano 119
28006 Madrid, Spain
E-mail: marta.castillejo@iqfr.csic.es
Dr. Martin Cooper
The Conservation Centre
Whitechapel
Liverpool L1 6HZ, UK
E-mail: Martin.Cooper@liverpoolmuseums.org.uk

Prof. Dr. Klaus Dickmann
Fachhochschule Münster
Laserzentrum
Stegerwaldstr. 39
48565 Steinfurt, Germany
E-mail: dickmann@fh-muenster.de

Prof. Dr. Costas Fotakis
Foundation for Research and Technology – Hellas (F.O.R.T.H.)
Institute of Electronic Structure & Laser
Vassilikia Vouton, P.O. Box 1527
Heraklion 71110, Crete, Greece
E-mail: fotakis@iesl.forth.gr

Prof. Dr. Eberhard Koenig
Freie Universität Berlin
Kunsthistorisches Institut
Koserstrasse 20
14195 Berlin, Germany
E-mail: egbk@zedat.fu-berlin.de

Dr. Mauro Matteini
Opificio delle Pietre Dure di Firenze
Laboratorio Scientifico
Viale Strozzi 1
50100 Firenze, Italy
E-mail: opd@dada.it

Mag. Johann Nimmrichter
Federal Office for Care and Protection of Monuments (Bundesdenkmalamt)
Department for Restoration and Conservation (Abteilung für Restaurierung
und Konservierung)
Arsenal, Objekt 15, Tor 4
1030 Wien, Austria
E-mail: arsenal@bda.at

Dr. Roxana Rădvan
National Institute of Research and Development for Optoelectronics (INOE)
Centre for Restoration by Optoelectronical Techniques (CERTO)
Platforma Magurele, 1 Atomistilor Str.
76900 Bucharest, Romania
E-mail: radvan@inoe.inoe.ro
Dr. Renzo Salimbeni
Consiglio Nazionale delle Ricerche
Istituto di Elettronica Quantistica
Via Panciatichi 56/30
50127 Firenze, Italy
E-mail: r.salimbeni@ifac.cnr.it

Véronique Vergès-Belmin
Laboratoire de Recherche des Monuments Historiques
29 rue de Paris
77420 Champs sur Marne, France
E-mail: veronique.verges-belmin@culture.gouv.fr

Prof. h.c. Dr. Gert von Bally
University of Münster
Laboratory of Biophysics, Institute of Experimental Audiology
Robert-Koch-Str. 45
48129 Münster, Germany
E-mail: bally@uni-muenster.de

Prof. Dr. Kenneth Watkins
The University of Liverpool
Department of Mechanical Engineering
Liverpool, L69 3BX, UK
E-mail: kwatkins@mechnet.liv.ac.uk

Prof. Dr. Vassilis Zafiropulos
Superior Technical Educational Institute of Crete
Department of Human Nutrition & Dietetics
Ioannou Kondylaki 46,
723 00 Sitia, Crete, Greece
E-mail: zafr@dd.teiher.gr

Local Congress Committee

Johann Nimmrichter
Chairman, Bundesdenkmalamt, Vienna, Austria

Manfred Schreiner
Co-Chairman, Academy of Fine Arts, Vienna, Austria

Wolfgang Kautek
Co-Chairman, Dept. of Phys. Chem., Univ. of Vienna, Austria

Wolfgang Baatz
Academy of Fine Arts, Vienna, Austria

Andrea Böhm
Bundesdenkmalamt, Vienna, Austria

Dimitrios Boulasakis
Conservator-Archaeologist, Mödling, Austria
List of Committees

Giancarlo Calcagno
Conservator-Restorer, Bassano del Grappa, Italy
Gabriele Gürtler
Bundesdenkmalamt, Vienna, Austria
Eva Maria Höhle
Bundesdenkmalamt, Vienna, Austria
Manfred Koller
Bundesdenkmalamt, IIC-Austria, Vienna, Austria
Gabriele Krist
University of Applied Arts, Vienna, Austria
Robert Linke
Bundesdenkmalamt, Vienna, Austria
Erich Pummer
Conservator-Restorer, Rossatz, Austria
Johannes Riegl
RIEGL Laser Measurement Systems GmbH, Horn, Austria
Dieter Schücker
Vienna University of Technology, Vienna, Austria
Christopher Weeks
Conservator-Restorer, Tring, UK
Robert Wimmer
Behindscreen, Vienna, Austria
Wolfgang Zehetner
Dombaumeister, Architect of St. Stephens Cathedral, Vienna, Austria

Local Organizing Institutions

Federal Office for Care and Protection of Monuments Austria
(Bundesdenkmalamt)
Academy of Fine Arts Vienna
(Akademie der bildenden Künste)
University of Vienna
(Universität Wien)
Vienna University of Technology
(Technische Universität Wien)
Cathedral Masons Lodge of St. Stephens, Vienna
(Domhauhütte St. Stephan)
International Institute for Conservation (IIC), Austrian Group
Austrian Conservator-Restorer Association
(Österreichischer Restauratorenverband)
List of Sponsors

The financial support of all organisations is gratefully acknowledged.

Bundesministerium für Bildung, Wissenschaft und Kultur, www.bmbwk.gv.at
Bundesdenkmalamt, www.bda.at
Akademie der bildenden Künste, www.akbild.ac.at
Dr. Michael Häupl, Mayor of Vienna, www.wien.gv.at
Casinos Austria, www.casinos.at
COST G7 Artwork conservation by laser, http://alpha1.infin.ro/cost
Bundeskanmer der Architekten und Ingenieurskonsulenten, www.arching.at
Linsinger Kulturgutevermessung, Photogrammetrie, 3D Scanning, www.linsinger.at
ofi – Technologie & Innovation GmbH, Abteilung Bauwesen, www.ofi.co.at
ELEN GROUP hightech laser, www.elengroup.com
Rest. Felix Mackowitz, felix.mackowitz@chello.at
Rest. Mag. Klaus Wedenig, info@denkmalpflegegmbh.at
Rest. Mag. Ralph Kerschbaumer, ralph.kerschbaumer@chello.at
Rest. Erich Pummer, www.lasertech-artcons.at
Steinmetzfirma Wolfgang Ecker, ecker.gmbh@aon.at
Rest. Otto Blassnig, otto.blassnig@aon.at
Steinmetzfirma Rada, www.rada.at
Rest. Johann Lindtner, johann.lindtner@utanet.at
List of Sponsors

Steinmetzfirma Johann Schaden, www.marmorbau-schaden.at
Rest. Johannes Schlögl, stein.schloegl@chello.at
Rest. Mag. Josef Weninger, j.weninger@werkstatt.tk
Landesinnung Wien der Steinmetzmeister, SGH.Lindner@wkw.at
Rest. Gerhard Zottmann, www.zottmann.at
Rest. Werner Campidell, campidell@aon.at
List of Contributors

Abrusci, C., 421
Adams, G., 499
Agnani, A., 499, 601
Agnoletti, S., 29
Almesberger, D., 83
Álvarez de Buergo, M., 415
Anastassopoulos, A., 601
Andreotti, A., 203, 213, 239
Andriani, S.E., 257
Anglos, D., 377, 399, 415
Anthierens, D., 151
Asmus, J.F., 1
Aston, M., 573
Aziz, H.A., 329
Bagnoli, A., 191
Bajraszewski, T., 493, 507
Ball, A., 169
Bärsch, N., 631
Baranowski, P., 513
Barcikowski, St., 623, 631
Bartoli, L., 87
Barup, K., 583
Batishche, S., 221
Bersani, D., 383
Bezúr, A., 229
Bischoff, G., 527
Böröcz, Z., 527
Bonnici, H., 601
Boon, J.J., 249
Bordalo, R., 303
Bounos, G., 287
Brüggerhoff, St., 553
Bracco, P., 239
Bredal-Jørgensen, J., 269
Brennan, Th., 593
Breuer, E., 487
Brini, A., 29
Broere, R., 329
Bruder, R., 367
Brunetti, B.G., 453
Brunetto, A., 191, 257
Bruni, S., 407
Bucaro, J., 499
Burkhardt, R., 593
Carlevi, J., 13
Casoli, A., 383
Castillejo, M., 105, 185, 421, 445
Catalano, I.M., 257, 349
Catalina, F., 421
Cather, S., 399
Cauzzi, D., 383
Charlton, A., 641
Colao, F., 429
Colombini, M.P., 203, 213, 239
Colombo, C., 133, 523
Conrad, W., 21, 37
Conti, S., 213
Cooper, M., 55
Cornish, L., 169
Czajkowski, K., 513
Dabu, R., 601
Daffara, C., 523
Daurelio, G., 257
Davis, M., 45
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Benedetto, G.E.</td>
<td>349</td>
</tr>
<tr>
<td>De Boeck, A.</td>
<td>151</td>
</tr>
<tr>
<td>deCruz, A.</td>
<td>203, 213, 239</td>
</tr>
<tr>
<td>del Amo, A.</td>
<td>421</td>
</tr>
<tr>
<td>Detalle, V.</td>
<td>367</td>
</tr>
<tr>
<td>Dickinson, B.</td>
<td>641</td>
</tr>
<tr>
<td>Dickmann, K.</td>
<td>177, 437</td>
</tr>
<tr>
<td>Diegelmann, C.</td>
<td>593</td>
</tr>
<tr>
<td>Dirksen, D.</td>
<td>527</td>
</tr>
<tr>
<td>Ditsa, T.</td>
<td>97</td>
</tr>
<tr>
<td>Domingo, C.</td>
<td>105, 185, 445</td>
</tr>
<tr>
<td>dos Santos, L.</td>
<td>303</td>
</tr>
<tr>
<td>Droghini, F.</td>
<td>191</td>
</tr>
<tr>
<td>Eipper, P.-B.</td>
<td>473</td>
</tr>
<tr>
<td>El Jarad, A.</td>
<td>553</td>
</tr>
<tr>
<td>Ellingston, D.</td>
<td>499</td>
</tr>
<tr>
<td>Elliott, A.</td>
<td>229</td>
</tr>
<tr>
<td>Esposito, E.</td>
<td>499, 601</td>
</tr>
<tr>
<td>Falldorf, C.</td>
<td>601</td>
</tr>
<tr>
<td>Fantoni, R.</td>
<td>429</td>
</tr>
<tr>
<td>Felici, A.</td>
<td>203</td>
</tr>
<tr>
<td>Fernández-Martin, J.J.</td>
<td>543</td>
</tr>
<tr>
<td>Ferrari, M.</td>
<td>383</td>
</tr>
<tr>
<td>Finat, J.</td>
<td>543</td>
</tr>
<tr>
<td>Fontana, R.</td>
<td>523</td>
</tr>
<tr>
<td>Fort, R.</td>
<td>415</td>
</tr>
<tr>
<td>Fotakis, C.</td>
<td>97, 105, 287, 399</td>
</tr>
<tr>
<td>Frankowski, G.</td>
<td>473</td>
</tr>
<tr>
<td>Frantzkinaki, K.</td>
<td>97</td>
</tr>
<tr>
<td>Fuentes, J.M.</td>
<td>543</td>
</tr>
<tr>
<td>Gambino, M. Ch.</td>
<td>523</td>
</tr>
<tr>
<td>Gaspar, S.</td>
<td>421</td>
</tr>
<tr>
<td>Geometrante, R.</td>
<td>83</td>
</tr>
<tr>
<td>Georgiou, S.</td>
<td>287</td>
</tr>
<tr>
<td>Gervais, A.</td>
<td>37</td>
</tr>
<tr>
<td>Giakoumaki, A.</td>
<td>415</td>
</tr>
<tr>
<td>Gianello, M.</td>
<td>87</td>
</tr>
<tr>
<td>Gladki, M.</td>
<td>513</td>
</tr>
<tr>
<td>Göra, M.</td>
<td>487</td>
</tr>
<tr>
<td>Gorecyńska, I.</td>
<td>493, 507</td>
</tr>
<tr>
<td>Goretzki, L.</td>
<td>593</td>
</tr>
<tr>
<td>Gorovets, T.</td>
<td>221</td>
</tr>
<tr>
<td>Gouveia, H.</td>
<td>303</td>
</tr>
<tr>
<td>Grönlund, R.</td>
<td>583</td>
</tr>
<tr>
<td>Gülder, G.</td>
<td>553</td>
</tr>
<tr>
<td>Guasparrini, G.</td>
<td>191</td>
</tr>
<tr>
<td>Guerra-Librero, F.</td>
<td>185</td>
</tr>
<tr>
<td>Guglielmi, V.</td>
<td>407</td>
</tr>
<tr>
<td>Haber, G.</td>
<td>37</td>
</tr>
<tr>
<td>Hällström, J.</td>
<td>583</td>
</tr>
<tr>
<td>Hartke, H.-G.</td>
<td>177</td>
</tr>
<tr>
<td>Hasperhoven, J.</td>
<td>601</td>
</tr>
<tr>
<td>Hildenhagen, J.</td>
<td>177</td>
</tr>
<tr>
<td>Hinsch, K.D.</td>
<td>553</td>
</tr>
<tr>
<td>Holle, H.</td>
<td>281</td>
</tr>
<tr>
<td>Hutsch, T.</td>
<td>21</td>
</tr>
<tr>
<td>Jach, K.</td>
<td>161</td>
</tr>
<tr>
<td>Jadoraque, M.</td>
<td>185</td>
</tr>
<tr>
<td>Juling, H.</td>
<td>553</td>
</tr>
<tr>
<td>Kalpouzos, C.</td>
<td>611</td>
</tr>
<tr>
<td>Kaminska, A.</td>
<td>445</td>
</tr>
<tr>
<td>Kaplan, A.</td>
<td>13</td>
</tr>
<tr>
<td>Kautek, W.</td>
<td>221, 281, 313</td>
</tr>
<tr>
<td>Kempe, A.</td>
<td>21</td>
</tr>
<tr>
<td>Kennedy, C.</td>
<td>313</td>
</tr>
<tr>
<td>Keutgens, K.</td>
<td>151</td>
</tr>
<tr>
<td>Kirchner, D.</td>
<td>553</td>
</tr>
<tr>
<td>Klattenhoff, R.</td>
<td>601</td>
</tr>
<tr>
<td>Klossowska, M.</td>
<td>445</td>
</tr>
<tr>
<td>Koh, Y.S.</td>
<td>13</td>
</tr>
<tr>
<td>Kolar, J.</td>
<td>313</td>
</tr>
<tr>
<td>Komar, K.</td>
<td>361</td>
</tr>
<tr>
<td>Koss, A.</td>
<td>125</td>
</tr>
<tr>
<td>Kouzmok, A.</td>
<td>221</td>
</tr>
<tr>
<td>Kowalczyk, A.</td>
<td>493</td>
</tr>
<tr>
<td>Krüger, J.</td>
<td>313, 321</td>
</tr>
<tr>
<td>Krüger, J.</td>
<td>281</td>
</tr>
<tr>
<td>Kurdila, A.</td>
<td>499</td>
</tr>
<tr>
<td>Laborde, A.</td>
<td>105</td>
</tr>
<tr>
<td>Labouré, M.</td>
<td>115</td>
</tr>
<tr>
<td>Lanfranchi, M.</td>
<td>203</td>
</tr>
<tr>
<td>Lanterna, G.</td>
<td>203, 213, 239</td>
</tr>
<tr>
<td>Lazic, V.</td>
<td>429</td>
</tr>
<tr>
<td>Lentjes, M.</td>
<td>437</td>
</tr>
<tr>
<td>Linke, R.</td>
<td>75</td>
</tr>
<tr>
<td>Limnow, K.</td>
<td>553</td>
</tr>
<tr>
<td>López, A.J.</td>
<td>391</td>
</tr>
<tr>
<td>Lottici, P. P.</td>
<td>383</td>
</tr>
<tr>
<td>Lottini, S.</td>
<td>383</td>
</tr>
<tr>
<td>Lowings, A.</td>
<td>573</td>
</tr>
<tr>
<td>Mäder, M.</td>
<td>281</td>
</tr>
<tr>
<td>Marakis, G.</td>
<td>97</td>
</tr>
</tbody>
</table>
List of Contributors

Marano, D., 349
Marchetti, B., 499
Marczak, J., 125, 161, 355, 623
Marmontelli, M., 349
Marques, S.F., 303
Martín, M., 185
Martoni, E., 133
Mastroianni, M., 523
Mateo, M. P., 391
Matteini, M., 453
Meier, M., 21, 37
Meijer, J., 437
Mencaglia, A., 87, 191
Menut, D., 367
Miliani, C., 453
Moaes, L., 341
Morais, P.J., 303
Morysiński, T., 513
Mottner, P., 37

Nakahara, K., 203, 213, 239
Nevin, A., 399
Nicolás, G., 391
Nicolai, L., 29
Nimmrichter, J., 75
Normandin, K.C., 65
Nussio, L., 213

Orphanos, Y., 601, 611
Ostendorf, A., 623, 631
Ostrowski, R., 623
Oujja, M., 105, 185, 421, 445

Pampaloni, E., 523
Panou, A., 97
Panzner, M., 21
Papakonstantinou, E., 97
Parfenov, V., 87
Pasqua, N., 593
Penaglia, F., 203, 213, 239
Pentzien, S., 281, 313, 321
Pezzati, L., 453
Piño, V., 391
Pilipenka, U., 221
Pinna, D., 453
Pouli, P., 97, 105, 269, 287
Powell, J., 13
Powers, L., 65
Pummer, E., 143, 593
Ramil, A., 391
Rawcliffe, C., 573
Realini, M., 133, 523
Rello, E., 105, 185, 421
Ressl, C., 535
Rizzo, A., 83
Rouba, B., 487, 493, 507
Russell, D., 169
Rzouca, A., 513
Śliwiński, G., 361, 445
Sabbatini, L., 349
Salgueiredo, E., 303
Salimbeni, R., 87
SanJose, J.L., 543
Sansone, A., 133, 523
Sarzyński, A., 161
Sarzynski, A., 355
Sawczak, M., 445
Scala, A., 191
Schaich, M., 463
Scheffler, M.J., 65
Schipper, D., 601
Schreiner, M., 281
Sharp, M.C., 573
Siano, S., 87
Skrzeczanowski, W., 355
Slaton, D., 65
Sokhan, M., 313
Spizzichino, V., 429
Sportun, S., 55
Staal Dinesen, U., 269, 295
Stefanaggi, M., 601, 611
Steiger, M., 553
Stifter, D., 487
Stratan, A., 601
Strlic, M., 313
Strzelec, M., 125, 623
Studnicka, N., 561
Svanberg, S., 583
Szambelan, R., 513
Szkulmowska, A., 487
Szkulmowski, M., 493
Targowska, M., 487
Targowski, P., 487, 493, 507
XXVI List of Contributors

Tatur, H., 221
Teppo, E., 429
Theodorakopoulos, C., 249, 269
Thornton, J., 229
Tomasini, E.P., 499
Tornari, V., 601, 611
Torres, R., 185
Totou, G., 105
Tressler, J., 499
Tsiranidou, E., 601, 611
Tzamali, E., 377
Ukhau, V., 221
Ursu, D., 601
Valentini, G., 133
van Dalen, P., 329
Van der Snickt, G., 151
Vandenabeele, P., 341
Vasiliadis, C., 97

Vázquez-Calvo, C., 415
Vergès-Belmin, V., 115
Vignola, J., 499
von Bally, G., 527
von Lerber, K., 313, 321
Vona, F., 257, 349

Walter, J., 623
Watkins, K.G., 573
Weinhold, W.P., 593
Wess, T., 313
Westergaard, M., 269, 295
Wiedemann, G., 21, 37
Wojtkowski, M., 493
Wortmann, A., 593

Zafiropulos, V., 97, 105, 249, 269
Zanini, A., 83
Zehetner, F., 561
Summary. Laser divestment entered the field of art conservation through a nonlinear sequence of positive accidental events (serendipity) that involved the cinema industry, the invention of spread-spectrum and frequency-hopping communications, nuclear space propulsion, and oceanography. The unlikely chain of events began with the invention of a secure military communications system by a Viennese motion picture actress (1942). A first evaluation of the novel communications concept took place during a high-altitude nuclear test (TEAK) over the Pacific Ocean in 1958. The secure radio link proved to be a failure; however, analyses of the backscattered electromagnetic radiation contributed to the realization that nuclear-explosion plasmas need not be spherically symmetrical. Nobel Laureate Freeman Dyson exploited this nuclear option to guide in the design and prototype development of the ORION spaceship that was to rendezvous with the planet Saturn in 1970. For this space vehicle the high-specific-impulse nuclear propulsion was generated by means of superradiant X-ray-beam ablation of the spaceship’s rear surface by the remote detonation of a sequence of asymmetrical bombs projected rearward from the ORION. In the wake of the Nuclear Test Ban Treaty (1962) ORION was canceled. Through a Scripps Institution of Oceanography project in Venice (involving ORION scientists and holographic technology) the nondestructive radiation-ablation process found a resurrection in the field of stone conservation (1972). Ironically, the first major art-conservation project to employ laser ablation (Porta della Carta of the Palazzo Ducale) was paid for in part by Warner Brothers Motion Picture Studios (1980). Finally, the “Venice Laser Statue Cleaner” followed the Viennese actress (Hedy Lamarr/Hedwig Eva Maria Kiesler) to Hollywood where it was employed to treat the granite veneer of the Warner Center (1981).

1.1 Introduction

The fields of art conservation and laser science merged, formally and fittingly, in the land of Polyclitus and Democritus with a 1995 event now called LACONA I (held at FORTH). However, appropriate that symbolic recognition of the sources of Western cultural heritage may seem, LACONA VI has, in Vienna, returned to the direct technological genesis of lasers in the service
of art. The implausible trajectory of “unintended consequences” that led to the introduction of laser technology into art conservation was triggered in 1941–1942 when Viennese cinema actress Hedy Lamarr invented a novel (jamming proof) concept for the radio transmission of guidance information to naval torpedoes.

Subsequent decades witnessed initial evaluations of the Lamarr modulation schemes that helped uncover new avenues in nuclear weapons design as well as in the invention of the nuclear-propelled spaceship (ORION). Subsequently, the holographic plasma diagnostics developed for the engineering design of the spaceship were applied to the in situ archival recording of deteriorating Venetian statuary. This, in turn, led to the improbable realization that the radiation-propulsion mechanism of ORION could provide a means of self-limiting divestment (and conservation) of crumbling marble statues.

The series of “connections” and happy accidents that helped in bringing about LACONA VI are summarized in the paragraphs that follow.

1.2 Hedy Lamarr and Her Communications Patent

In 1942 Viennese motion picture actress Hedy Lamarr (Figs. 1.1 and 1.2) (Hedwig Eva Maria Kiesler) of MGM was granted US Patent #2,292,387 for a “Secret Communication System” based on her invention of spread-spectrum (Figs. 1.3 and 1.4) and frequency-hopping concepts. Evidently, the idea was a merging of art and science in that it sprang from her knowledge of the military business of her husband, Fritz Mandl, and her understanding of the player piano (gained from her friendship with artist George Antheil). As her discovery formed the basis of cell phone technology, Wi-Fi protocols, and the wireless Internet, she won a US$1/4M infringement claim against Corel Corporation and received the 1997 Electronic Frontier Award. (Upon receiving the award, 55 years after the fact, her response, “It’s about time,” received almost as much notice as her “au naturel” appearance in the 1933 Czech film, “Ecstasy.”)

Fig. 1.1. MGM motion picture star Hedy Lamarr
Fig. 1.2. The first page of Hedy Lamarr’s 1942 patent, “A Secret Communication System,” that introduced the frequency-hopping and spread-spectrum concepts to the communications field.

Fig. 1.3. Spread-spectrum communication link of Project ARGUS during the high-altitude nuclear detonation, TEAK (inset).

Fig. 1.4. The receiver site on the island of Niihau, Hawaii.

The first evaluation of Hedy Lamar’s approach to secure communications was carried out between Hawaiian Pacific Islands in 1958 during the Johnston Island high-altitude nuclear explosion TEAK (3.8 MT at 77 km altitude). Disappointingly, the experimental radio-wave transmission link was completely blacked out by the bomb’s gamma-ray-induced aurora. However, spectral
analyses of the backscattered electromagnetic signal revealed that the H-bomb had, through a performance asymmetry, ejected a plasma jet.

1.3 Orion: Nuclear Spaceship

The ARGUS backscatter data together with other theoretical and experimental results predicted that nuclear explosive devices possessed the potential for being redesigned into directed-energy radiation sources. Upon this realization, members of the TEAK team joined with theoretical physicist Freeman Dyson and virtuoso minibomb designer Theodore Taylor to exploit and optimize this phenomenon in order to develop a nuclear-propelled spaceship, ORION, for a mission to the planet Saturn (scheduled for 1970). Following a first ORION test flight (1962), the adoption of the Nuclear Test Ban Treaty led to the demise of the program. Figures 1.5–1.7 display a few of the test results of laboratory proof-of-principle ORION technology demonstrations that reveal the impulse delivered by laser ablation.

Fig. 1.5. Deformation of a restrained metallic coin through the impulse delivered by laser ablation pressure at a multigigawatt and kilojoule level

Fig. 1.6. A streak camera record of the laser propulsion of an unrestrained metallic disk to $V = 20 \text{ km s}^{-1}$
Fig. 1.7. Hypervelocity impact crater (and its cross section) produced by the energy released by a laser-propelled projectile

Fig. 1.8. A conceptual portrayal of a nuclear-driven ORION spaceship

Figure 1.8 presents a conceptual rendering of the ORION space vehicle near Mars.

1.4 Laser Divestment in Venice

The real-time holographic diagnostics developed for ORION were resurrected for art-conservation purposes in Venice in January 1972. This was a consequence of a collaboration of Scripps Institution of Oceanography geophysicists and ORION project alumni in research directed toward the alleviation of the “acqua alta” problem being experienced by the lagoon. By March 1972 the ruby holographic laser was being employed to clean marble sculpture by means of radiation-induced ablation in accordance with results from the radiation-hydrodynamic modeling of the earlier X-ray-beam nuclear-propulsion system (Fig. 1.9). This came about at the suggestion of Lorenzo Lazzarini and Giulia Musumeci of the Venetian Soprintendenza in response to the unacceptable cleaning results on friable stone with conventional air-abrasive and chemical approaches (Fig. 1.10).